21. Problems from the Textbook: 1, 3, 5, 7, 9, 11, 13, 17, 27, $29(2.8) ; 1,5,7,9,11,13,15,25,27$, $31,37,39,41,45,49,51,54(2.9) ; 1,5,7,9,17,21,23,25,29,31$ (2.10); 1, 4, 11, 12, 20, 23, 24 (2.PP); 4, 8, 11, 16, 19, 24, 30, 36, 41, 43, 47, 52, 53, 56, 60, 65 (3.1).
22. Find all points x_{0} such that f has a tangent at x_{0} parallel to the x-axis. Also, find both the linear and quadratic approximations of f at a. Use them to approximate $f(b)$.
(a) $f(x)=\frac{x^{3}}{3}+\frac{x^{2}-20 x+100001}{48}, a=2, b=2.1$,
(b) $f(x)=\frac{x-1}{x^{2}+2}, a=3, b=3.3$,
(c) $f(x)=\left(x^{3}-1\right)^{8}\left(3 x^{2}+4 x\right)^{7}, a=1, b=0.9$,
(d) $f(x)=\sqrt{x} \sqrt[4]{x^{2}+1}, a=2, b=2.2$,
(e) $f(x)=\alpha x^{2}+\beta x+\gamma$, where α, β, γ are real numbers, $a=0, b=0.5$.
23. Let $f(x)=x^{3}-x^{2}-2$.
(a) Show that f has a zero between 1 and 2 , pick an x_{0}, and find the zero of the tangent of f at x_{0}.
(b) Apply Newton's method until the first 7 decimal places of the zero are correct.
24. Let $f(x)=8.5 x^{3}-9.5 x^{2}-7.5 x+1$.
(a) Let $x_{0}=0$ and apply Newton's method until the first 7 decimal places of the zero are correct.
(b) Give this zero exactly.
(c) Find the remaining two zeros of f.
25. Let a be a real number. We want to compute $\sqrt[3]{a}$.
(a) Find a function $f(x)$ that has $\sqrt[3]{a}$ as its zero.
(b) Compute $x-\frac{f(x)}{f^{\prime}(x)}$ and simplify.
(c) Use Newton's method to find the first 7 decimal places of $\sqrt[3]{2}$.
(d) Use Newton's method to find the first 7 decimal places of $\sqrt[3]{3}$.
26. Find the smallest and largest values of f on D :
(a) $f(x)=x^{2}, D=[-4,5]$;
(b) $f(x)=5 x^{2}-6 x+2, D=(-\infty, 1]$;
(c) $f(x)=-x^{3}, D=(1,5]$;
(d) $f(x)=\frac{x^{3}}{x}, D=[-2,2] \backslash\{0\}$;
(e) $f(x)=\frac{1}{x}, D=\left[-6, \frac{1}{2}\right] \backslash\{0\}$;
(f) $f(x)=2 x^{3}-9 x^{2}+12 x-30, D=[-3,3]$;
(g) $f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x, D=[-2,1]$;
(h) $f(x)=a x^{2}+b x+c, D=\mathbb{R}$.
