
Chapter 1

Probability Background

1.1 Probability Spaces

Definition 1.1. Let Ω be a set. We say that a collection F of subsets of Ω is a σ-
algebra provided

(i) ∅ ∈ F ;

(ii) if A ∈ F , then Ac ∈ F ;

(iii) if An ∈ F for all n ∈ N, then
⋃
n∈N

An ∈ F .

Example 1.2. Let Ω = {UUU,UUD,UDU,UDD,DUU,DUD,DDU,DDD} in
the BAPM (Binomial Asset Pricing Model) with N = 3.

Definition 1.3. Let Ω be a set and let F be a σ-algebra of subsets of Ω. We call
P : F → [0, 1] a probability measure on F provided

(i) P(Ω) = 1;

(ii) if An ∈ F for all n ∈ N are disjoint, then P
( ⋃
n∈N

An

)
=
∑
n∈N

P(An).

The measure is called complete if

(iii) A ∈ F , B ⊂ A, P(A) = 0 imply B ∈ F , P(B) = 0.

Example 1.4. For A ∈ P(Ω) from Example 1.2, define P(A) =
∑
ω∈A

P({ω}).

Definition 1.5. A triple (Ω,F ,P) is called a probability space or Kolmogorov triple
provided

(i) Ω is any set;

(ii) F is a σ-algebra of subsets of Ω;

(iii) P is a probability measure on F .

Remark 1.6. (i) A point ω ∈ Ω is called sample point;

(ii) a set A ∈ F is called an event;

(iii) P(A) is called the probability of the event A;
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(iv) a property which is true except for an event of probability zero is said to hold
almost surely (abbreviated by a.s.);

(v) by B = B(Rn) we denote the collection of Borel subsets of Rn, which is the
smallest σ-algebra of subsets of Rn containing all open sets.

1.2 Random Variables

Definition 1.7. Let (Ω,F ,P) be a probability space. A mapping X : Ω → Rn is
called an n-dimensional random variable if

X−1(B) ∈ F for all B ∈ B.

We also say that X is F-measurable.

Lemma 1.8. Let X : Ω→ Rn be a mapping. Then

σ(X) := {X−1(B) : B ∈ B}

is a σ-algebra, called the σ-algebra generated by X . This is the smallest σ-algebra
of Ω with respect to which X is measurable.

Example 1.9. Let S0 = 4, u = 2, d = 1/2 in the BAPM. with N = 3. Consider S2,
the price of the stock at time 2.

1.3 Lebesgue Theory

Definition 1.10. Let (Ω,F ,P) be a probability space. Let X be a random variable.

(i) If X is an indicator random variable, we define∫
Ω

XdP := P(A), where X = χA;

(ii) If X is a simple random variable, we define

∫
Ω

XdP :=
k∑
i=1

ai

∫
Ω

χAidP, where X =

k∑
i=1

aiχAi ;

(iii) if X is a nonnegative random variable, we define∫
Ω

XdP := sup
{∫

Ω

Y dP : Y ≤ X, Y simple
}

;
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(iv) if X is any random variable, we define∫
Ω

XdP :=
∫

Ω

X+dP−
∫

Ω

X−dP,

provided at least one of the integrals on the right is finite. Here,

X+ :=
|X|+X

2
and X− :=

|X| −X
2

.

Definition 1.11. We call
E(X) :=

∫
Ω

XdP

the expected value of X , while

V(X) := E(|X − E(X)|2).

denotes the variance of X . Moreover,

Cov(X,Y ) := E((X − E(X))(Y − E(Y )))

and

ρ(X,Y ) :=
Cov(X,Y )√
V(X)V(Y )

if V(X)V(Y ) 6= 0

denote the covariance and correlation coefficient ofX and Y , respectively. If ρ(X,Y ) =
0, then X and Y are called uncorrelated.

Theorem 1.12 (Linearity of Expectation). We have

E(αX) = αE(X) and E(X + Y ) = E(X) + E(Y ).

Theorem 1.13 (Continuity of Expectation). Suppose Xn are random variables with

Xn → X a.s., n→∞.

(i) Fatou’s lemma: If Xn ≥ Y a.s. for all n ∈ N, where E(|Y |) <∞,

E
(

lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn).

(ii) Monotone convergence: If 0 ≤ Xn ≤ Xn+1 a.s. for all n ∈ N, then

E(Xn)→ E(X) as n→∞.

(iii) Dominated convergence: If |Xn| ≤ Y a.s. for all n ∈ N, where E(Y ) < ∞,
then

E(Xn)→ E(X) as n→∞.
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(iv) Bounded convergence: If |Xn| ≤ c a.s. for all n ∈ N, where c ∈ R, then

E(Xn)→ E(X) as n→∞.

Theorem 1.14 (Inequalities). The following inequalities hold:

(i) Hölder:

E(|XY |) ≤ (E(|X|p))1/p(E(|Y |q))1/q, where
1
p
+

1
q
= 1.

(ii) Cauchy–Schwarz:

E(|XY |) ≤
√

E(X2)E(Y 2),

in particular

|Cov(X,Y )| ≤
√

V(X)V(Y ) and |ρ(X,Y )| ≤ 1.

(iii) Minkowski:

(E(|X + Y )|p))1/p ≤ (E(|X|p))1/p + (E(|Y |p))1/p.

(iv) Markov: If X ≥ 0 a.s., then

P(X ≥ c) ≤ E(X)

c
for c > 0.

(v) Čebyshev:

P(|X| ≥ c) ≤ E(X2)

c2 for c > 0.

(vi) Jensen: If φ : R→ R is convex, then

E(φ(X)) ≥ φ(E(X)).

1.4 Independence

Definition 1.15. Let F be a σ-algebra. Two events A,B ∈ F are called independent
provided

P(A ∩B) = P(A)P(B).

Furthermore, if P(B) > 0, then we define

P(A|B) :=
P(A ∩B)

P(B)
.
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Example 1.16. In the BAPM with N = 2, A = {UU,UD} and B = {UD,DU}
are independent iff p = 1/2.

Definition 1.17. Let F be a σ-algebra and let G,H ⊂ F be sub-σ-algebras of F .
Then G andH are called independent provided

A,B are independent for all A ∈ G and B ∈ H.

Definition 1.18. Two random variables X and Y are called independent provided
σ(X) and σ(Y ) are independent.

Example 1.19. In the BAPM with N = 2, consider S1 and S2.

Theorem 1.20. If X and Y are independent, then they are uncorrelated. But the
converse is not true in general.

Theorem 1.21. IfX and Y are independent and g, h : R→ R are Borel measurable,
then

(i) g(X) and h(Y ) are independent;

(ii) E(g(X)h(Y )) = E(g(X))E(h(Y )).

1.5 Change of Measure

Definition 1.22. Let P and P̃ be two probability measures on (Ω,F). We say that P̃
is absolutely continuous with respect to P provided

P(A) = 0, A ∈ F implies P̃(A) = 0.

In this case we write P̃� P. If both P̃� P and P� P̃, then we say that P and P̃ are
equivalent measures and write P ∼ P̃.

Theorem 1.23 (Radon–Nikodým). Let P and P̃ be two probability measures on (Ω,F).
If P̃� P, then there exists a nonnegative random variable Z with

P̃(A) =
∫
A
ZdP for all A ∈ F .


