Problems #1, Math 6737/Econ 6337. Jan 18, 2023. Due Jan 25, 11 am.

- 1. Prove that if $\mathcal{F}_n \subset \Omega$ are σ -algebras for all $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} \mathcal{F}_n$ is also a σ -algebra.
- 2. Prove Lemma 1.8 from the Lecture Notes.
- 3. Consider a TAPM (trinomial asset pricing model), where in addition to U (going up) and D (going down) there is also a possibility of S (stay). Let N = 2. Find Ω and a nontrivial σ -algebra.
- 4. In the TAPM with N = 2, find S_1 and S_2 as well as $\sigma(S_1)$ and $\sigma(S_2)$.
- 5. In the TAPM with N = 2, assume the probability of an upward move is 1/4 and so is the probability of a downward move. Find $\mathbb{E}(S_2)$.
- 6. In the TAPM with N = 2, find probabilities that ensure that $\{UU, UD\}$ and $\{UD, DU\}$ are independent.
- 7. Let A and B be events with $\mathbb{P}(A) = 3/4$ and $\mathbb{P}(B) = 1/3$. Show that $1/12 \leq \mathbb{P}(A \cap B) \leq 1/3$ and give corresponding bounds for $\mathbb{P}(A \cup B)$.
- 8. Let A_n for $n \in \mathbb{N}$ be events and prove that

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}(A_{i}) \quad \text{and} \quad \mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) \geq 1 - n + \sum_{i=1}^{n} \mathbb{P}(A_{i})$$

holds for all $n \in \mathbb{N}$.

- 9. If two events A and B are independent, prove that A^{c} and B^{c} are independent.
- 10. Assume that B_n for $n \in \mathbb{N}$ are disjoint events that have as a union the entire sample space. Prove that

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(A|B_n) \mathbb{P}(B_n)$$

holds for any event A.

11. Suppose the random variable X is nonnegative almost surely. Prove that $\mathbb{E}(X) = 0$ iff X = 0 almost surely.