48. Let $X(t)=-1$ for $0 \leq t<1, X(t)=1$ for $1 \leq t<2$, and $X(t)=2$ for $2 \leq t \leq 3$.

Find

$$
\int_{0}^{3} X(t) \mathrm{d} W(t)
$$

and its distribution.
49. Finish the proof of Theorem 6.4 if $l=k$.
50. Let W be Brownian motion. Verify directly that

$$
\int_{0}^{t} s \mathrm{~d} W(s)=t W(t)-\int_{0}^{t} W(s) \mathrm{d} s
$$

51. Let W be Brownian motion. Verify directly that

$$
\int_{0}^{t} W^{2}(s) \mathrm{d} W(s)=\frac{1}{3} W^{3}(t)-\int_{0}^{t} W(s) \mathrm{d} s
$$

52. Let W be Brownian motion. Show that

$$
\mathbb{E}\left(\left(\int_{0}^{T} W(s) \mathrm{d} W(s)\right)^{2}\right)=\int_{0}^{T} \mathbb{E}\left(W^{2}(s)\right) \mathrm{d} s
$$

53. Use Itô's formula to find an expression for $\int_{0}^{T} W^{m}(t) \mathrm{d} W(t)$ for $m \in \mathbb{N}$.
54. What does Itô's formula for BM say if $f(t, x)=e^{\lambda x-\frac{\lambda^{2} t}{2}}$ with $\lambda \in \mathbb{R}$?
55. Let W be Brownian motion. Use Itô's formula to find
(a) $\mathrm{d} e^{W(t)}$;
(b) $\mathrm{d} \sin (W(t))$;
(c) $\mathrm{d} \cos (W(t))$;
(d) $\mathrm{d} e^{i W(t)}$.
