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Abstract

We consider a version of the double integral calculus of variations on time scales, which includes as special cases the classical
two-variable calculus of variations and the discrete two-variable calculus of variations. Necessary and sufficient conditions for a
local extremum are established, among them an analogue of the Euler—Lagrange equation.
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1. Introduction

Variational problems are similar to the important problem in the usual differential calculus in which we determine
maximum or minimum values of a function y = f(x) for values x in a certain interval of the reals R or in a region of
R". The main difference is that in variational problems we deal with so-called functionals instead of usual functions.
Recall that any mapping J : X — R of an arbitrary set X (in particular, X may be a set of functions) into the
real numbers R is called a functional. Various entities in geometry, physics, mechanics, technology, and nature have a
tendency to minimize (or maximize) some quantities. Those quantities can mathematically be described as functionals.
Variational calculus gives methods for finding the minimal or maximal values of functionals, and problems that consist
in finding minima or maxima of a functional are called variational problems. Several important variational problems
such as the brachistochrone problem, the problem of geodesics, and the isoperimetric problem were first posed at
the end of the 17th century (beginning in 1696). General methods of solving variational problems were created by
L. Euler and J. Lagrange in the 18th century. Later on, variational calculus became an independent mathematical
discipline with its own research methods. Since the concept of functional (that is a special case of the concept of
operator) is one of the main subjects investigated in functional analysis, calculus of variations is considered at present
as a branch of functional analysis.

Continuous single and multivariable calculus of variations possesses an extensive literature from which we indicate
here only [1,2]. Discrete variable calculus of variations has started to be considered systematically only during the last
two decades. An account on the single discrete variable case can be found in [3—6] whereas the two discrete variable
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case is concerned in [7]. In order to unify continuous and discrete analysis and to extend those areas to “in between”
cases, Aulbach and Hilger [8,9] generalized the definition of a derivative and of an integral to functions whose domains
of definition are time scales. A time scale is a nonempty closed subset of the reals. Time scales calculus allows to unify
and extend many problems from the theories of differential and of difference equations (see [10,11]). Single time scale
variable calculus of variations (that contains both continuous and discrete calculus of variations as special cases) was
initiated in [12] and further developed in [13,14]. At present this topic is in progress. Recently, in [15] a two-variable
calculus of variations on time scales was initiated by Ahlbrandt and Morian, where an Euler-Lagrange equation
for double integral variational problems on time scales was obtained in case of rectangular regions of integration.
In the present paper, we reformulate this problem for the case of so-called w-type regions of integration, using the
multivariable differential and integral calculus developed by the authors in [16-18].

This paper is organized as follows. In Section 2, following [16—18], we give a brief introduction into the two-
variable time scales calculus and present a version of Green’s formula for w-type regions in a time scale plane.
Section 3 formulates the statement of the double integral variational problem. In Section 4, the first and second
variations of a functional are introduced and necessary and sufficient conditions for local minima of the functional are
provided in terms of the first and second variations. Finally, in Section 5, we present a version of the Euler—Lagrange
equation for two-dimensional variational calculus on time scales.

2. The two-variable time scales calculus

A time scale is an arbitrary nonempty closed subset of the real numbers. For a general introduction to the calculus
of one time scale variable we refer the reader to the textbooks [10,11]. In this section, following [16—18], we give a
brief introduction into the two-variable time scales calculus.

Let Ty and Ty be two given time scales and put Ty x Ty = {(x, y) : x € Ty, y € T,}, which is a complete metric
space with the metric (distance) d defined by

d((x,y), (', y) = \/(x —x)?+(y—y)? for(x,y), (&".y) €Ty x T

For a given § > 0, the §-neighborhood Us(xg, yo) of a given point (xo, yo) € T; x T, is the set of all points
(x,y) € T1 x T, such that d((xg, yo), (x,y)) < é. Let o1 and o be the forward jump operators in T; and T»,
respectively. The first-order partial delta derivatives of f : Ty x T, — R at a point (xg, yo) € T} x T} are defined to
be

af (x0, yo) _ lim fo1(x0), yo) — f(x, y0)
Ax x—Xx0,x7#07 (x0) o1(xo) —x
and
9f (x0, yo) _ lim f(x0, 02(30)) — f(x0,y)
Ay ¥=0,y702(30) o2(yo) —y '

