Chapter 1

Probability Background

1.1 Probability Spaces

Definition 1.1. Let Ω be a set. We say that a collection \mathcal{F} of subsets of Ω is a σ algebra provided
(i) $\emptyset \in \mathcal{F}$;
(ii) if $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(iii) if $A_{n} \in \mathcal{F}$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}$.

Example 1.2. Let $\Omega=\{U U U, U U D, U D U, U D D, D U U, D U D, D D U, D D D\}$ in the BAPM (Binomial Asset Pricing Model) with $N=3$.

Definition 1.3. Let Ω be a set and let \mathcal{F} be a σ-algebra of subsets of Ω. We call $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ a probability measure on \mathcal{F} provided
(i) $\mathbb{P}(\Omega)=1$;
(ii) if $A_{n} \in \mathcal{F}$ for all $n \in \mathbb{N}$ are disjoint, then $\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)$.

The measure is called complete if
(iii) $A \in \mathcal{F}, B \subset A, \mathbb{P}(A)=0$ imply $B \in \mathcal{F}, \mathbb{P}(B)=0$.

Example 1.4. For $A \in \mathcal{P}(\Omega)$ from Example 1.2, define $\mathbb{P}(A)=\sum_{\omega \in A} \mathbb{P}(\{\omega\})$.
Definition 1.5. A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space or Kolmogorov triple provided
(i) Ω is any set;
(ii) \mathcal{F} is a σ-algebra of subsets of Ω;
(iii) \mathbb{P} is a probability measure on \mathcal{F}.

Remark 1.6. (i) A point $\omega \in \Omega$ is called sample point;
(ii) a set $A \in \mathcal{F}$ is called an event;
(iii) $\mathbb{P}(A)$ is called the probability of the event A;
(iv) a property which is true except for an event of probability zero is said to hold almost surely (abbreviated by a.s.);
(v) by $\mathcal{B}=\mathcal{B}\left(\mathbb{R}^{n}\right)$ we denote the collection of Borel subsets of \mathbb{R}^{n}, which is the smallest σ-algebra of subsets of \mathbb{R}^{n} containing all open sets.

1.2 Random Variables

Definition 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A mapping $X: \Omega \rightarrow \mathbb{R}^{n}$ is called an n-dimensional random variable if

$$
X^{-1}(B) \in \mathcal{F} \quad \text { for all } \quad B \in \mathcal{B}
$$

We also say that X is \mathcal{F}-measurable.
Lemma 1.8. Let $X: \Omega \rightarrow \mathbb{R}^{n}$ be a mapping. Then

$$
\sigma(X):=\left\{X^{-1}(B): B \in \mathcal{B}\right\}
$$

is a σ-algebra, called the σ-algebra generated by X. This is the smallest σ-algebra of Ω with respect to which X is measurable.

Example 1.9. Let $S_{0}=4, u=2, d=1 / 2$ in the BAPM. with $N=3$. Consider S_{2}, the price of the stock at time 2.

1.3 Lebesgue Theory

Definition 1.10. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let X be a random variable.
(i) If X is an indicator random variable, we define

$$
\int_{\Omega} X \mathrm{~d} \mathbb{P}:=\mathbb{P}(A), \quad \text { where } \quad X=\chi_{A}
$$

(ii) If X is a simple random variable, we define

$$
\int_{\Omega} X \mathrm{dPP}:=\sum_{i=1}^{k} a_{i} \int_{\Omega} \chi_{A_{i}} \mathrm{dP}, \quad \text { where } \quad X=\sum_{i=1}^{k} a_{i} \chi_{A_{i}}
$$

(iii) if X is a nonnegative random variable, we define

$$
\int_{\Omega} X \mathrm{dP}:=\sup \left\{\int_{\Omega} Y \mathrm{dP}: Y \leq X, Y \text { simple }\right\}
$$

(iv) if X is any random variable, we define

$$
\int_{\Omega} X \mathrm{~d} \mathbb{P}:=\int_{\Omega} X^{+} \mathrm{d} \mathbb{P}-\int_{\Omega} X^{-} \mathrm{d} \mathbb{P}
$$

provided at least one of the integrals on the right is finite. Here,

$$
X^{+}:=\frac{|X|+X}{2} \quad \text { and } \quad X^{-}:=\frac{|X|-X}{2}
$$

Definition 1.11. We call

$$
\mathbb{E}(X):=\int_{\Omega} X \mathrm{~d} \mathbb{P}
$$

the expected value of X, while

$$
\mathbb{V}(X):=\mathbb{E}\left(|X-\mathbb{E}(X)|^{2}\right)
$$

denotes the variance of X. Moreover,

$$
\mathbb{C o v}(X, Y):=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))
$$

and

$$
\rho(X, Y):=\frac{\mathbb{C o v}(X, Y)}{\sqrt{\mathbb{V}(X) \mathbb{V}(Y)}} \quad \text { if } \quad \mathbb{V}(X) \mathbb{V}(Y) \neq 0
$$

denote the covariance and correlation coefficient of X and Y, respectively. If $\rho(X, Y)=$ 0 , then X and Y are called uncorrelated.

