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Abstract--This paper introduces general discrete linear Harniltonian eigenvalue problems and 
characterizes the eigenvalues. Assumptions are given, among them the new notion of strict control- 
lability of a discrete system, that imply isolatedness and lower boundedness of the eigenvalues. Due 
to the quite general assumptions, discrete Sturrn-Liouville eigenvalue problems of higher order are 
included in the presented theory. (g) 1998 Elsevier Science Ltd. All rights reserved. 
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I. INTRODUCTION 

In this paper, we introduce discrete linear Hamiltonian eigenvalue problems, i.e., eigenvalue 
problems which consist of a linear Hamiltonian difference system depending on an eigenvalue 
parameter A E R subject to self-adjoint boundary conditions. The main result on these problems 

states that, under certain assumptions, the eigenvalues may be arranged as follows: 

--c~ < A1 <~ A2 <: A3 <= ' ' '  , 

i.e., that the set of eigenvalues is bounded below and that the eigenvalues are isolated in the 

sense that for any A E R one may pick an 6 = e(A) > 0 such that the interval (A - ~, A + ~) 

contains at most one eigenvalue. The central notion connected to this isolatedness is the new 
concept of strict controllability of discrete systems which is also introduced in this paper. The 
main tools on handling these eigenvalue problems and on proving the above result is a theorem 

that gives a useful characterization of the eigenvalues (in terms of some matrix being singular), 
an index theorem (which calculates the local change of the number of some matrix-valued func- 
tion's negative eigenvalues), a Reid roundabout theorem (that characterizes so-called positive 
definiteness of discrete quadratic functionals), and a comparison theorem (which states that pos- 
itive definiteness of one functional together with certain assumptions imply positive definiteness 
of some other functional). Finally, it should be emphasized that our general assumptions allow 

us to include discrete Sturm-Liouville elgenvalue problems of higher order so that these 

important problems may be treated with the same techniques. 

Let us shortly give an overview on the existing literature of the subject. Discrete Sturm- 

Liouville difference equations of order two as well as linear Hamiltonian difference systems have 
been an object of recent interest. Linear Hamiltonian difference systems were introduced by Erbe 
and Yan in [1] and examined in three proceeding papers [2-4] by the same authors, however, under 
assumptions that only include the case of Sturm-Liouville difference equations of order two but 
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not of higher order. Further important results in this matter have been obtained by Ahlbrandt, 
Do~l~, Heifetz, Hooker, Patula, Peil, Peterson, and Ridenhour in [5-11]. In a recent series of 
publications by the author [12-17] (one of them is a joint work with Do~il~), linear Hamiltonian 
difference systems were considered under assumptions that include the important case of Sturm- 
Liouville difference equations of higher order and that give so-called Reid roundabout theorems 
for those problems. This work may be considered as one origin of the results proved in the present 
paper. The other origin is the treatment of continuous linear Hamiltonian eigenvalue problems 
as is done in the paper [18] by Baur and Kratz and in the monograph [19] on the subject by 
Kratz. This work also contains the above cited index theorem which may be successfully applied 
in our discrete case also. Finally, while the study of eigenvalue problems in the existing literature 
basically reduces to discrete Sturm-Liouville eigenvalue problems of order two (see the books by 
Agarwal [20, Chapter 11] and by Kelley and Peterson [21, Chapter 7]), a special Sturm-Liouville 
difference equation of higher order depending on an eigenvalue parameter has been considered in 
the recent paper [22] by Kratz; however, there is no theory for eigenvalue problems subject to 
general linear Hamiltonian difference systems. 

A brief discussion of this paper's s e tup  is in order. The following section introduces discrete 
linear Hamiltonian eigenvalue problems and gives some preliminaries on linear Hamiltonian dif- 
ference systems. In Section 3, we present the main result of this paper and give the assumptions 
that are needed; among them we introduce the concept of strict controllability of discrete sys- 
tems and the notion of the so-called strict controllability index, which has no obvious analogue 
in the "continuous theory". Section 4 contains a characterization of the eigenvalues, and this 
characterization is also improved in some sense if the boundary conditions under consideration 
are separated. While Section 5 recalls two important auxiliary results (the index theorem from 
[19, Theorem 3.4.1] and the Reid roundabout theorem from [14, Theorem 3]), Section 6 contains 
a series of lemmas that are needed for proving the isolatedness of the eigenvalues. Finally, a com- 
parison theorem is proved in Section 7, and as an application of it we show that the eigenvalues 
are bounded below. 

