
Chapter 4

American Derivative Securities in Discrete Time

4.1 Stopping Times

Definition 4.1. Let (Ω,F,F ,P) be a filtered probability space. A random variable
τ : Ω→ N0 is called a stopping time provided

{ω ∈ Ω : τ(ω) = k} ∈ Fk for all k ∈ N0.

Example 4.2. Consider an American put with strike price 5 in the BAPM with N =
2, S0 = 4, u = 2, d = 1/2, r = 1/4. Let

(i) τ(ω) = 1 if ω ∈ AD and τ(ω) = 2 if ω ∈ AU ;

(ii) ρ(ω) = min{k ∈ N0 : Sk(ω) = m2(ω)}, where m2 = min0≤j≤2 Sj .

Lemma 4.3. τ is a stopping time iff {τ ≤ k} ∈ Fk for all k ∈ N0.

Definition 4.4. Let τ be a stopping time. We say that a set A ⊂ Ω is determined by
time τ provided

A ∩ {ω ∈ Ω : τ(ω) = k} ∈ Fk for all k ∈ N0.

The collection of all sets determined by τ is denoted by Fτ .

Example 4.5. Find Fτ for τ given in Example 4.2.

Theorem 4.6. If τ is a stopping time, then Fτ is a σ-algebra.

Lemma 4.7. Fτ = {A ⊂ Ω : A ∩ {τ ≤ k} ∈ Fk for all k ∈ N0}.

Theorem 4.8. Let σ, τ be stopping times with σ ≤ τ . Then Fσ ⊂ Fτ .

Definition 4.9. If X is adapted to the filtration F and τ is a stopping time, we define

Xτ (ω) = Xτ(ω)(ω) for all ω ∈ Ω.

Example 4.10. Find Sτ for τ given in Example 4.2.

Theorem 4.11. If τ is a stopping time, then Xτ is Fτ -measurable.
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Lemma 4.12. We have Xτ =
∞∑
n=0

Xnχ{τ=n}.

Theorem 4.13 (Doob’s Stopping-time Principle). Let τ be a bounded stopping time
and X a martingale. Then Xτ is integrable and

E(Xτ ) = E(X0).

Example 4.14. Show Ẽ((βS)τ ) = (βS)0 in Example 4.2.

Example 4.15. If τ is not bounded, then STP does not hold in general.

Theorem 4.16 (Doob’s Optional Sampling Theorem). Let X be a martingale and let
σ, τ be bounded stopping times with σ ≤ τ . Then

E(Xτ |Fσ) = Xσ.

Example 4.17. Continuation of Example 4.2 with ρ(ω) ≡ 2.

Theorem 4.18. Let {Xn} be adapted integrable random variables with E(Xτ ) = 0
for all bounded stopping times τ . Then X is a martingale.

Definition 4.19. For an adapted process X and a stopping time τ we define the
stopped process Xτ by

Xτ
n(ω) := Xτ(ω)∧n(ω).

Example 4.20. Find Sτ1 and Sτ2 , where τ is given in Example 4.2.

Lemma 4.21. We have Xτ
n = X0 +

n−1∑
k=0

χ{τ≤k}c∆Xk.

Theorem 4.22. Let X be a discrete stochastic process and let τ be a stopping time.

(i) If X is adapted, then so is Xτ .

(ii) If X is a martingale, then so is Xτ .

(iii) If X is a supermartingale, then so is Xτ .

(iv) If X is a submartingale, then so is Xτ .
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4.2 The Snell Envelope and Optimal Stopping

Definition 4.23. Let X be an adapted sequence of integrable random variables. The
sequence Z defined by

ZN = XN , Zn = max{Xn,E(Zn+1|Fn)}, 0 ≤ n ≤ N − 1

is called the Snell envelope of X .

Theorem 4.24. The Snell envelope of X is the smallest supermartingale dominating
X .

Theorem 4.25. τ∗ = inf{n ∈ N0 : Zn = Xn} is a stopping time, and the stopped
process Zτ

∗
is a martingale.

Definition 4.26. We define the set Sn by

Sn = {τ : n ≤ τ ≤ N a.s. and τ is a stopping time}.

A stopping time σ ∈ Sn is called optimal for X if

E(Xσ|Fn) = sup
τ∈Sn

E(Xτ |Fn).

Theorem 4.27. τ∗ solves the optimal stopping problem for X:

Z0 = E(Xτ∗) = sup
τ∈S0

E(Xτ ).

Theorem 4.28. If τ∗n = inf{k ≥ n : Zk = Xk}, then

Zn = E(Xτ∗n |Fn) = sup
τ∈Sn

E(Xτ |Fn).

Theorem 4.29. The stopping time σ ∈ S0 is optimal for X iff

Zσ = Xσ and Zσ is a martingale.

Theorem 4.30 (Doob Decomposition). Let X be an adapted process such that each
Xn is integrable. Then X has a unique Doob decomposition

Xn = X0 +Mn +An−1 for all n ∈ N0,

where M is a martingale with M0 = 0 and A is adapted with A−1 = 0. If X is a
supermartingale, then A is decreasing.

Theorem 4.31. If Z has a Doob decomposition with M and A, then

ν(ω) =

{
N if AN−1(ω) = 0
min{n ∈ N0 : An(ω) < 0} if AN−1(ω) < 0

is an optimal stopping time for X , and it is the largest optimal stopping time for X .
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4.3 Properties of American Derivatives

Definition 4.32. An American derivative security (Ads) is a discrete stochastic pro-
cess G ≥ 0 that is adapted to a filtration F. We also define the value of an Ads
by

Vk = β−1
k max

τ∈Sk
Ẽ(βτGτ |Fk), 0 ≤ k ≤ N − 1,

in particular
V0 = max

τ∈S0
Ẽ(βτGτ ).

Theorem 4.33. Let G be an Ads and V its value. Then we have

(i) V ≥ G;

(ii) βV is a supermartingale.

Theorem 4.34. Let G be an Ads and V its value. Then V is the smallest process
satisfying the properties given in Theorem 4.33.

Theorem 4.35. βV is the Snell envelope of βG, i.e.,

VN = GN , Vn = max{Gn, β1Ẽ(Vn+1|Fn)}, 0 ≤ n ≤ N − 1.

Theorem 4.36. Let G be an Ads and V its value. Any stopping time τ which satisfies

V0 = Ẽ(βτGτ )

is an optimal stopping time. In particular,

τ∗ = min{k ∈ N0 : Vk = Gk}

is an optimal stopping time.

Definition 4.37. An Ads G is said to be hedgeable (or attainable) if there exists a
constant X0 and a portfolio process ϕ such that the wealth process X given by

Xk+1 = ϕkSk+1 + (1 + r)(Xk − Ck − ϕkSk),

where
Ck = Vk − β1Ẽ(Vk+1|Fk),

satisfies
Xk = Vk for all 0 ≤ k ≤ N.

Theorem 4.38. Under P̃, the discounted wealth process βX is a supermartingale.

Theorem 4.39. In the BAPM, any Ads is hedgeable.
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4.4 Comparison of American and European Derivative
Securities

Remark 4.40. Let G be an Ads. Then it is also an sEds, and we denote the value
process of the Ads G by V A and the value process of the sEds G by V E .

Theorem 4.41. (i) V A ≥ V E;

(ii) V E ≥ G implies V A = V E .

Theorem 4.42. Suppose g is convex and satisfies g(0) = 0. If G = g(S), then
V A = V E .

Corollary 4.43. The American call option is equivalent to its European counterpart.


