13. Problems from the Textbook: $1-41,45,53,65,67(2.2) ; 1,3,5,7,8,9,11,13,19,23(2.3) ; 1$, $3,5,7,9,11,13,15,21,23,25,27,29,31,33,35,37,45,47,51(2.4) ; 1-29,33,35,39,43,53$, $57,59,61(2.5) ; 2,3,5,7,9,13,17,21,23,27,31(2.6) ; 3,5,7,9,19,23,25,27,29,39$ (2.7).
14. Find the derivatives of the following functions by using the definition of the derivative.
(a) $f(x)=\frac{1}{\sqrt{x}}$
(b) $g(x)=3 x^{3}+2 x^{2}-5 x+6$
(c) $h(x)=\frac{2-3 x}{3-2 x}$
(d) $p(x)=\sqrt{x^{2}+4}$.
15. Find a and b such that $H(x)=\left\{\begin{array}{cc}a x & \text { for } x \leq 1 \\ 2 x^{2}+b & \text { for } x>1\end{array}\right.$ is continuous and differentiable on \mathbb{R}.
16. Let $f(x)=x^{2}$.
(a) Find the equation of the tangent of f at 3 .
(b) Find the equation of the normal line of f at 3 .
(c) Where is the tangent of f at 5 crossing the x-axis?
(d) Find all points x_{0} such that the tangent of f at x_{0} passes through the origin.
(e) Find all points x_{0} such that the tangent of f at x_{0} passes through $(-5,6)$.
17. Find numbers a, b, c such that $f(x)=a x^{2}+b x+c$ has the zeros 0 and 5 and a tangent at 2 with slope 1 .
18. Find the derivatives of the following functions.
(a) $f(t)=t^{4}+5 t^{2}-8 t+100$
(b) $f(t)=\frac{1}{t^{2}}+\frac{1}{t^{3}}$
(c) $h(x)=\frac{x^{2}-2 x+1}{x-2}$
(d) $f(x)=(3 x-1)^{8}$
(e) $f(x)=\sqrt{x}(x-3)^{8}$
(f) $f(x)=\left(x^{3}-1\right)^{8}\left(3 x^{2}+5 x\right)^{7}$
(g) $g(x)=\frac{(x-1)^{5}}{(x+2)^{4}}$
(h) $h(x)=\sqrt{x^{2}+5}$
(i) $f(x)=\sqrt{\frac{x^{2}+1}{x^{2}-5}}$
(j) $\alpha(x)=\sqrt{x^{2}+\sqrt{x}}$.
19. Let $f(x)=x^{4}$.
(a) Find $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{\prime \prime \prime \prime}(x)$, and $f^{\prime \prime \prime \prime \prime}(x)$.
(b) Find $f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{24}$.
(c) Find $f^{\prime}(1)(x-1)+f^{\prime \prime}(1) \frac{(x-1)^{2}}{2}+f^{\prime \prime \prime}(1) \frac{(x-1)^{3}}{6}+f^{\prime \prime \prime \prime}(1) \frac{(x-1)^{4}}{24}$.
(d) Find $f^{\prime}(2)(x-2)+f^{\prime \prime}(2) \frac{(x-2)^{2}}{2}+f^{\prime \prime \prime}(2) \frac{(x-2)^{3}}{6}+f^{\prime \prime \prime \prime}(2) \frac{(x-2)^{4}}{24}$.
(e) Find $f^{\prime}(3)(x-3)+f^{\prime \prime}(3) \frac{(x-3)^{2}}{2}+f^{\prime \prime \prime \prime}(3) \frac{(x-3)^{3}}{6}+f^{\prime \prime \prime \prime}(3) \frac{(x-3)^{4}}{24}$.
(f) Try to generalize the above results.
20. A function f^{-1} is called the inverse of f if $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$ for all x.
(a) Let $f(x)=3 x+1$. Find $f^{-1}(x)$ and $\left(f^{-1}\right)^{\prime}(x)$.
(b) Let $g(x)=\frac{1}{4 x+5}$. Find $g^{-1}(x)$ and $\left(g^{-1}\right)^{\prime}(x)$.
(c) Give a formula for $\left(f^{-1}\right)^{\prime}(x)$ when f^{-1} is the inverse of f.
(d) If E is a function with $E^{\prime}(x)=E(x)$, what is $\left(E^{-1}\right)^{\prime}(x)$?