2. PRELIMINARIES ON DISCRETE EIGENVALUE PROBLEMS 

First of all, let us agree upon some terminology. While KerM, ImM,  defM, indM, M T, 
and M ? denote the kernel, the image, the dimension of the kernel, the index (i.e., the number 
of negative eigenvalues), the transpose, and the Moore-Penrose Inverse (see, e.g., [23, Theorem 
1.5]) of the matrix M, respectively, M > 0 and M _> 0 mean that the (symmetric) matrix M is 
positive definite and positive semidefinite, respectively. Let n E N, N E 1~I U (0), J := [0, N] ¢3 Z, 
J* := [0, N + 1] N Z. We abbreviate a sequence (zk)keJ. by z and use the forward difference 
operator A defined by Az~ := zk+l - zk, k E J. 

Let there be given n x n-matrices Ak, Bk, Ck for all k E J so that 

( - C k  A~ ) i s symmet r i c fo r a l l kE  J. I - Ak is invertible and Hk = Ak Bk 

The system 

(where xk, uk E R n for all k E J*) is then called a linear Hamiltonian difference system. If the 
n x n-matrix-valued functions Ak(A), Bk(A), Ck(A) depend for all k E J 

continuously and differentiable 

on a parameter )~ E R (so that the above assumptions are satisfied for I - Ak (A) and for 

Hk(~) = \ Ak(~) Bk(~) 
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for each A 6 R), then we consider the systems 

A = Hs,(A) , 0 < k < N. 
xk \ u~ 

Moreover, let there be given 2n × 2n-matrices R and R* with 

rank ( R R* ) = 2n and RR *T = R*R T. 

(Hx) 

We are interested in so-called self-conjoined boundary conditions (see [19, Definition 2.1.1 and 
Proposition 2.1.1]) 

Now, this paper deals with discrete linear Hamiltonian eigenvalue problems of the form 

(Hx), A • R  and (R), (E) 

i.e., 
Azk = Ak( )xk+, + Bk(A)uk 
Auk = Ck(A)x~+, - A~(A)uk J ' 0 < k < N, (A e R), 

(E) 
--X 0 

As usual, a number A 6 R is called an eigenvalue of (E) if (Hx) has a nontrivial solution (x, u) 
satisfying (R), and this solution is then called an eigenfunction corresponding to the eigenvalue A. 
Moreover, the set of all eigenfunctions is called the eigenspace, and its dimension is referred to 
as being the multiplicity of the eigenvalue. 

We shortly s-mmarize some basic definitions and results from [14] on linear Hamiltonian dif- 
ference systems that will be needed later on. 

DEFINITION 1. (Conjoined Basis; see [14, Definition 1].) If the n x n-matrices Xk, Uk (instead 
of the vectors xk, uk) solve (H) with 

r~(X: U:)=n and X:U~=U~X~, ~ o r ~ k 6 J * ,  

then (X, U) is ca//ed a conjoined basis of (H). Two conjoined bases (X, U) and (X, U) are called 
normalized whenever 

X ~  Ok - U~ f(k = I (the n x n-identity-matrix), 

holds. The conjoined bases (X, U) and (X, U) of (H) with 

Xo=0o=0  and U o = - R o = I  

for all k e J* 

are known as the special normalized conjoined bases of (H) at O. | 

LEMMA 1. (See [19, Coro//ary 3.3.9] and [14, Lemma 3].) For any m E J* and any conjoined 
basis (X, U) of (H), there exists another conjoined basis (f(, O) o[ (H) such that (X, U) and 
(fC, O) are normal~ed and such that f¢m is invextible. 

