Chapter 4 American Derivative Securities in Discrete Time

4.1 Stopping Times

Definition 4.1. Let $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space. A random variable $\tau : \Omega \to \overline{\mathbb{N}}_0$ is called a *stopping time* provided

$$\{\omega \in \Omega : \tau(\omega) = k\} \in \mathcal{F}_k \text{ for all } k \in \overline{\mathbb{N}}_0.$$

Example 4.2. Consider an American put with strike price 5 in the BAPM with N = 2, $S_0 = 4$, u = 2, d = 1/2, r = 1/4. Let

- (i) $\tau(\omega) = 1$ if $\omega \in A_D$ and $\tau(\omega) = 2$ if $\omega \in A_U$;
- (ii) $\rho(\omega) = \min\{k \in \mathbb{N}_0 : S_k(\omega) = m_2(\omega)\}, \text{ where } m_2 = \min_{0 \le j \le 2} S_j.$

Lemma 4.3. τ is a stopping time iff $\{\tau \leq k\} \in \mathcal{F}_k$ for all $k \in \overline{\mathbb{N}}_0$.

Definition 4.4. Let τ be a stopping time. We say that a set $A \subset \Omega$ is *determined by time* τ provided

$$A \cap \{\omega \in \Omega : \tau(\omega) = k\} \in \mathcal{F}_k \text{ for all } k \in \overline{\mathbb{N}}_0.$$

The collection of all sets determined by τ is denoted by \mathcal{F}_{τ} .

Example 4.5. Find \mathcal{F}_{τ} for τ given in Example 4.2.

Theorem 4.6. If τ is a stopping time, then \mathcal{F}_{τ} is a σ -algebra.

Lemma 4.7. $\mathcal{F}_{\tau} = \{A \subset \Omega : A \cap \{\tau \leq k\} \in \mathcal{F}_k \text{ for all } k \in \overline{\mathbb{N}}_0\}.$

Theorem 4.8. Let σ, τ be stopping times with $\sigma \leq \tau$. Then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Definition 4.9. If X is adapted to the filtration \mathbb{F} and τ is a stopping time, we define

 $X_{\tau}(\omega) = X_{\tau(\omega)}(\omega)$ for all $\omega \in \Omega$.

Example 4.10. Find S_{τ} for τ given in Example 4.2.

Theorem 4.11. If τ is a stopping time, then X_{τ} is \mathcal{F}_{τ} -measurable.

Lemma 4.12. We have $X_{\tau} = \sum_{n=0}^{\infty} X_n \chi_{\{\tau=n\}}.$

Theorem 4.13 (Doob's Stopping-time Principle). Let τ be a bounded stopping time and X a martingale. Then X_{τ} is integrable and

$$\mathbb{E}(X_{\tau}) = \mathbb{E}(X_0).$$

Example 4.14. Show $\tilde{\mathbb{E}}((\beta S)_{\tau}) = (\beta S)_0$ in Example 4.2.

Example 4.15. If τ is not bounded, then STP does not hold in general.

Theorem 4.16 (Doob's Optional Sampling Theorem). Let *X* be a martingale and let σ, τ be bounded stopping times with $\sigma \leq \tau$. Then

$$\mathbb{E}(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}.$$

Example 4.17. Continuation of Example 4.2 with $\rho(\omega) \equiv 2$.

Theorem 4.18. Let $\{X_n\}$ be adapted integrable random variables with $\mathbb{E}(X_{\tau}) = 0$ for all bounded stopping times τ . Then X is a martingale.

Definition 4.19. For an adapted process X and a stopping time τ we define the *stopped process* X^{τ} by

$$X_n^{\tau}(\omega) := X_{\tau(\omega) \wedge n}(\omega).$$

Example 4.20. Find S_1^{τ} and S_2^{τ} , where τ is given in Example 4.2.

Lemma 4.21. We have $X_n^{\tau} = X_0 + \sum_{k=0}^{n-1} \chi_{\{\tau \le k\}^c} \Delta X_k$.

Theorem 4.22. Let X be a discrete stochastic process and let τ be a stopping time.

- (i) If X is adapted, then so is X^{τ} .
- (ii) If X is a martingale, then so is X^{τ} .
- (iii) If X is a supermartingale, then so is X^{τ} .
- (iv) If X is a submartingale, then so is X^{τ} .

4.2 The Snell Envelope and Optimal Stopping

Definition 4.23. Let X be an adapted sequence of integrable random variables. The sequence Z defined by

$$Z_N = X_N, \quad Z_n = \max\{X_n, \mathbb{E}(Z_{n+1}|\mathcal{F}_n)\}, \ 0 \le n \le N-1$$

is called the *Snell envelope* of X.

Theorem 4.24. *The Snell envelope of X is the smallest supermartingale dominating X*.

