1. Problems from the Textbook: 1, 3, 10, 13, 20, 29, 49, 57, 59, 61, 66, 72, 79, 80, 90, 97, 105 (0.1); $2,3,7,9,17,23-25,29(0.2) ; 3,9,12,13,17,25,29,33,36(0.3) ; 1,5,7,11,17,23(0.4)$; $1,2,3,5,7,8(1.1) ; 1,4,5,8,10,12,13,17,19,21-23,26,27,30(1.2) ; 4-6,13-16,21,22,27$, $29,32,36,38,39,41,49,57,58,60,65,73$ (1.3).
2. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}\right\}$, and define $f: X \rightarrow Y, g: Y \rightarrow Z$, $h: Z \rightarrow X$ by $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{3}, f\left(x_{3}\right)=y_{4}, f\left(x_{4}\right)=y_{2}, g\left(y_{1}\right)=z_{1}, g\left(y_{2}\right)=z_{1}, g\left(y_{3}\right)=z_{3}$, $g\left(y_{4}\right)=z_{2}, h\left(z_{1}\right)=x_{1}, h\left(z_{2}\right)=x_{2}$, and $h\left(z_{3}\right)=x_{4}$.
(a) Draw an arrow diagram.
(b) Find $h \circ g, g \circ f$, and $h \circ g \circ f$.
(c) Find $g\left(\left\{y_{1}, y_{3}\right\}\right), h(Z), f^{-1}\left(\left\{y_{1}, y_{3}\right\}\right)$, and $h^{-1}\left(\left\{x_{3}, x_{4}\right\}\right)$.
(d) Is f one-to-one, onto, or invertible? How about g and h ? Find the inverse functions of whatever functions are invertible.
(e) Find $(h \circ g \circ f)(X) \cap\left\{x_{2}, x_{3}, x_{4}\right\}, h^{-1}(X) \cup g(Y)$, and $Z \backslash g(Y)$.
3. Given are the following functions:

$$
\begin{gathered}
f(x)=2 x+1, \quad g(x)=-3 x+6, \quad q(x)=x^{2}-2 x+4, \\
h(x)=\frac{2 x^{2}-x-1}{x-1}, \quad \tilde{h}(x)=\frac{x^{2}+1}{x^{2}-1}, \quad \alpha(x)=\frac{x^{3}-3 x^{2}+2 x}{5 x^{2}-6 x-7} \\
r(x)=\left\{\begin{array}{ll}
f(x) & \text { for } x \leq 1 \\
q(x) & \text { for } x>1
\end{array}, \quad s(x)=\left\{\begin{array}{ll}
f(x) & \text { for } x<2 \\
h(x) & \text { for } x \geq 2
\end{array}, \quad \tilde{s}(x)=s(|x|) .\right.\right.
\end{gathered}
$$

(a) Sketch f.
(b) Find the equation of the line perpendicular to f that has zero 3 .
(c) Where do f and g intersect?
(d) What is the domain of q ?
(e) Where are the zeros of q ?
(f) Find the intersection points of f and q.
(g) Sketch r.
(h) Find $\lim _{x \rightarrow 1} r(x)$ if it exists.
(i) What is the value of $\tilde{s}(-5)$?
(j) Find $\lim _{x \rightarrow 2} s(x)$ if it exists.
(k) What are the zeros of h ?
(l) What is the domain of h ?
(m) Find $\lim _{x \rightarrow 1} h(x)$ if it exists.
(n) Find $\lim _{x \rightarrow 4} \tilde{h}(x)$ if it exists.
(o) Find $\lim _{x \rightarrow 1} \tilde{h}(x)$ if it exists.
(p) What are the zeros of α ?
(q) What is the domain of α ?
(r) Write $(f \circ g)(x)$ in the form $a x+b$.
(s) Write $(g \circ f)(x)$ in the form $a x+b$.
4. Find a polynomial of the form $a x^{4}+b x^{3}+c x^{2}+d x+e$ that has zeros $1,-2,3,-4$.