Theorem 1.12 (Linearity of Expectation). We have

$$
\mathbb{E}(\alpha X)=\alpha \mathbb{E}(X) \quad \text { and } \quad \mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Theorem 1.13 (Continuity of Expectation). Suppose X_{n} are random variables with

$$
X_{n} \rightarrow X \quad \text { a.s., } \quad n \rightarrow \infty
$$

(i) Fatou's lemma: If $X_{n} \geq Y$ a.s. for all $n \in \mathbb{N}$, where $\mathbb{E}(|Y|)<\infty$,

$$
\mathbb{E}\left(\liminf _{n \rightarrow \infty} X_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)
$$

(ii) Monotone convergence: If $0 \leq X_{n} \leq X_{n+1}$ a.s. for all $n \in \mathbb{N}$, then

$$
\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X) \quad \text { as } \quad n \rightarrow \infty
$$

(iii) Dominated convergence: If $\left|X_{n}\right| \leq Y$ a.s. for all $n \in \mathbb{N}$, where $\mathbb{E}(Y)<\infty$, then

$$
\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X) \quad \text { as } \quad n \rightarrow \infty
$$

(iv) Bounded convergence: If $\left|X_{n}\right| \leq c$ a.s. for all $n \in \mathbb{N}$, where $c \in \mathbb{R}$, then

$$
\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X) \quad \text { as } \quad n \rightarrow \infty
$$

Theorem 1.14 (Inequalities). The following inequalities hold:
(i) Hölder:

$$
\mathbb{E}(|X Y|) \leq\left(\mathbb{E}\left(|X|^{p}\right)\right)^{1 / p}\left(\mathbb{E}\left(|Y|^{q}\right)\right)^{1 / q}, \quad \text { where } \quad \frac{1}{p}+\frac{1}{q}=1
$$

(ii) Cauchy-Schwarz:

$$
\mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

in particular

$$
|\mathbb{C o v}(X, Y)| \leq \sqrt{\mathbb{V}(X) \mathbb{V}(Y)} \quad \text { and } \quad|\rho(X, Y)| \leq 1
$$

(iii) Minkowski:

$$
\left.\left(\left.\mathbb{E}(\mid X+Y)\right|^{p}\right)\right)^{1 / p} \leq\left(\mathbb{E}\left(|X|^{p}\right)\right)^{1 / p}+\left(\mathbb{E}\left(|Y|^{p}\right)\right)^{1 / p}
$$

(iv) Markov: If $X \geq 0$ a.s., then

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}(X)}{c} \quad \text { for } \quad c>0
$$

(v) Čebyshev:

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(X^{2}\right)}{c^{2}} \quad \text { for } \quad c>0
$$

(vi) Jensen: If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then

$$
\mathbb{E}(\phi(X)) \geq \phi(\mathbb{E}(X))
$$

1.4 Independence

Definition 1.15. Let \mathcal{F} be a σ-algebra. Two events $A, B \in \mathcal{F}$ are called independent provided

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Furthermore, if $\mathbb{P}(B)>0$, then we define

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Example 1.16. In the BAPM with $N=2, A=\{U U, U D\}$ and $B=\{U D, D U\}$ are independent iff $p=1 / 2$.

Definition 1.17. Let \mathcal{F} be a σ-algebra and let $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ be sub- σ-algebras of \mathcal{F}. Then \mathcal{G} and \mathcal{H} are called independent provided

$$
A, B \text { are independent } \quad \text { for all } \quad A \in \mathcal{G} \text { and } B \in \mathcal{H}
$$

Definition 1.18. Two random variables X and Y are called independent provided $\sigma(X)$ and $\sigma(Y)$ are independent.

Example 1.19. In the BAPM with $N=2$, consider S_{1} and S_{2}.
Theorem 1.20. If X and Y are independent, then they are uncorrelated. But the converse is not true in general.

Theorem 1.21. If X and Y are independent and $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are Borel measurable, then
(i) $g(X)$ and $h(Y)$ are independent;
(ii) $\mathbb{E}(g(X) h(Y))=\mathbb{E}(g(X)) \mathbb{E}(h(Y))$.

1.5 Change of Measure

Definition 1.22. Let \mathbb{P} and $\tilde{\mathbb{P}}$ be two probability measures on (Ω, \mathcal{F}). We say that $\tilde{\mathbb{P}}$ is absolutely continuous with respect to \mathbb{P} provided

$$
\mathbb{P}(A)=0, \quad A \in \mathcal{F} \quad \text { implies } \quad \tilde{\mathbb{P}}(A)=0 .
$$

In this case we write $\tilde{\mathbb{P}} \ll \mathbb{P}$. If both $\tilde{\mathbb{P}} \ll \mathbb{P}$ and $\mathbb{P} \ll \tilde{\mathbb{P}}$, then we say that \mathbb{P} and $\tilde{\mathbb{P}}$ are equivalent measures and write $\mathbb{P} \sim \tilde{\mathbb{P}}$.

Theorem 1.23 (Radon-Nikodým). Let \mathbb{P} and $\tilde{\mathbb{P}}$ be two probability measures on (Ω, \mathcal{F}). If $\tilde{\mathbb{P}} \ll \mathbb{P}$, then there exists a nonnegative random variable Z with

$$
\tilde{\mathbb{P}}(A)=\int_{A} Z \mathrm{~d} \mathbb{P} \quad \text { for all } \quad A \in \mathcal{F}
$$