Theorem 4.25. $\tau^* = \inf\{n \in \mathbb{N}_0 : Z_n = X_n\}$ is a stopping time, and the stopped process Z^{τ^*} is a martingale.

Definition 4.26. We define the set S_n by

 $S_n = \{ \tau : n \le \tau \le N \text{ a.s. and } \tau \text{ is a stopping time} \}.$

A stopping time $\sigma \in S_n$ is called *optimal* for X if

$$\mathbb{E}(X_{\sigma}|\mathcal{F}_n) = \sup_{\tau \in \mathcal{S}_n} \mathbb{E}(X_{\tau}|\mathcal{F}_n).$$

Theorem 4.27. τ^* solves the optimal stopping problem for X:

$$Z_0 = \mathbb{E}(X_{\tau^*}) = \sup_{\tau \in \mathcal{S}_0} \mathbb{E}(X_{\tau}).$$

Theorem 4.28. If $\tau_n^* = \inf\{k \ge n : Z_k = X_k\}$, then

$$Z_n = \mathbb{E}(X_{\tau_n^*} | \mathcal{F}_n) = \sup_{\tau \in \mathcal{S}_n} \mathbb{E}(X_\tau | \mathcal{F}_n).$$

Theorem 4.29. The stopping time $\sigma \in S_0$ is optimal for X iff

 $Z_{\sigma} = X_{\sigma}$ and Z^{σ} is a martingale.

Theorem 4.30 (Doob Decomposition). Let X be an adapted process such that each X_n is integrable. Then X has a unique Doob decomposition

$$X_n = X_0 + M_n + A_{n-1} \quad for all \quad n \in \mathbb{N}_0,$$

where M is a martingale with $M_0 = 0$ and A is adapted with $A_{-1} = 0$. If X is a supermartingale, then A is decreasing.

Theorem 4.31. If Z has a Doob decomposition with M and A, then

$$\nu(\omega) = \begin{cases} N & \text{if } A_{N-1}(\omega) = 0\\ \min\{n \in \mathbb{N}_0 : A_n(\omega) < 0\} & \text{if } A_{N-1}(\omega) < 0 \end{cases}$$

is an optimal stopping time for X, and it is the largest optimal stopping time for X.

4.3 **Properties of American Derivatives**

Definition 4.32. An American derivative security (Ads) is a discrete stochastic process $G \ge 0$ that is adapted to a filtration \mathbb{F} . We also define the value of an Ads by

$$V_k = \beta_k^{-1} \max_{\tau \in \mathcal{S}_k} \tilde{\mathbb{E}}(\beta_\tau G_\tau | \mathcal{F}_k), \quad 0 \le k \le N - 1,$$

in particular

$$V_0 = \max_{\tau \in \mathcal{S}_0} \tilde{\mathbb{E}}(\beta_\tau G_\tau).$$

Theorem 4.33. Let G be an Ads and V its value. Then we have

- (i) $V \geq G$;
- (ii) βV is a supermartingale.

Theorem 4.34. Let G be an Ads and V its value. Then V is the smallest process satisfying the properties given in Theorem 4.33.

Theorem 4.35. βV is the Snell envelope of βG , i.e.,

$$V_N = G_N, \quad V_n = \max\{G_n, \beta_1 \mathbb{E}(V_{n+1}|\mathcal{F}_n)\}, \ 0 \le n \le N-1.$$

Theorem 4.36. Let G be an Ads and V its value. Any stopping time τ which satisfies

$$V_0 = \tilde{\mathbb{E}}(\beta_\tau G_\tau)$$

is an optimal stopping time. In particular,

$$\tau^* = \min\{k \in \mathbb{N}_0 : V_k = G_k\}$$

is an optimal stopping time.

Definition 4.37. An Ads G is said to be *hedgeable* (or *attainable*) if there exists a constant X_0 and a portfolio process φ such that the wealth process X given by

$$X_{k+1} = \varphi_k S_{k+1} + (1+r)(X_k - C_k - \varphi_k S_k),$$

where

$$C_k = V_k - \beta_1 \tilde{\mathbb{E}}(V_{k+1} | \mathcal{F}_k),$$

satisfies

$$X_k = V_k$$
 for all $0 \le k \le N_k$

Theorem 4.38. Under $\tilde{\mathbb{P}}$, the discounted wealth process βX is a supermartingale.

Theorem 4.39. In the BAPM, any Ads is hedgeable.

4.4 Comparison of American and European Derivative Securities

Remark 4.40. Let G be an Ads. Then it is also an sEds, and we denote the value process of the Ads G by V^A and the value process of the sEds G by V^E .

Theorem 4.41. (i) $V^A \ge V^E$; (ii) $V^E > G$ implies $V^A = V^E$.

Theorem 4.42. Suppose g is convex and satisfies g(0) = 0. If G = g(S), then $V^A = V^E$.

Corollary 4.43. The American call option is equivalent to its European counterpart.