Farthexmore, two matrix-valued solutions (X, U) and (X, U) are normalized conjoined bas~ 
of(H) iff C X*, U* ) with 

(0 ,) 0) 
X'= x g and U O ' 



182 M. BOHN~.R 

is a conjoined basis of the system 

< A = 
zt` 0 0 \ ut` / ' 

At, 0 Bk / 

O < k < N ,  

where the occurring matrix is of size 4n x 4n. 

DEFINITION 2. (Disconjugacy; see [14, Definition 2].) The discrete quadratic functional 

N T 

t`=O ~ N + I  ~N+X 

is called positive definite (we write jr > O) if~r(z, u) > 0 holds for all admissible pairs (z, u) O.e., 

t ha t sa t i s fYAz t `=At `x t `+x+Bt `u t ` f ° ra l l kEJ )  w i t h x # O a n d ( - Z ° )  E I m R T ' I f i n t h i s z N + l  

definition R = 0 and ~ > O, then (H) is called disconjugate on J*. | 

DEFINITION 3. (Controllability; see [12, Definition 3] and [14, Definition 5].) The system (H) is 
called controllable on J* if there exists k E J* such that for all solutions (x, u) of (H) and for all 
m E J with m + k E J*, we have that 

Xm ---~Xm+l -----''" = X m + t `  -~0  

implies x = u = 0 on J*. The m/nimal integer t¢ E J* with this property is then called the 
controllability index of (H). | 

3. S T R I C T  C O N T R O L L A B I L I T Y  A N D  M A I N  R E S U L T S  

We open this section with the following key definition. 

DEFINITION 4. (Strict Controllability). The set of s y s t e m s  {(HA) : )t E R }  =: (HR) is called 

strictly controllable on J* if 

(i) (HA) is controllable on J* for all ,~ E R (see Definition 3), and if  
(ii) there exists k ~ J such that for al/A E R, for al/solutions (z, u) of (HA), and for al/rn E J 

with m + k E J 

implies z = u = 0 on J*. The minimal integer tcs E J with this property is then called 
the strict controllability index of (Ha). I 

For stating our main results, we wish to label the following assumptions. 

(V1) (Ha) is strictly controllable on J*. 
(V2) ~1 _< ~2 always implies Ht`(~l) _< Ht`(~2) for all k E J. 
(Vs) There exists ~ E R such that  •(.; ~) > 0 and such that  )~ _< ~ always implies for all k E J 

Ker Bk(~) C Ker Bk(~) and B~()~){B~(~)-B~(~)}B~(~)>_O. 
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Now our main result reads as follows. 

THEOREM 1. Assume (V~), (V~), and (Vs). Then, ff there exist eigenvalues of (E), they may be 
arranged by 

-oo<~AI_~As_~ A3_~"" • 

More precisely, 

(i) (V1) and (V2) imply that the eigenvalues are/solated, and 
(ii) (V2) and (Vs) imply that the eigenvalues are bounded below by A (which is not an eigen- 

value) provided (HA) is controllable on J* for all A E R. | 

The remaining sections are devoted to the proof of the above theorem. However, here we wish 
to make some remarks concerning the concept of strict controllability. 

REMARK 1. Suppose Ak(A) - :  Ae and Bk(A) - :  Bk are constant for all k E J. Then condi- 
tion (ii) of Definition 4 (with strict controllability index s,  E J) already implies condition (i), 
i.e., controllability of (HA) on J* for all A E R, and the controllability indices s(A) of (HA) satisfy 
maxAeR ~(A) _< ss + 1 E J*. To prove this, assume (ii), let there be given A E R, a solution (z, u) 
of (HA), and m E J with m + ~, + 1 E J* such that 

X n  = X m + l  = . T m + 2  = • • • = X m + ~ , + l  --~ 0 

holds. Therefore, 

0 (A)xn+l = 0 +l(A)xn+  . . . . .  = 0, 

a n d h e n c e ( n o t e / - / k ( A ) = ( - C 0 ( A )  0)0 f o r k E J ) ,  

Condition (ii) thus implies x = u = 0 on J* so that controllability of (HA) on J* with controlla- 
bility index ~(A) < ~a + 1 follows. | 

