76. A company's cash position, measured in millions of dollars, follows a generalized Wiener process with a drift rate of 0.5 per quarter and a variance rate of 4.0 per quarter. How high does the company's initial cash position have to be for the company to have a less than 15% chance of a negative cash position by the end of one year?
77. A company's cash position, measured in millions of dollars, follows a generalized Wiener process with a drift rate of 0.1 per month and a variance rate of 0.16 per month. The initial cash position is 2.0.
(a) What are the probability distributions of the cash position after 1 month, 6 months, and 1 year?
(b) What are the probabilities of a negative cash position at the end of 6 months and 1 year?
(c) At what time in the future is the probability of a negative cash position greatest?
78. Suppose that a stock price has an expected return of 15% per annum and a volatility of 30% per annum. When the stock price at the end of a certain day is $\$ 60$, calculate the following:
(a) The expected stock price at the end of the next day.
(b) The standard deviation of the stock price at the end of the next day.
79. Consider a non-dividend-paying stock with volatility 20% providing expected return of 10%. Use Monte Carlo simulation to estimate the stock price after 10 weeks, using the following random sample for $\varepsilon: 0.52,1.44,-0.86,1.46,-0.69,-0.74,0.21$, $-1.1,0.73,1.16,2.56$. The current stock price is $\$ 100$.
80. If S follows geometric Brownian motion, what is the process followed by
(a) $2 S$;
(b) S^{2};
(c) S^{n} with $n \in \mathbb{N}$;
(d) e^{S};
(e) $e^{r(T-t)} / S$.