These derivatives will be denoted also by f A (x0, yo) and f 4, (x0, yo), respectively. If f has partial derivatives
afA(_;:;Cy) and afA(—;y’), then we can also consider their partial derivatives. These are called second-order partial derivatives.
We write

azf(x’}’) azf(x’y) AA A A
—— and —_—, 141 R and 142 ,
" oy Arx FoEx, y) Fo e y)
for the partial delta derivatives of A x.y) A()f;cy) with respect to x and with respect to y, respectively. Thus

Ffx.y) 9 (8f(x,y)) g CfGw 9 (af(x,y>)
A1x2 - A1x A]X AzyAlx - Azy Alx ’

Higher-order partial delta derivatives are defined similarly. By [16, Theorem 6.1] we have the following result that
gives us a sufficient condition for the independence of mixed partial delta derivatives of the order of differentiation.
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52 , 2
Theorem 2.1. Let a function f : T| x To — R have the mixed partial delta derivatives ()AIJ;(Z;; and 3Azfy(2]y; in some

neighborhood of the point (xg, yo) € T’f X T’; . If these derivatives are continuous at (xo, yo), then

9% f (x0, y0) _ 9 f (x0, y0)
AixAry  AyyAix

We now introduce double Riemann delta integrals over regions in T x T,. First we define double Riemann integrals
over rectangles (for details see [17]). Suppose a < b are points in Ty, ¢ < d are points in T», [a, b) is the half-closed
bounded interval in T, and [c, d) is the half-closed bounded interval in T5. Let us introduce a “rectangle” (or “delta
rectangle”) in T1 x T, by

R=1a,b) x[c,d)={(x,y):x €la,b),y €lc,d)}. (2.1)
Let

{x0, X1, ..., x,} Cla,b], wherea=xp<x <---<x,=b
and

{vo, ¥1,..., %} Clc,d], wherec=yy <y <---<y=d.

The numbers n and k may be arbitrary positive integers. We call the collection of intervals P; =
{lxi—1,x;) : 1 <i <n} a A-partition (or delta partition) of [a, b) and denote the set of all A-partitions of [a, b)
by P([a, b)). Similarly, the collection of intervals P, = {[yj_l, yi):1<j=< k} is called a A-partition of [¢, d) and
the set of all A-partitions of [c, d) is denoted by P([c, d)). Let us set

Rij = [x;i_1, xj) X [yj—ls yj), where 1 <i <n,1 <j<k. (2.2)
We call the collection
P={Rj:1<i<n1<j<k} (2.3)

a A-partition of R, generated by the A-partitions P; and P, of [a, b) and [c, d), respectively, and write P = Py x P,.
The rectangles R;j, 1 <i <n, 1 < j < k, are called the subrectangles of the partition P. The set of all A-partitions
of R is denoted by P(R).

We need the following auxiliary result. See [11, Lemma 5.7] for the proof.

Lemma 2.2. For any § > 0 there exists at least one Py € P([a, b)) generated by a set
{x0,x1,...,x,} Cla,bl, wherea=x9g<x1<---<x,=0>b
so that for eachi € {1,2,...,n} either x; — xj—1 < 8 orx; —xj—1 > 8 and o1(x;_1) = Xx;.

We denote by Ps([a, b)) the set of all P; € P([a, b)) that possess the property indicated in Lemma 2.2. Similarly
we define Ps([c, d)). Further, by Ps(R) we denote the set of all P € P(R) such that

P = P x P, where P € Ps([a, b)) and P> € Ps([c, d)).

Definition 2.3. Let f be a bounded function on R and P € P(R) be given by (2.2) and (2.3). In each “rectangle” R;;
with1 <i <n,1 < j <k, choose an arbitrary point (§;;, 7;;) and form the sum

n k
S=ZZf(§'ij,77ij)(xi —xi—1)(yj — yj-1)- (2.4)

i=1 j=1

We call S a Riemann A-sum of f corresponding to P € P(R). We say that f is Riemann A-integrable over R if
there exists a number / with the following property: For each ¢ > O there exists § > 0 such that |S — I| < ¢
for every Riemann A-sum S of f corresponding to any P € Ps(R) independent of the way in which we choose
(ij.mij) € Rjjfor1 <i <n,1 < j < k. The number / is the double Riemann A-integral of f over R, denoted by
Sz fx, y)A1xAyy. We write I = lims_.o S.
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It is easy to see that the number / from Definition 2.3 is unique if it exists. Hence the double Riemann A-integral
is well defined. Note also that in Definition 2.3 we need not assume the boundedness of f in advance. However, it
easily follows that the Riemann A-integrability of a function f over R implies its boundedness on R.