REMARK 2. Suppose as in the previous remark that Ak(A) and Bk(A) are independent of A E R 
for all k E J. Furthermore, assume that 0k(A) is nonsingular for all k E J and all A E R. Then 

controllability of (HA) on J* for all A E R with controllability indices s(A) E J implies strict 
controllability of (HR) on J" with strict controllability index s, < s := maxAeR s(A). To show 

this, let A E R, let (x, u) be a solution of (HA), let m E J with m + s E J (this yields m + i E J 
since s(A) _> 1 trivially), and assume 

Then, we have 

C n ( A ) X n - i - 1  = Cn- i - l (A)Xm..b2 . . . . .  Orn+~CA)Zrn..[-~q-1 = O, 

and hence, invertibility of Cn(A), Cm+I(A),..., O,n+~(A) yields 

X m + l  - -  . T m + 2  = ' • " ~--- X r a + ~ + l  = 0 .  

Now controllability of (HA) on J* with controllability index ~(A) _< ~ together with m + 1 E J 
and m + 1 + ~ E J* imply z = u = 0 on J ' .  Altogether, strict controllability of (HR) on J" with 
strict controllability index ~, <_ ~ follows. | 
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REMARK 3. The purpose of this central remark is to show that Sturm-Liouville difference equa- 

tions of order 2n depending linearly on an eigenvalue parameter A • R satisfy (V1) provided 
N > 2n - 1 holds. To start with, let 

r ( ~ ) E R ,  0 < u < n ,  and r(k n ) ~ O ,  for a l l k E Z .  

We consider the n × n-matrices (01 / (0) 
0 1 ... 

Ak(A) = Ak = "-. "'. , Bk(A) ~ Bk = 0 , 
0 1 

r(~") 

c~(A)  = _ A 0 , k • J, A • R 
• . •  " . .  

r (n - l )  0 

and the corresponding systems (HA), £ E R. Note that  the 2n × 2n-matrices/:/~(A) are given by / x ) 
i l k ( A )  = o , k • J ,  

0 

(so that  (V2) is satisfied). Let N _> 2n - 1. Clearly (HA) is controllable on J* for each A • R 
(see, e.g., [12, Remark 20)]) with controllability index n _( N + 1, i.e., n • J*. Let A • R and 
pick a solution (x ,u)  of (HA). It is very well known (see, e.g., [4, Section 3]) tha t  in this case 

Ayk_l 

x k =  | A2Y k-2 , for a l l k • J * ,  

\ A n - l y k + l - n  

holds with a solution yk (1 - n _< k _< N + 1) of the linear self-~ljoint difference equation of 
order 2n 

n 

(SLA) n, 
ta--0 

a so-called Sturm-Liouville difference equation. (In fact, (SLA) and (HA) are even equivalent in 
the sense that  a solution of (SLA) yields a solution of (HA) and the other way around; see, e.g., [4, 
Section 3].) Now we assume that  for some m E J with m + 2n - 1 E J 

I ' Im(Jk ' (Xm'{ -1)  :~-Im'{ ' l ( )~ , (xm'{ '2  Um \ Ura..}-I . . . . .  /~/m+2n-l(*~) ( Um-{-2n-iXm+2n ) - . ~ 0  

holds• This implies 

Ym+l --'-- Ym+2 ---- " "" ---- Ym+2n ---- O, 

and since y is a solution of a linear difference equation of order 2n being zero at 2n consecutive 
values, it has to be zero always, i.e., 

y a = 0 ,  for aU l - n < k < N + l, 

and x = 0 on J* follows. Controllability of (HA) on J* now implies x = u = 0 on J*. Thus 
(Ha) is strictly controllable on J* with strict controllability index (no smaller index works) 
~ s = 2 n - l E  J. | 
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4. CHARACTERIZATION OF EIGENVALUES 

THEOREM 2. (Characterization of Eigenvalues.) Let A 6 R, and let (X, U) and (X:, 0) be 
normalized conjoined bases of (H~). Then, A is an eigenvalue of (E) if and only if the 2n x 2n- 
matrix ( xo ~o)+~(~o Oo) 

A:=  R* XN+I )(N+I UN+I ON+I 

is singular, and then def A is the multiplicity of the eigenvalue A. 

