Chapter 1 Probability Background

1.1 Probability Spaces

Definition 1.1. Let Ω be a set. We say that a collection \mathcal{F} of subsets of Ω is a σ -algebra provided

- $(i) \ \emptyset \in \mathcal{F};$
- (ii) if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
- (iii) if $A_n \in \mathcal{F}$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$.

Example 1.2. Let $\Omega = \{UUU, UUD, UDU, UDD, DUU, DUD, DDU, DDD\}$ in the BAPM (Binomial Asset Pricing Model) with N = 3.

Definition 1.3. Let Ω be a set and let \mathcal{F} be a σ -algebra of subsets of Ω . We call $\mathbb{P} : \mathcal{F} \to [0, 1]$ a *probability measure* on \mathcal{F} provided

(i) $\mathbb{P}(\Omega) = 1$;

(ii) if
$$A_n \in \mathcal{F}$$
 for all $n \in \mathbb{N}$ are disjoint, then $\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$

The measure is called complete if

(iii) $A \in \mathcal{F}, B \subset A, \mathbb{P}(A) = 0$ imply $B \in \mathcal{F}, \mathbb{P}(B) = 0$.

Example 1.4. For $A \in \mathcal{P}(\Omega)$ from Example 1.2, define $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\})$.

Definition 1.5. A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a *probability space* or *Kolmogorov triple* provided

- (i) Ω is any set;
- (ii) \mathcal{F} is a σ -algebra of subsets of Ω ;
- (iii) \mathbb{P} is a probability measure on \mathcal{F} .

Remark 1.6. (i) A point $\omega \in \Omega$ is called *sample point*;

- (ii) a set $A \in \mathcal{F}$ is called an *event*;
- (iii) $\mathbb{P}(A)$ is called the *probability* of the event A;

- (iv) a property which is true except for an event of probability zero is said to hold *almost surely* (abbreviated by a.s.);
- (v) by $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$ we denote the collection of *Borel subsets* of \mathbb{R}^n , which is the smallest σ -algebra of subsets of \mathbb{R}^n containing all open sets.

1.2 Random Variables

Definition 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A mapping $X : \Omega \to \mathbb{R}^n$ is called an *n*-dimensional *random variable* if

 $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$.

We also say that X is \mathcal{F} -measurable.

Lemma 1.8. Let $X : \Omega \to \mathbb{R}^n$ be a mapping. Then

$$\sigma(X) := \{ X^{-1}(B) : B \in \mathcal{B} \}$$

is a σ -algebra, called the σ -algebra generated by X. This is the smallest σ -algebra of Ω with respect to which X is measurable.

Example 1.9. Let $S_0 = 4$, u = 2, d = 1/2 in the BAPM. with N = 3. Consider S_2 , the price of the stock at time 2.

1.3 Lebesgue Theory

Definition 1.10. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let *X* be a random variable.

(i) If X is an *indicator* random variable, we define

$$\int_{\Omega} X d\mathbb{P} := \mathbb{P}(A), \quad \text{where} \quad X = \chi_A;$$

(ii) If X is a *simple* random variable, we define

$$\int_{\Omega} X d\mathbb{P} := \sum_{i=1}^{k} a_i \int_{\Omega} \chi_{A_i} d\mathbb{P}, \quad \text{where} \quad X = \sum_{i=1}^{k} a_i \chi_{A_i};$$

(iii) if X is a *nonnegative* random variable, we define

$$\int_{\Omega} X d\mathbb{P} := \sup \left\{ \int_{\Omega} Y d\mathbb{P} : Y \leq X, Y \text{ simple} \right\};$$

(iv) if X is any random variable, we define

$$\int_{\Omega} X \mathrm{d}\mathbb{P} := \int_{\Omega} X^+ \mathrm{d}\mathbb{P} - \int_{\Omega} X^- \mathrm{d}\mathbb{P},$$

provided at least one of the integrals on the right is finite. Here,

$$X^+ := \frac{|X| + X}{2}$$
 and $X^- := \frac{|X| - X}{2}$.

Definition 1.11. We call

$$\mathbb{E}(X) := \int_{\Omega} X \mathrm{d}\mathbb{P}$$

the *expected value* of X, while

$$\mathbb{V}(X) := \mathbb{E}(|X - \mathbb{E}(X)|^2).$$

denotes the variance of X. Moreover,

$$\mathbb{C}\mathrm{ov}(X,Y) := \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

and

$$\rho(X,Y) := \frac{\mathbb{C}\mathrm{ov}(X,Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}} \quad \text{if} \quad \mathbb{V}(X)\mathbb{V}(Y) \neq 0$$

denote the *covariance* and *correlation coefficient* of X and Y, respectively. If $\rho(X, Y) = 0$, then X and Y are called *uncorrelated*.

Theorem 1.12 (Linearity of Expectation). We have

$$\mathbb{E}(\alpha X) = \alpha \mathbb{E}(X)$$
 and $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

Theorem 1.13 (Continuity of Expectation). Suppose X_n are random variables with

$$X_n \to X$$
 a.s., $n \to \infty$.