In our definition of ffR f(x, y)A1xAyy with R = [a, b) X [c, d) we assumed that a < b and ¢ < d. We extend
the definition to the case @ < b and ¢ < d by setting

//I;f(x,y)Alewzo ifa=borc=d. 2.5)

Theorem 2.4. Assume a, b € T witha < b and ¢, d € T withc < d. Every
constant function f(t,s) = A for (x,y) € R =1a,b) x [c,d)

is A-integrable over R and

_//R Jx. ) AixAzy = A(b — a)(d — o). (2.6)

Proof. Let a < b and ¢ < d. Consider a partition P of R = [a, b) X [c, d) of the type (2.2) and (2.3). Thus we have
from (2.4)

n k
S=) D A —xi-Dj —yj-1) = A —a)d — o),

i=1 j=1
so f is A-integrable and (2.6) holds. Fora = b or ¢ = d, (2.6) follows by (2.5). [

Theorem 2.5. Let xog € Ty and yy € Ty. Every function f : T x T, — R is A-integrable over R(xq, o) =
[x0, o1(x0)) X [y0, 02(¥0)), and

// fl, A xAyy = wy (xp) 2 (yo) f (xo, o), 2.7
R(x0,y0)

where j11(x0) = o1(xo) — xo and p2(yo) = 02(y0) — Yo.

Proof. If 11(xp) = 0 or u2(yo) = 0, then (2.7) is obvious as both sides of (2.7) are equal to zero in this case. If

w1(xp) > 0and ua(yo) > 0, then a single partition of R(xo, yo) is P = {[x0, 01(x0)) X [Y0, 52(30))} = {(x0, Y0)}, so
that from (2.4)

S = f(xo0, yo)(o1(x0) — x0)(02(y0) — Yo) = f(x0, Yo)i1(x0) 2 (y0)-
Therefore f is A-integrable over R(xg, yo) and (2.7) holds. [

Theorem 2.6. Let a, b € T witha < b and c,d € Ty with ¢ < d. Then we have:

(1) If Ty = T, = R, then a bounded function f on R = [a, b) x [c, d) is A-integrable if and only if f is Riemann
integrable on R in the classical sense, and then

//R f(x,y)Alxﬂzy=//Rf(x,y)dxdy,

where the integral on the right is the ordinary Riemann integral.
(i) If Ty = Ty = Z, then every function f defined on R = [a, b) X [c, d) is A-integrable over R, and

b—1d-1

// Pl ) Arx Ay = Y X fk.D) ifa<bandc<d (2.8)
R

k=a l=c

0 ifa=borc=d.
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Proof. Clearly, the above given Definition 2.3 coincides in case T; = T, = R with the usual Riemann definition
of the integral. Notice that the classical definition of Riemann’s integral does not depend on whether the rectangle R
and the subrectangles of its partition are taken closed, half-closed, or open. Moreover, if T; = T> = R, then Ps(R)
consists of all partitions of R with norm (mesh) less than or equal to § V2. So part (i) is valid. To prove part (i), let
a<bandc <d.Thenb =a+ pandd = ¢ + g for some p, g € N. Obviously, for all § € (0, 1), the set Ps(R) will
contain the single partition P* of R given by (2.2) and (2.3) withn = p, k = ¢, and

X0 =a, xt=a+1,...,xp=a+p and yy=c, yvi=c+1l...,y,=c+q.
Then R;; contains the single point (x;_1, y;-1):

Rij = [xi—1,x) x [yj—1.yj) = {(xi—1, yj—1)} foralll <i<p, 1<j=<gq.