PROOF. Let (x, u) be a nontrivial solution of (HA). We put 

(xo ~o~(~o) (~: ~o~ (~o)~o 
~:= Vo Oo/ ~o = -Vo ~ x :  ] uo 

(observe that Definition 1 yields the invertibility of the occurring matrix), and thus 

(,,) (x, ~,) 
uk = Uk Ok d, f o r k • J * ,  

since the initial value problem under consideration has a unique solution (observe that I -  Ak(A) 
are assumed to be invertible matrices for all k E J). Now, we have 

~,,+,) +R(21 Oo = {R* (x-NX+° 1 --x~0 ON+l)} d = Ad. 

Thus, (x, u) solves (R), i.e., A is an eigenvalue of (E), if and only if Ad = 0 holds with d # 0, and 
this proves our assertion. | 

Next we wish to simplify this criterion in the case of so-called separated boundary conditions. 
By this we mean that the boundary conditions (R) may be equivalently written with 2n x 2n- 
matrices ~ . ( ~  0)  ,,a ~-(~ 0)  

0 R~/+I 0 RN+I ' 

such that the n x n-matrices Ro, R~, RN+I, R~V+l satisfy (as usual) 

rank(R0 P~)=rank(RN+l  R~v+l )=n ,  
I T $ T P~l~" = P~P~, RN+IRN+I = RN+IRN+I. 

In this special case, we have the following result. 

COROLLARY i. (Separated Boundary Conditions.) Assume that separated (and seg-conjoined) 
boundary conditions are given. Let (X, U) be the conjoined basis of (HA), A 6 R, with 

Xo = - P ~  and Uo = P f .  

Then, A 6 R/s  an eigenva/ue of (E) if and only if the n x n-matr/x 

R~+IXN+I + RN+IUN+I 

s ~ .  
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PROOF. Let A G R. For the above conjoined basis of (HA), there exists another conjoined basis 
(~:, 0) of (HA) so that (X, U) and (X, 0) are normalized (see Lemma 1). According to Theorem 2, 
A is an eigenvalue of (E) iff 

~--"" (x-2 ~0 ~N+I) +.(~N~:I 0o ON+i) 
__(_o ~ o )(X~il _~0 o 

RN+ 1 0 RN+I k UN+I UN+I ) 
= ( - ~  + ~  

\ R~+IXN+I + RN+IUN+I 
( o 

= RN+IXN+I + RN+IUN+I 

(observe Definition 1) is singular, and this happens iff R~+xXN+I + RN+xUN+I is singular. 

We wish to conclude this section with the following exanlple. 

EXAMPLE 1. Let n = 2 and consider the eigenvMue problem (E) given by 

v: ~o - x:  Oo 
R*~+IRN+I + RN+ION+I ] 

• - - I  h 
RN+lRN+, + RN+,ON+, ] 

(~ 1) .=(0 ° 0) ~ ( :  ~). 
A =  0 ' 1 ' 

~.~+1~(lo  0)1 , ~(~ '  o,~) .~+~--(~ °o) 
According to Remark 3, (V2) is satisfied and (Vx) holds provided N _> 2n - 1 = 3. However, 
now we let N = 2. Then, due to Corollary 1, A E R is an eigenvalue of (E) iff 

4A-6 3-2A) 
X3(A)=  4A 6 3 2A 

is singular. Therefore R is the set of eigenvalues of (E). 

5. T W O  A U X I L I A R Y  R E S U L T S  

In this short section, we cite two results that  will be needed in the proof of Theorem 1. 

LEMMA 2. (Index Theorem; see [19, Theorem 3.4.1].) Let ra G N, let there be given m x m- 
matrices R, R*, X ,  U with 

r a n k ( R  R * ) = r a n k ( X  T u T ) = r r t  and RR*r = R*R T, xTu=uTx, 

and let X(A), U(A) be m x m-matr/x-va/ued functions on R with 

XT(A)U(A) = U'r(A)X()~), A G [Ao - ¢ , A o  + ¢ ] ,  [or some 6 > 0, 

x(~)  -~ x ,  u(~) --  u, as ~ -~ ,~o, 
X(A) invertible for a//A E [A0 - 6, A0 + 6] \ {Ao}. 

