- 22. Is the TAPM complete?
- 23. Let $S_0 = 4$, u = 2, d = 1/2, r = 1/4, p = 2/3, q = 1/3 in the BAPM. Use Theorem 3.9 to price each of the following options.
 - (a) A European put option with strike price K = 5 and expiration time 3.
 - (b) A lookback option that expires at time 3 and pays off $\max\{S_0, S_1, S_2, S_3\} S_3$.
 - (c) An Asian call option with strike price K = 4 and expiration time 3 (i.e., whose payoff at time three is $((S_0 + S_1 + S_2 + S_3)/4 - K)^+)$.
- 24. For one of the three options from Problem 23, determine the entire value process and the hedging portfolio process.
- 25. Let C_N , P_N , and F_N be the payoffs of a European call, European put, and long forward, respectively, each with strike price K.
 - (a) Show $C_N = F_N + P_N$.
 - (b) Show $C_n = F_n + P_n$ for all $0 \le n \le N$.
 - (c) Find F_0 .
 - (d) Calculate the forward price (i.e., the value of K that makes $F_0 = 0$).
 - (e) Prove put-call parity (i.e., the price of a call struck at the forward price is the same as the price of a put struck at the forward price).
- 26. Let $1 \le m \le N 1$ and K > 0. A chooser option is a contract sold at time zero that confers on its owner the right to receive either a European call or a European put at time m, with strike price K and expiration time N. Show that the time-zero price of a chooser option is the sum of the time-zero price of a put, expiring at time N and having strike price K, and a call, expiring at time m and having strike price $K\beta_N/\beta_m$.
- 27. For one of the three options from Problem 23 (not the one you did in Problem 24), price the option using Theorem 3.18.
- 28. For the remaining one of the three options from Problem 23, determine the entire value process using Theorem 3.18.