Therefore from (2.4)
P 9 P 9 b—1d—1
S=Y "3 fGinyi DG —xi )0 —yie) =Y > finyii) =YY fkD
i=1 j=1 i=1 j=I k=a l=c

for all partitions in Ps(R) with arbitrary § € (0, 1). Hence f is A-integrable over R = [a, b) X [c, d) and (2.8) holds
fora < bandc < d.If a = b or c = d, then relation (2.5) shows the validity of (2.8). U

Note that in the two-variable case four types of integrals can be defined:

(i) AA-integral over [a, b) X [c, d), which is introduced by using partitions consisting of subrectangles of the form
[, B) x [y, d);

(i) VV-integral over (a, b] x (c, d], which is defined by using partitions consisting of subrectangles of the form
(a, Bl x (v, 8];

(iii) AV-integral over [a, b) X (c, d], which is defined by using partitions consisting of subrectangles of the form

[a, B) x (v, 8]

(iv) V A-integral over (a, b] x [c, d), which is defined by using partitions consisting of subrectangles of the form
(a, Bl x [y, 9).

For brevity the first integral is called simply as A-integral, and in this paper we are dealing solely with such double

A-integrals.

Now we present some properties of double A-integrals over rectangles. A function f : T} x T, — R is said to
be continuous at (x, y) € Ty x T, if for every & > 0 there exists § > 0 such that | f(x,y) — f(x’,y")| < & for
all (x’, y) € Ty x Ty satisfying d((x, y), (x, y)) < 8. If (x, y) is an isolated point of T| x T, then the definition
implies that every function f : T{ x T — R is continuous at (x, y). In particular, every function f : Z x Z — R is
continuous at each point of Z x Z.

Theorem 2.7. Every continuous function on K = [a, b] X [c, d] is A-integrable over R = [a, b) x [c, d).

Theorem 2.8. Let [ be a function that is A-integrable over R = [a, b) x [c,d). Further, let a’, b’ € [a, b] with
a <b andc,d €[c,d]lwithc <d'. Then f is A-integrable over R’ = [a’,b") x [¢', d').

Theorem 2.9 (Linearity). Let f and g be A-integrable functions on R = [a, b) X [c,d), and let a, B € R. Then
af + Bg is also A-integrable on R and

//R [af(x,y>+ﬂg(x,y>]A1xA2y=a//R f(x,y)A1xAzy+ﬁ//Rg(x,y)A1xA2y-

Theorem 2.10. If f and g are A-integrable on R, then so is their product fg.

Theorem 2.11 (Additivity). Let the rectangle R = [a, b) X [c, d) be a union of two disjoint rectangles of the forms
Ry = [ay, by) X [c1,d)) and Ry = [az, by) x [c2, dy). Then f is A-integrable over R if and only if f is A-integrable
over each of Ry and R». In this case

// f(x,y)Alezy=f f(x,y)Alezerf fx, ) AxAzy.
R R Ry
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Theorem 2.12. If f and g are A-integrable functions on R satisfying the inequality f(x,y) < g(x,y) for all
(x,y) € R, then

//R f(x,y)Alezy5//Rg(x,y)A1xAzy.

Theorem 2.13. If f is a A-integrable function on R, then so is | f| and

< //R (e )] Arx Aay.

Theorem 2.14 (Mean Value Theorem). Let f and g be A-integrable functions on R, and let g be nonnegative (or
nonpositive) on R. Let us set

m=inf{f(x,y):(x,y) € R} and M =sup{f(x,y):(x,y) € R}.

Then there exists a real number A € [m, M] such that

//R fx, g, y)AixAyy = A/Lg(x,y)Alezy-

V . flx, ) AixAyy

An effective way for evaluating multiple integrals is to reduce them to iterated (successive) integrations with respect
to each of the variables.

Theorem 2.15. Let f be A-integrable over R = [a, b) X [c, d) and suppose that the single integral

d
I(x)=/ f(x, y)Aay (2.9)

exists for each x € [a, b). Then the iterated integral fub I (x) Ay x exists, and

b d
/ /R £ ) ArxAgy = f Arx / £ ) Aay. (2.10)

Remark 2.16. We can interchange in Theorem 2.15 the roles of x and y, i.e., we may assume the existence of the
double integral and the existence of the single integral

b
K(y) =/ fl,»Ax (2.11)

for each y € [c, d). Then the iterated integral fcd K (y)A,y exists, and

d b
f fR £ ) AxAgy = / Aoy / Fx A, 2.12)

Remark 2.17. If together with [[, f(x, y)AjxAyy there exist both single integrals (2.9) and (2.11), then the
formulas (2.10) and (2.12) hold simultaneously, i.e.,

b d d b
/Alx/ f(x,ymzy:/ Azy/ f(x,ympc=//Rf<x,y>Alezy.