Suppose that 

U(A)X-I(A) decreases strictly on [Ao - 6, Ao) and on (Ao, Ao + e], 

and denote for A 6 [Ao - e, Ao + ¢] \ {Ao} 

M(A) = R*R "r + RU(A)X-I(A)R T, 
A(~) = RX(~) + R'U(~), h = RX + R'U. 
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Then, ind M(Ao)= lirnA_.x ° {ind M(A)} and indM(Ao +) = limA_A+ {indM(A)} both exist, 

A(A) is invertible for al] A e [A0 - 6, A + 6] \ {A0} for some 6 e (0, ~), 

and the formula 

def h = ind M ( Ao +) - ind M (A o ) + def X 

holds. 

PROOF. We refer to [19, Theorem 3.4.1] (observe also [19, Corollary 3.4.4]). | 

LEMMA 3. (Reid Roundabout Theorem; see [14, Theorem 3].) Suppose the system (H) is con- 
tro//able on J* (see Definition 3). Let (X, U) and (X, U) be the special normalized conjoined 
bases of (H) at 0 (see Definition 1). Then, ~ > 0 (see Definition 2) if  and only if  

KerX~+t c KerXk, 

I 
M : = R * R  T + R UN+I 

XkX~+l(I - Ak)-IBk >_ O, for all/c E J, 

X N + l invertible, 

0)(0 
UN+I X N + I  XN+I >0, onImR 

holds. 

PROOF. We refer to [14, Theorem 3] and remark that R {RtR*RtR} R T = R*R T holds. | 

6. ISOLATEDNESS OF EIGENVALUES 

In this section, we wish to establish Theorem 1(i). Consider the following condition. 

For all Ao E R there exists e > 0 such that XN+I(A) is invertible and 
0 ( UNI (A) ON+,(A) ) ( xNOI(A) I -1  ~N+,(A) ) is strictly decreasing for A E [Ao -e, 

Ao + ~] \ {Ao}, where (X(A), U(A)) and (X(A), 0(A)) are the special normal- 
ized conjoined bases of (H) at 0 for every A E R. 

(I) 

Of course, condition (I) implies by the index theorem, Lemma 2 (observe also Lemma 1 and the 
continuity of the Hk(A), k E J), that the singular points of 

I 
A(A) = R, IxNOI(A) .~N+I(A)I.jcRIuN+II(A) 0 

kx~+~(~) (-Xo(~) xN+~(~l/r2°(~) ~ ku~+~(~)(uo(~) ~t~JO°(~) ) = R" +n ~-, + ,., , 

i.e., (according to Theorem 2) the eigenvalues of (E), are isolated. Therefore our goal is to show 
that (V1) and (V2) imply (1). This we will achieve by showing some lemmas. 

LEMMA 4. Suppose (X(A), U(A)) is a conjoined basis of (HA) for eac~ A E R with Xo(A) = 
0o(~) = 0. Then, 

k-1/x~+1(~)~T~(~) (x~+~(~)) 
X~(~)0k(~)-u~C~):~k(~) =- E \ U~(~) ) \ U~(~) 

m=0 

holds for al/k E J* \ {0} and for al/A E R. 
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PROOF. Let A, p • R and m • J. Then, 

n [X~(.) {U.(A) - U~(.)} - U~(.) {X~(A) - X~(.)}] 

= n [x~(~)u~(A) - G~(~)x.(A)] = A [ t  u.(~) -x.(A) 

t u.(~) ) j t t-x-+~(A) ) 
+;/x.+,(~) {~(u.cx) ~ 

s,_x.+,<>,) + ) ( k u~(v) -x.(A)/j  
= {~(-U~(")' TI (x'+r(A))- (X'+~(")' T { 

t, u.(.) ) ) t x.(.) ; t u.(A) t x.(A) ) 

u.(,) ) j  \ u.(A) ) - t  u.(v) : ~ (tH'(X)x X'+'(A)u.(A) )} 
( x,.+,(.) ) T (x.+,(A)~ 

