Chapter 2 Conditional Expectation

2.1 Definition and Properties of Conditional Expectation

Definition 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Suppose $X : \Omega \to \mathbb{R}$ is a random variable with $\mathbb{E}(|X|) < \infty$. Then the *conditional expectation* of X with respect to \mathcal{G} is defined to be $\mathbb{E}(X|\mathcal{G}) := Y$, where Y is any random variable satisfying

- (i) $\mathbb{E}(|Y|) < \infty;$
- (ii) Y is G-measurable;
- (iii) partial averaging property:

$$\int_A Y d\mathbb{P} = \int_A X d\mathbb{P} \quad \text{for all} \quad A \in \mathcal{G}.$$

Moreover, if Z is a random variable, we write $\mathbb{E}(X|Z) = \mathbb{E}(X|\sigma(Z))$.

Example 2.2. In the BAPM with N = 2, for $\mathcal{F}_1 = \{\emptyset, A_U, A_D, \Omega\}$, find $\mathbb{E}(S_2|\mathcal{F}_1)$.

Theorem 2.3 (Existence and Uniqueness of Conditional Expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ -algebra of \mathcal{F} . Suppose $X : \Omega \to \mathbb{R}$ is a random variable with $\mathbb{E}(|X|) < \infty$. Then the conditional expectation $\mathbb{E}(X|\mathcal{G})$ exists and is unique up to \mathcal{G} -measurable sets of probability zero.

Theorem 2.4 (Properties of Conditional Expectation). We have:

- (i) Conditional mean formula: $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$;
- (ii) $\mathbb{E}(X|\mathcal{G}) = X \text{ a.s. if } X \text{ is } \mathcal{G}\text{-measurable};$
- (iii) Linearity: $\mathbb{E}(a_1X_1 + a_2X_2|\mathcal{G}) = a_1\mathbb{E}(X_1|\mathcal{G}) + a_2\mathbb{E}(X_2|\mathcal{G});$
- (iv) Positivity: $\mathbb{E}(X|\mathcal{G}) \ge 0$ a.s. if $X \ge 0$ a.s.;
- (v) Tower property: $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(X|\mathcal{H})$ if \mathcal{H} is a sub- σ -algebra of \mathcal{G} ;
- (vi) Tower property: $\mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = \mathbb{E}(X|\mathcal{H})$ if \mathcal{H} is a sub- σ -algebra of \mathcal{G} ;
- (vii) Taking out what is known: $\mathbb{E}(XZ|\mathcal{G}) = Z\mathbb{E}(X|\mathcal{G})$ if Z is \mathcal{G} -measurable and bounded;
- (viii) Role of independence: $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X)$ if X is independent of \mathcal{G} ;
- (ix) Conditional Jensen inequality: $\phi(\mathbb{E}(X|\mathcal{G})) \leq \mathbb{E}(\phi(X)|\mathcal{G})$ if $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E}(|\phi(X)|) < \infty$.

2.2 Martingales

Definition 2.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

(i) A sequence $\mathbb{F} := \{\mathcal{F}_n : n \in \mathbb{N}_0\}$ of sub- σ -algebras of \mathcal{F} is called a *filtration* provided

 $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for all $n \in \mathbb{N}_0$,

and then $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ is called a *stochastic basis* or *filtered probability space*.

- (ii) A sequence of random variables $X := \{X_n : n \in \mathbb{N}_0\}$ (defined on Ω and \mathcal{F} -measurable) is called a *discrete stochastic process*;
- (iii) The stochastic process X is said to be *adapted* to the filtration \mathbb{F} provided

 X_n is \mathcal{F}_n -measurable for all $n \in \mathbb{N}_0$.

Definition 2.6. Let $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space. Let M be a discrete stochastic process that is adapted to \mathbb{F} such that $\mathbb{E}(|M_n|) < \infty$ for all $n \in \mathbb{N}$. Then M is called a

(i) martingale if

$$\mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n \text{ a.s.} \quad \text{for all} \quad n \in \mathbb{N}_0;$$

(ii) supermartingale if

 $\mathbb{E}(M_{n+1}|\mathcal{F}_n) \leq M_n \text{ a.s.} \quad \text{for all} \quad n \in \mathbb{N}_0;$

(iii) submartingale if

$$\mathbb{E}(M_{n+1}|\mathcal{F}_n) \ge M_n \text{ a.s.} \quad \text{for all} \quad n \in \mathbb{N}_0.$$

Example 2.7. In the BAPM, S is a martingale, supermartingale, or submartingale provided pu + qd = 1, $pu + qd \le 1$, or $pu + qd \ge 1$, respectively.

Theorem 2.8. If $\{M_n, \mathcal{F}_n\}$ is a martingale, then

$$\mathbb{E}(M_m | \mathcal{F}_n) = M_n \quad \text{for all} \quad 0 \le n \le m.$$

Theorem 2.9. The expectation of a martingale is constant over time.