Remark 2.18. If the function f is continuous on [a, b] X [c, d], then the existence of all the above mentioned integrals
is guaranteed. In this case any of the formulas (2.10) and (2.12) may be used to calculate the double integral.

Now we define double A-integrals over so-called w-type subsets of T; x T, as follows (see [17] for double A-
integrals over more general subsets like Jordan A-measurable subsets of T x T»).
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Definition 2.19. We say that E C T x T is a set of the type w (or w-type set) if it can be represented in at least one
way as a union

m
E = U Ry (2.13)
k=1
of a finite number of rectangles Rj, Ry, ..., R, of the form (2.1) that are pairwise disjoint and adjoining to each

other. Next, we say that a function f : T; x T, — R is A-integrable over the w-type set E if f is A-integrable over
each of the rectangles Ry for 1 < k < m. Then the number

/f f(x,ymlezy:Z/ fx, y)AixAgy (2.14)
E k=17 Re

is called the double A-integral of f over E.

It is easily seen, by using Theorem 2.11, that the sum (2.14) does not depend on how E is represented as a union
of a finite number of rectangles of the form (2.1) which are disjoint and adjoining to each other.

Finally, we present the concept of line integrals on time scales and, using it, a version of Green’s formula for time
scales (for details see [18]).

Definition 2.20. Together with the time scales T; and T», let T be a third time scale with the delta differentiation
operator A. Further, let « < B be points in T and [«, 8] be the closed interval in T, and let ¢ : [o, 8] — T; and
¥ : [a, B] — T» be continuous (in the time scale topology) on [«, 8]. Then the pair of functions

x = ¢(1), y=v(@), tela,plCT (2.15)

is said to define a (time scale continuous) curve I' in T1 x Ty. If (p(a), ¥ () = (¢(B), ¥ (B)), then the curve is said
to be closed.

We can think of I as an oriented curve, in the sense that a point (x, y') = (p(t"), ¥ (¢')) € I is regarded as distinct
from a point (x”, y") = (p(t"), ¥ (")) € I'if ¢’ # ¢” and as preceding (x”,y") if t' < t”. The oriented curve I is
then said to be “traversed in the direction of increasing . The curve differing from I" only by the direction in which
it is traversed will be denoted by —I".

Definition 2.21. We say that the curve I" given by (2.15) is A-smooth if ¢ and ¢ are continuous on [¢, 8] and A-
differentiable on [«, 8) and their A-derivatives goA and wA are A-integrable over [, ).

Let two functions M (x, y) and N (x, y) be defined and continuous on the curve I" (for example, for the function
M (x, y), this means that for each Ay € I" and each ¢ > 0 there exists § > 0 such that |[M(A) — M (Ag)| < € whenever
A e'andd(A, Ag) < &, where d(A, Ap) denotes the Euclidean distance between the points A and Ag). Next, let I
be A-smooth. Then we define the line delta integral by

B
/F M(x,y)A1x 4+ N(x, y)Ayy = / [M (1), ¥ ()2 (1) + N(p(t), ¥ ()2 (1)) At.

Remark 2.22. We call the curve I" given by (2.15) piecewise A-smooth if ¢ and ¢ are continuous on [«, 8] and there
is a partition o = Y9 < y1 < -+ < Y = B of [@, B] such that ¢ and ¢ have A-integrable A-derivatives on each
of the intervals [y;—1, ¥i), i € {1,2,...,m}. In case of a piecewise A-smooth curve I, it is natural to define line
A-integrals along this curve as sums of line A-integrals along all A-smooth parts constituting the curve I'.

Similarly to line delta integrals we can also define line nabla integrals. Suppose that the curve I is given by the
parametric equation (2.15), where ¢ and v are continuous on [, 8] and V-differentiable on (a, 8]. If ¢ and vV are
V-integrable over («, 8] and if the functions M and N are continuous on I, then we define

B
/FM(x,y)Vl)C+N(x,y)sz=/ [M(p(@), ()" (1) + N(p@), y )Y ()]V1.
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Definition 2.23. Let R be a “rectangle” in T| x T, as given by (2.1). Let us set
Ly ={(x,¢):x €a,bl}, Ly ={(b,y):y€lcdl]},
Ly ={(x,d):x €[a,b]}, Ly={(a,y):ye€lcd]}.