=-I t U.(#) {Hm(A)-H,.(#)} U.(A) )" 

Now, division by A - # and letting/~ tend to A yields 

A ~ w l  - " w 6  j 
k u.(A) ) k u.CA) ) 

so that )Co(A) = Co(A) = 0 prove the validity of our assertion. $ 

LEMMA 5. Suppose (X(A), U(A)) and ()[(A), 0(A)) are norma!i~,ed conjdned bases of (HA) for 

A e R with Xo(A) -- 0o(A) = ~o(A) = bo(A) = o. Let ~ • a'. A~me that X~(A) 
invertible on some nontrivial open interva/2[. Put 

( '  0)(0 .),  
QkCA):= Uk(A) 0kCA) Xk(A) 2k(A) ' A e2[. 

Then (V2) implies that Q~(A) decreases on 2[. Moreover, (V1) and (V~) imply that Qk(A) 
decreases strictly on 2[ provided k > ~s holds, where ~, E J is the strict contro//ab///ty index of 
(HR). 

PROOF. Let k E J* \ {0} and A E 2[. We may apply Lemma 4 with the conjoined basis 
(X'(A),U*CA)) 

x(~) ~(~) and U'(~)= U(~) 0(~) 

of the "big" system from Lemma 4 so that for d E R 2n 
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"* * - '  (A)} d JCk(~)a = J { O;( : , )x ; - '  (:,) - u ; ( : , ) x ; - '  (~)x~(:,)x~ 

- -  {x:'/~>¢ {x~" ~ > ~ - . :  ~>x~>} x~-' ~>~ >(!00 
=-~'x;,-'(~,)d:~. / /xa+~(:,) T -em(~) o 

\ u~(~) 0 o 
~=o A~(~) o 

× x ; - '  (:,)d 

~=o U~(~) um(~) ) \ um(~) 
× X;- '  (A)d 
k - 1  T 

ra=O Um ~rn 

holds provided we assume (V2) and use the solution (x, u) of (HA) defined by 

1), 
: =  - d.  u~ \ um(~) v~(~) x~(~) R~(~,) 

Now we assume (V 0 and (V2), let k > ss, and suppose dV(~(A)d = 0. This yields 

/:/re(A) \(x'~+lum ) = O, for all0 _< m _< k - 1. 

It follows that 

189 

o) } 
o \ u;~(~) ] 

X,,,+~(A) 

by Lemma 5 so that .~I(A)XN+I(A) is strictly decreasing on this interval also. Thus, there 

exists ~ > 0 such that XN+I(A) is invertible on [Ao-6, Ao +6]\{Ao}. We now may apply Lemma 5 
once again to obtain that 

( ,  o ) ( 0  
decreases strictly on [Ao - e, Ao + e] \ {Ao}. This shows that (I) holds and hence the proof of 
Theorem l(i) is done. | 

I 0 (-0N+I(A) 0 U~+~(,x)) (-RN+~(,X) 
, )-' 

XN+I(A) 

x'),o x'),l . . . . .  . .  J 0 
holds. Strict controllability of (HR) on J* with strict controllability index ~s E J now forces 
x = u = 0 on J* so that d = 0 and hence Qk(A) < 0 follows. | 

LEMMA 6. (V1) and (V2) imply (I). 
PROOF. For every A E R, we denote the special normalized conjoined bases of (HA) at 0 by 
(X(A), U(A)) and (X(A), 0(A)). Let Ao E R. We pick a conjoined basis (.~, 0)  of (HAo) such that 
(X(Ao), U(A0)) and (X, 0)  are normalized and such that )(N+I is invertible (observe Lemma 1). 
Let (X(A), 0(A)) be the conjoined basis of (HA) with Xo(A) = )(o and 0o(A) -= 0o, A e R. Due 
to continuity, XN+I(A) is invertible on some nontrivial open interval that contains Ao, and on 
this interval we have strict monotonicity of 
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7. L O W E R  B O U N D E D N E S S  O F  E I G E N V A L U E S  

The purpose of this section is to provide a proof of Theorem l(ii). We need the following 
auxiliary result. 

