5. Problems from the Textbook: $1,4,5,10,11,18-20,24,25,31,35,36$ (1.4); 1-3, 8, 12-14, 18, $21,24,29,31,33,38,49,52,57,59(1.5) ; 1-5,8,11,14,15,18(1.6) ; 1,3,5,7,9,11,19,31$, 34, 37, 41, 49, 51, 53 (2.1).
6. Throughout this problem we use the functions defined in Problem 3.
(a) Where is q continuous?
(b) Where is h continuous?
(c) Where is r continuous?
(d) Find $a, b \in \mathbb{R}$ such that $F(x)=\left\{\begin{array}{cl}f(x) & \text { for } x<a \\ b & \text { for } x=a \\ g(x) & \text { for } x>a\end{array}\right.$ is continuous on \mathbb{R}.
(e) Find $a, b \in \mathbb{R}$ such that $G(x)=\left\{\begin{array}{ll}q(x) & \text { for } a \leq x \leq b \\ h(x) & \text { otherwise }\end{array}\right.$ is continuous on \mathbb{R}.
(f) Sketch the function G from (e).
7. Determine constants $a, b \in \mathbb{R}$ such that the following functions are continuous on \mathbb{R}.
(a) $f(x)=\left\{\begin{array}{cc}a x+2 & \text { for } x<1 \\ 6 & \text { for } x=1 \\ x^{2}+b x+5 & \text { for } x>1\end{array}\right.$.
(b) $f(x)=\left\{\begin{array}{cl}b x+2 & \text { for } x \leq-5 \\ \frac{a x^{2}-3}{x+5} & \text { for } x>-5\end{array}\right.$.
8. Find all zeros of the function $f(x)=x^{3}-2 x^{2}-19 x+20$.
9. Let $f(x)=x^{3}-x^{2}-1$.
(a) Show that f has a zero α with $1<\alpha<2$.
(b) Use the bisection method to find an interval (a, b) with $|b-a|<0.01$ such that f has a zero $\alpha \in(a, b)$.
10. Let $f(x)=\frac{x^{2}-6 x+\frac{17}{2}}{x-1}$.
(a) Show that f has a zero α with $2<\alpha<3$.
(b) Apply the bisection method for three times to find a better approximation of α.
(c) Is there a zero of f between 0 and 2 ?
11. Use the definition of the derivative to do the following (notation see Problem 3).
(a) Find $f^{\prime}(x)$.
(b) Find $q^{\prime}(x)$.
(c) Find $(f \cdot g)^{\prime}(x)$.
(d) Find $(f \circ g)^{\prime}(x)$.
(e) Find $\tilde{h}^{\prime}(4)$.
(f) Find $r^{\prime}(1)$.
12. Find the equation of the tangent at q (see Problem 3) through the point $(1,3)$.