Each of L; for j € {1,2, 3,4} is an oriented “line segment”; e.g., the positive orientation of L arises according to
the increase of x from a to b and the positive orientation of L arises according to the increase of y from c to d. The
set (closed curve)

I' =L ULyU(—L3)U(—Ly)

is called the positively oriented fence of R. Positivity of orientation of I" means that the rectangle R remains on the
“left” side as we describe the fence curve I'.

Definition 2.24. Let E C T; x T, be an w-type set of the form (2.13). Let I'; be the positively oriented fence of the
rectangle R. Letusset X = UZ:1 I'. Further, let X consist of a finite number of line segments each of which serves
as a common part of fences of two adjoining rectangles belonging to {R1, R>, ..., R}. Then the set I' = X \ Xj
forms a positively oriented closed “polygonal curve”, which we call the positively oriented fence of the set E (the set
E remains on the “left” as we describe the fence curve I").

We are now able to formulate the following theorem (for its proof see [18]).

Theorem 2.25 (Green’s Formula). Let E C T x T, be an w-type set and let I' be its positively oriented fence. If the
functions M and N are continuous and have continuous partial delta derivatives OM /Ay and ON/A1x on E U T,

then
// ( ) AxAyy = / Md*x + Nd*y, (2.16)
A]x Aoy

where the “star line integrals” on the right side in (2.16) denote the sum of line delta integrals taken over the line
segment constituents of I' directed to the right or upwards and line nabla integrals of f taken over the line segment
constituents of I directed to the left or downwards.

3. The double integral variational problem

Recall that a single variable function on a time scale is called rd-continuous provided it is continuous at right-dense
points and its left-sided limit exists (finite) at left-dense points. Let Cyq denote the set of functions f(x, y) on T1 x T»
with the following properties:

(i) f is rd-continuous in x for fixed y;
(i1) f is rd-continuous in y for fixed x;
(iii) if (xg, yo) € Ty x Ty with xo right-dense or maximal and yq right-dense or maximal, then f is continuous at
(x0, ¥0)3
(iv) if xp and yg are both left-dense, then the limit of f(x, y) exists (finite) as (x, y) approaches (xg, yp) along any
pathin {(x,y) € Ty x T2 : x < x9,y < yo}-

By Cr(;) we denote the set of all continuous functions for which both the Aj-partial derivative and the A,-partial
derivative exist and are of class Cyq.
Let E C T x T, be a set of type w and let I" be its positively oriented fence. Further, let a function

L(x,y,u,p,q), where(x,y)e EUI and (u, p,q) € R3

be given. We require that, in the indicated domain of variation of the independent variables, the function should be
continuous, together with its partial delta derivatives of the first and second order with respect to x, y and partial usual
derivatives of the first and second order with respect to u, p, g. Consider the functional

J(u) = //EL(x,y,M(Gl(X),Gz(y)),uAl(x,Gz(y)),MAZ(Gl(X),y))Alxﬂzy, (3.1)
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whose domain of definition D(J) consists of functions u € Cr%)(E U I') satisfying the
“boundary condition” u = g(x,y) on [, (3.2)

where g is a fixed function defined and continuous on the fence I" of E. We call functions u € D(J) admissible.
The problem of the variational calculus now consists of the following: Given a functional J of the form (3.1) with its
domain of definition D(J), it is required to find an element & € D(J) which satisfies
either J(@) = inf J(u) or J(@) = sup J(u). (3.3)
ueD(J) ueD(J)

The problem of maximizing the functional J is identical with the problem of minimizing the functional —J. Therefore,
in what follows, we will treat only the minimum problem. We will assume that there exists at least one admissible
function ug. Note that this assumption is essential: In contrast to the case of one variable, it is possible here (even if
T1 = T2 = R) to choose a function g(x, y), continuous on I', such that no function u¢ is admissible. In this case the
domain D(J) is empty, and the problem of minimizing the functional J loses its meaning. If the function ug exists,
then the domain D(J) contains a set of functions of the form u(x, y) = uo(x, y) + n(x, y), where n € Cr((})(E ul
and n = O on I'. Any such 7 is called an admissible variation.