LEMMA 7. Let there be given m x m-matrices A, A, B, B, C, C such that 

H= and H= A B 

are symmetric. Suppose that 

H_>~ H, KerBCKerB~ and B(Bt-Bt) B>O 

hold. Then, we have 
xTc2, n c uTBu >_ zTCz + uT Bu 

for a/l z, u, u e R m with Bu  - Bu  = (A - A)z. 

PROOF. By [19, Lemma 3.1.10], H > H implies B > B and the existence of a matrix D with 

A- A = (B- B)D and D T (B- B)D < C- C. 

According to [14, Remark 2(iii)], Ker B C Ker B is equivalent to 

B = BBtB = BBtB. 

Let x,u,u 6 R m with Bu- Bu = (A- A)z = (B - B)Dz. Then, 

>_ - B)D  + ,:B,,- {B,, + (B - 

= x'rD'r(B _ BBtB)Dz + uT(B - BBtB)u 

+ 2zTDT(B _ BBtB)u 

= (mx + u)V(B - BBtB)(Dz + u) 

= (Dz + u)rB(B t - Bt)B(Dx + u) > o. 

THEOREM 3. (Comparison Theorem.) 
~'(.;A) > 0 for all A < A. 

Suppose that conditions (%'2) and (Vs) hold. Then, 



PROOF. 

Hamiltoniaa Eigenvalue Problems 

Suppose ~'(.; A) > 0 and let A < A. By (V2) and (Vs), we have for all k • J 
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Hk(A) >_ Hk(A), Ker Bk(A) C Ker Bk(A), 

Bk( ) > O. 

Let (x,u) be such that ( -x0 ~ • imR T, x ~ 0, and Axk = Ak()t)X,k+l + Sk()t)~l,k, k • J. 
\ XN+I / 

Define 

Uk := Bt(A)Bk(A)Uk - { I -  Btk(A)Bk(A)} DkXk+l, k • J, 

where Ak(A) - Ak(A) = {Bk(A) - Bk(A)} Dk according to the proof of Lemma 7. Then, 

Bk()t)~tk- Bk(~)~k ~-- (Bk(~)- Bk()t)} DkXk+l = (Ak(~)- Ak()t)} . T k + l  

and thus Axk = Ak(A)xk+l + Bk(~)Uk for all k • J, so that an application of Lemma 7 yields 

o < y(z, ~; !) 

k----O ~ ~ X N + I  X N + I  

N T 

k----0 X N + I  X 

= Y'(z, u; ~). 

Hence ~r(.; A) > 0 also. | 

Now we are able to finish the proof of Theorem l(ii)--and hence, of Theorem 1--as follows. 
Assume (V2), (Vs), and controllability of (H),) on J* for all A • R. For A • R, let (X(A), U(A)) 
and ()[(A), 0(A)) be the special normalized conjoined bases of (HA) at 0 and define 

( 0)(0 
M ( A ) : = R ' R T + R  UN+I(A) UN+I(A) XN+I(A) XN+I(A) 

whenever the inverse exists. Now we pick A0 _< A. Thus, ~'(.; Ao) > 0 according to the above com- 

parison result, Theorem 3. Our Reid roundabout theorem, Lemma 3, now yields that XN+I (Ao) is 
invertible and that M(Ao) > 0 holds on Im R. Of course, XN+I(A) is invertible in some nontrivial (, o)(o 
open interval containing Ao, UN+I(A) 0N+I(A) XN+~(A) :~+I(A) is strictly decreasing there 

due to Lemma 5, and ind M(Ao +) = ind M(Ao) = 0 so that we may apply the index theorem, 
Lemma 2, to obtain 

0 
def A(Ao) = ind M(A +) - ind M(Ao) + def XN+I(Ao) 

= def XN+I(Ao) = 0. 

I 

XN+I(Ao) ) 

Thus, the crucial matrix A(Ao) from our result on characterization of eigenvalues, Theorem 2, is 
nonsingular, and hence A0 is not an eigenvalue. Therefore there exists a smallest eigenvalue Ax--if 
there exists an eigenvalue at all--and it satisfies the inequality A1 > A. 
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