Chapter 4

American Derivative Securities in Discrete Time

4.1 Stopping Times

Definition 4.1. Let (Q,F, 7, P) be a filtered probability space. A random variable
7 : Q — Ny is called a stopping time provided

{weQ: T(w)=k} e Fp forall keN.

Example 4.2. Consider an American put with strike price 5 in the BAPM with N =
2,8 =4u=2,d=1/2,r=1/4 Let

(i) T(w)=1ifw e Ap and 7(w) =2 ifw € Ay;

(i) p(w) =min{k € Ny : Si(w) = ma(w)}, where my = ming<;<2 S;.
Lemma 4.3. 7 is a stopping time iff {1 < k} € Fy for all k € Ny,.

Definition 4.4. Let 7 be a stopping time. We say that a set A C Q is determined by
time T provided

AN{weQ: 7(w) =k} € F, forall keN.
The collection of all sets determined by 7 is denoted by F.
Example 4.5. Find F for 7 given in Example 4.2.
Theorem 4.6. If T is a stopping time, then F is a o-algebra.
Lemmad.7. 7, = {ACQ: An{r <k} € Fyforallk € Ny}.
Theorem 4.8. Let o, T be stopping times with o < 1. Then F5 C F.
Definition 4.9. If X is adapted to the filtration I and 7 is a stopping time, we define
Xr(w) = Xp)(w) forall weQ.
Example 4.10. Find S for 7 given in Example 4.2.

Theorem 4.11. If T is a stopping time, then X is F.-measurable.
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Lemma 4.12. We have X; =Y XpX{r—n}-
n=0

Theorem 4.13 (Doob’s Stopping-time Principle). Let 7 be a bounded stopping time
and X a martingale. Then X is integrable and

E(X;) = E(X).
Example 4.14. Show E((35),) = (8S)o in Example 4.2.
Example 4.15. If 7 is not bounded, then STP does not hold in general.

Theorem 4.16 (Doob’s Optional Sampling Theorem). Let X be a martingale and let
o, T be bounded stopping times with o < 1. Then

E(X | Fy) = X,
Example 4.17. Continuation of Example 4.2 with p(w) = 2.

Theorem 4.18. Let { X, } be adapted integrable random variables with E(X;) = 0
for all bounded stopping times 7. Then X is a martingale.

Definition 4.19. For an adapted process X and a stopping time 7 we define the
stopped process X by

Xr:(w) = XT(w)/\n(w)'
Example 4.20. Find ST and S7, where 7 is given in Example 4.2.

n—1
Lemma 4.21. We have X7 = Xo+ »_ X{r<ij-AX.
k=0

Theorem 4.22. Let X be a discrete stochastic process and let T be a stopping time.
(i) If X is adapted, then so is X7
(ii) If X is a martingale, then so is X".
(iii) If X is a supermartingale, then so is X”.

(iv) If X is a submartingale, then so is X7.
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4.2 The Snell Envelope and Optimal Stopping
Definition 4.23. Let X be an adapted sequence of integrable random variables. The
sequence Z defined by

Zn = XN, Znp=max{X,,E(Z,1|Fn)}, 0<n<N-—-1

is called the Snell envelope of X.

Theorem 4.24. The Snell envelope of X is the smallest supermartingale dominating
X.

Theorem 4.25. 7" = inf{n € Ny : Z,, = X,,} is a stopping time, and the stopped
process Z7 is a martingale.

Definition 4.26. We define the set S,, by
S, ={7: n<7 <N as. and 7 is a stopping time}.
A stopping time o € S, is called optimal for X if

E(Xo|Fn) = sup E(X | Fy).
’TESﬂ

Theorem 4.27. 7* solves the optimal stopping problem for X :

Zy =E(X;+) = sup E(X;).
TESQ

Theorem 4.28. If 7' = inf{k > n: Zy = Xy}, then
Zy, = E(X7+|Fn) = sup E(X,|Fp).

n
TGSn

Theorem 4.29. The stopping time o € Sy is optimal for X iff

Zy, =X, and Z° is amartingale.

Theorem 4.30 (Doob Decomposition). Let X be an adapted process such that each
X, is integrable. Then X has a unique Doob decomposition

Xpn=Xo+M,+A,_1 forall n €Ny,

where M is a martingale with My = 0 and A is adapted with A_1 = 0. If X is a
supermartingale, then A is decreasing.

Theorem 4.31. If Z has a Doob decomposition with M and A, then

(W) = N if An—i(w)=0
min{n € Ny : A,(w) <0} if An—1(w) <0

is an optimal stopping time for X, and it is the largest optimal stopping time for X.
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4.3 Properties of American Derivatives

Definition 4.32. An American derivative security (Ads) is a discrete stochastic pro-
cess G > O that is adapted to a filtration F. We also define the value of an Ads
by
Vi. = B, ' max E(8,G,|Fy), 0<k<N-1,
TESk
in particular
Vo = max E(5:G,).
TES()

Theorem 4.33. Let G be an Ads and V its value. Then we have
(i) V>G;

(ii) BV is a supermartingale.

Theorem 4.34. Let G be an Ads and V its value. Then V is the smallest process
satisfying the properties given in Theorem 4.33.

Theorem 4.35. 3V is the Snell envelope of 3G, i.e.,

Vy =Gy, Vp=max{G,,BiE(V,1|F)}, 0<n <N —1.
Theorem 4.36. Let G be an Ads and V' its value. Any stopping time T which satisfies
Vo = E(8,G7)

is an optimal stopping time. In particular,
7" =min{k € Ny : Vi = Gy}
is an optimal stopping time.

Definition 4.37. An Ads G is said to be hedgeable (or attainable) if there exists a
constant X and a portfolio process ¢ such that the wealth process X given by

Xir1 = @Sk + (1 +7)( Xy — Ck — ¢rSk),

where
Cr = Vi = BiE(Vig 1| Fr),

satisfies
Xp=V, forall 0<k<N.

Theorem 4.38. Under P, the discounted wealth process BX is a supermartingale.

Theorem 4.39. In the BAPM, any Ads is hedgeable.
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4.4 Comparison of American and European Derivative
Securities

Remark 4.40. Let G be an Ads. Then it is also an sEds, and we denote the value
process of the Ads G by V4 and the value process of the sEds G by V.

Theorem 4.41. (i) VA > VE;
(ii) VE > G implies VA = VE.

Theorem 4.42. Suppose g is convex and satisfies g(0) = 0. If G = g(S5), then
vA=VE

Corollary 4.43. The American call option is equivalent to its European counterpart.