The above problems (3.3) are problems of finding absolute extrema, but we can easily define a weak or strong
neighborhood of a given function and state the problem of finding local (or relative) extrema. For f € CS) (EUTI)
we define the norm

Ifl= sup [f 0+ sup [ 00D+ sup |f22(01(x), y)l.
(x,y)eEEUT" (x,y)eE (x,y)eE

A function & € D(J) is called a (weak) local minimum of J provided there exists § > 0 such that J (&) < J(u) for all
u € D(J) with |lu —ul|| < 8. If J(r) < J(u) for all such u # u, then # is said to be proper.

4. First and second variations

For a fixed element u € D(J) and a fixed admissible variation n we define a function ¢ : R — R by
D(e) = P(e;u,n) =J(u+en) foreeR.

From (3.1), by virtue of the conditions imposed on L, it follows that ¢(¢) is twice continuously differentiable, and
the first and second derivatives of @ can be obtained by differentiating under the integral sign. The first and second
variations of the functional J at the point u are defined by

Ji,n) = &' 0;u,n) and JS@u,n) = 9"0;u,n),

respectively. For fixed u, the variations Ji (u, n) and J,(u, n) are functionals of 7. Note that J; (u, n) and J>(u, n) are
denoted also by §J (1, ) and 82J (u, n), respectively.

The following two theorems are standard and offer necessary and sufficient conditions for local minima of J in
terms of the first and second variations of J.

Theorem 4.1 (Necessary Conditions). If it € D(J) is a local minimum of J, then
Ji(@,n) =0 and Jr(@@,n) >0 forall admissible variations 7.

Proof. Assume that the functional J has alocal minimum at # € D(J). We take an arbitrary fixed admissible variation
n and define the function

p(e) = J(a +en), wheree e R. 4.1)

Therefore we have ¢’(0) = J; (i1, ) and ¢”(0) = J»(i1, n). By Taylor’s theorem,

/0 1
¢1(v )8+ <p2('a)82’

pe) = p0) + where || € (0, |g]). 4.2)



54 M. Bohner, G.Sh. Guseinov / Computers and Mathematics with Applications 54 (2007) 45-57

If || is sufficiently small, then we have that the norm of the difference
(@ + en) — ull = lellin]

will be as small as we please, and then, from the definition of a local minimum,
J@+en) = J@), ie., pe) = ¢0).

This inequality implies that the function ¢ of the real variable ¢ has a local minimum for ¢ = 0. But then, necessarily,
¢’(0) = 0 (this easily follows also from (4.2)) or, equivalently, J1 (i, n) = 0. Now from (4.2) by the equality ¢’(0) = 0,
we have

1
p(e) — (0) = E(p”(a)sz

and therefore ¢” () > 0 for all & whose absolute value is sufficiently small. Letting here &¢ — 0 and noting that
a — 0as & — 0 and that ¢” is continuous, we get ¢”(0) > 0 or, equivalently, J>(&Z,n) > 0. O

Theorem 4.2 (Sufficient Condition). Let it € D(J) be such that Ji(it, n) = 0 for all admissible variations n. If
Jo(u,n) > 0 forall u € D(J) and all admissible variations n, then J has an absolute minimum at the point u. If
Jo(u, n) > 0 for all u in some neighborhood of the point it and all admissible variations 0, then the functional J has
a local minimum at .

Proof. Define the function ¢ as in (4.1). From (4.2) we have for ¢ = 1

¢'(0) n 9" (@)

¢) =90+ — T

where @ € (0, 1). 4.3)

Next, we have

o) = J(+n), p(0) = J(@), ¢'(0) = Ji(@,n) =0,

ez a2 .
9" (@) = [—ZJ(M + sn)} = [—21(u +an + ﬁn)} = Lo +an, n),
de e=u d,B B=0
so that (4.3) gives
1
JW@+n) =Jm + 5]2(12 + an,n) for all admissible variations 7, 4.4)

where o € (0, 1) depends on & and 1. Now the proof of the theorem can be completed as follows. In the first case we
have

Jo(t +an,n) >0 for all admissible variations 1.