(i) Fatou's lemma: If $X_n \ge Y$ a.s. for all $n \in \mathbb{N}$, where $\mathbb{E}(|Y|) < \infty$,

$$\mathbb{E}\left(\liminf_{n\to\infty}X_n\right)\leq\liminf_{n\to\infty}\mathbb{E}(X_n).$$

(ii) Monotone convergence: If $0 \le X_n \le X_{n+1}$ a.s. for all $n \in \mathbb{N}$, then

$$\mathbb{E}(X_n) \to \mathbb{E}(X) \quad as \quad n \to \infty.$$

(iii) Dominated convergence: If $|X_n| \leq Y$ a.s. for all $n \in \mathbb{N}$, where $\mathbb{E}(Y) < \infty$, then

$$\mathbb{E}(X_n) \to \mathbb{E}(X) \quad as \quad n \to \infty.$$

(iv) Bounded convergence: If $|X_n| \leq c$ a.s. for all $n \in \mathbb{N}$, where $c \in \mathbb{R}$, then

 $\mathbb{E}(X_n) \to \mathbb{E}(X)$ as $n \to \infty$.

Theorem 1.14 (Inequalities). The following inequalities hold:

(i) Hölder:

$$\mathbb{E}(|XY|) \le (\mathbb{E}(|X|^p))^{1/p} (\mathbb{E}(|Y|^q))^{1/q}, \quad \text{where} \quad \frac{1}{p} + \frac{1}{q} = 1.$$

(ii) Cauchy–Schwarz:

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)},$$

in particular

$$\mathbb{C}\mathrm{ov}(X,Y)| \leq \sqrt{\mathbb{V}(X)\mathbb{V}(Y)} \quad and \quad |\rho(X,Y)| \leq 1.$$

(iii) Minkowski:

$$(\mathbb{E}(|X+Y)|^p))^{1/p} \le (\mathbb{E}(|X|^p))^{1/p} + (\mathbb{E}(|Y|^p))^{1/p}.$$

(iv) Markov: If $X \ge 0$ a.s., then

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}(X)}{c} \quad for \quad c > 0.$$

(v) Čebyshev:

$$\mathbb{P}(|X| \ge c) \le \frac{\mathbb{E}(X^2)}{c^2} \quad for \quad c > 0.$$

(vi) Jensen: If $\phi : \mathbb{R} \to \mathbb{R}$ is convex, then

$$\mathbb{E}(\phi(X)) \ge \phi(\mathbb{E}(X)).$$

1.4 Independence

Definition 1.15. Let \mathcal{F} be a σ -algebra. Two events $A, B \in \mathcal{F}$ are called *independent* provided

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Furthermore, if $\mathbb{P}(B) > 0$, then we define

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Example 1.16. In the BAPM with N = 2, $A = \{UU, UD\}$ and $B = \{UD, DU\}$ are independent iff p = 1/2.

Definition 1.17. Let \mathcal{F} be a σ -algebra and let $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ be sub- σ -algebras of \mathcal{F} . Then \mathcal{G} and \mathcal{H} are called *independent* provided

A, B are independent for all $A \in \mathcal{G}$ and $B \in \mathcal{H}$.

Definition 1.18. Two random variables X and Y are called *independent* provided $\sigma(X)$ and $\sigma(Y)$ are independent.

Example 1.19. In the BAPM with N = 2, consider S_1 and S_2 .

Theorem 1.20. If X and Y are independent, then they are uncorrelated. But the converse is not true in general.

Theorem 1.21. If X and Y are independent and $g, h : \mathbb{R} \to \mathbb{R}$ are Borel measurable, *then*

- (i) g(X) and h(Y) are independent;
- (ii) $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y)).$

1.5 Change of Measure

Definition 1.22. Let \mathbb{P} and $\tilde{\mathbb{P}}$ be two probability measures on (Ω, \mathcal{F}) . We say that $\tilde{\mathbb{P}}$ is *absolutely continuous* with respect to \mathbb{P} provided

 $\mathbb{P}(A) = 0, \quad A \in \mathcal{F} \quad \text{implies} \quad \tilde{\mathbb{P}}(A) = 0.$

In this case we write $\tilde{\mathbb{P}} \ll \mathbb{P}$. If both $\tilde{\mathbb{P}} \ll \mathbb{P}$ and $\mathbb{P} \ll \tilde{\mathbb{P}}$, then we say that \mathbb{P} and $\tilde{\mathbb{P}}$ are *equivalent* measures and write $\mathbb{P} \sim \tilde{\mathbb{P}}$.

Theorem 1.23 (Radon–Nikodým). Let \mathbb{P} and $\tilde{\mathbb{P}}$ be two probability measures on (Ω, \mathcal{F}) . If $\tilde{\mathbb{P}} \ll \mathbb{P}$, then there exists a nonnegative random variable Z with

$$\tilde{\mathbb{P}}(A) = \int_{A} Z \mathrm{d}\mathbb{P} \quad \textit{for all} \quad A \in \mathcal{F}.$$