If u € D(J), then putting n = u — & provides from (4.4) that J(u) > J(&). Consider now the second case. There
exists » > 0 such that foru € D(J) and |lu — i|| < r we have J>(u, n) > 0 for all admissible variations 7. We take
such an element u and again put n = u — 4. Then

J(u) =J@) + %Jz(ﬁ +an,n).
We have
1@ +an) —all = llanll = lallinll < lInll = llu —al <r.
Hence it follows that J> (i + an, ) > 0, and, consequently, J(u) > J(@). O

In view of the above two results it will be important to find another representation of the first and second variations.
This is done in the following lemma.
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Lemma 4.3. Let u € D(J). The first and second variations of J at u are given by
Ji(u,m) = / / (Lu(In(01(x), 02(0) + Ly (W2 (x, 02(9) + Ly (I (01 (x), )} A1x Aay,
E

Jo(u,m) = //E{Luu(') [1(01(x), 2201 + L pp (V™1 (x, 02 ()T

+ Ly O (01(x), W12 4 2Ly (I1(01(x), 0202 (x, 02())
2L,y (01 (x), 20N (01(x), ¥) 4 2L pg (W21 (x, 02(1))N 22 (01 (x), y)} Arx Agy

for all admissible variations n, where

() = (x, y, u(@1(x), 02()), u? (x, 02(3), u(01(x), ).
Proof. By definition we have

Ji(u,n) = ' (0) and Jo(u,n) = 9"(0),
where

#e) =S +em = [[ LA,

E

with

() = (x,y,u(o1(x), 02(y)) + en(o1(x), 02(y)), u?(x, 02(y))
+en?(x, 02(y)), 4?2 (01(x), ¥) + £n?2 (01 (x), ).

We can differentiate under the integral sign and thus obtain formulas (4.5)—(4.7). U
5. Euler’s condition

Let E be an w-type subset of T1 x T» and I" be the positively oriented fence of E. Let us set

E? ={(x,y) € E: (01(x),02(y)) € E}.
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(4.5)

(4.6)

4.7

The following lemma is an extension of the fundamental lemma of double integral variational analysis to time scales.

Lemma 5.1 (Dubois—Reymond). If M (x, y) is continuous on E U I with

//E M(x, y)n(o1(x), o2(y)AxAry =0

for every admissible variation n, then

M(x,y)=0 forall (x,y) € E°.

Proof. We assume that the function M is not zero at some point (xg, yo) € E?; suppose M (xg, yo) > 0. Continuity

ensures that M (x, y) is positive in a rectangle
2 =[x, x1) X [yo, y1) C E

for some points x; € Ty, y; € T» such that o (x9) < x1 and o2(yp) < y;. We set

.y = |0 =207 =1 )Py = y0) Iy = o2 for (v, y) € 2,
TEY =10 for (x,y) € E\ 2.

This function is zero on " and belongs to Cr(;)(E U I'). We have

//E M(x, y)n(o1(x), 02(y) A1x Ay = //Q M(x, y)n(o1(x), o2(y))A1xAzy > 0.

This contradiction proves the assertion of the lemma. [
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Now, using Lemma 5.1, we can derive Euler’s necessary condition.

Theorem 5.2 (Euler’s Necessary Condition). Suppose that an admissible function i provides a local minimum
for J and that the function i has continuous partial delta derivatives of the second order. Then 0 satisfies the
Euler—Lagrange equation

0 0
Lu() = 3=Lp() = Z=Le() =0 for(x.y) € E°, 5.1
where
() = (x, y, i(01(x), 02(3)), 421 (x, 02(3)), 42 (01 (x), ¥)). (5.2)

Proof. By Theorem 4.1 we have Ji (i, n) = 0 for all admissible variations . Hence Lemma 4.3 gives

//E{Lu(Jn(m(X), 02(1)) + Ly (x, 02(3) + Lg (™2 (01 (x), y)} Arx Agy = 0, (5.3)

where (-) is given in (5.2). Now we notice that

f fE {L,()n?1(x, 02(3) + Ly (0?2 (01(x), )} A1x Agy

3 )
Z//E{A_lx[Lp(->n<x,oz(y))]+A_w[Lq(.)n(ol(x),y)]}Almzy

d 0
_//E{A_MLP<.>+A—2qu<->}n(m(x)nz(y))A]xAz»

On the other hand, by Theorem 2.25 (Green’s formula),

0 0
//E {A—lx [LpOne, 200)] + 5= [Lg e ) y)]} Ax sy

= /F n(x, 02(0)Lp()d*y —n(o1(x), y)Lg()d*x =0

since n = 0 on I". Consequently, we get from (5.3)

0 0
//E {Lu(') - A_lep(') - A—zqu(-)} n(o1(x), 02(y)A1xAzy =0
for all admissible variations 7. Therefore, by Lemma 5.1, we have (5.1). [
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