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Abstract. In this paper, we develop a time scales approach to formulate and solve linear
fractional programming problems. This time scales approach unifies the discrete and
continuous linear fractional programming models and extends them to other cases “in
between”. Our approach enables us to derive a pair of primal and dual linear fractional
programming models on arbitrary time scales. We also establish and prove the weak duality
theorem and the optimality condition for arbitrary time scales, while the strong duality
theorem is established for isolated time scales. Examples are provided to illustrate the
presented theory.
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1. Introduction

It is well known that discrete-time linear programming problems have numerous
applications in areas such as portfolio optimization, crew scheduling, manufacturing,
transportation, telecommunication, agriculture, and so on. Continuous-time linear
programming problems were first studied by Bellman [5] as a bottleneck process. He
established the weak duality theorem and optimality conditions. A computational approach has
been presented by Bellman and Dreyfus [6]. The strong duality theorem was studied by
Tyndall [32, 33] and Levinson [28]. Grinold [26] has established strong duality without
discretizing the continuous problem. A numerical solution to continuous-time linear
programming was considered by Buie and Abrham [24].Wen, Lur, and Lai [38] have presented
____________________
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an approximation approach to solve continuous-time problems.
If the objective function appears as a ratio of two continuous-time linear objective

functions, then the problem is known as a continuous-time linear fractional program. As it is an
ideal discipline for applications of optimization problems, the theory and algorithms as well as
various applications of this problem have gotten specific consideration in recent decades.
Zalmai [42–46] has studied continuous-time fractional programming problems. A stochastic
class of these types of problems was treated by Stancu and Tigan [30]. An approximation
method to solve these kinds of problems was considered by Wen et al. [34, 37, 39, 40]. Wen et
al. established in [34, 37, 39, 40] weak and strong duality theorems for these kinds of
problems. Continuous-time generalized fractional models were studied by Ching and Wen [35,
36], and they have investigated the basic theory and an interval-type approach to solve
fractional models. Wu [41] has proposed the parametric formulation of a class of these types of
problems and has established duality theorems.

The theory of time scales, on the other hand, was first introduced by Stefan Hilger in 1988
in his PhD dissertation, see [27]. The purpose of this theory is to unify discrete and continuous
analysis and to offer an extension to cases “in between.” Many applications in mathematical
modelling exist for this theory, e.g., to optimal control [4, 20–23, 29], population biology
[8–11], calculus of variations [7, 12, 15], and economics [3, 13, 16, 17, 31].

In this paper, we continue our study on time scales programming problems from [1, 2] and
derive a new formulation for a class of linear fractional programming problems on arbitrary
time scales. The by-product of our work is to extend continuous-time linear fractional
programming problems and the results in [34, 37, 39–41] to a general form of linear fractional
programming problems on arbitrary time scales. The paper is organized as follows. In Section
2, some examples related to time scales calculus are given. In Section 3, we recall some recent
results by the authors [1] about linear primal and dual programs on time scales. In Section 4,
the basic structure of the primal model is formulated, and the Charnes–Cooper transformation
[25] is used to rewrite the problem as a linear programming problem on time scales. In Section
5, the obtained linear problem is rewritten as an ordinary linear programming problem as
studied in [1], and its dual is found. Section 6 uses the recently established results from [1] to
prove the weak duality theorem and the optimality condition on arbitrary time scales, while the
strong duality theorem is stated and proved for isolated time scales. Examples are presented in
Section 7 in order to demonstrate our theoretical results. In Section 8, some conclusions are
given.

2. Time Scales Calculus

In this section, instead of introducing the basic definitions, derivative, and integral on time
scales, we refer the reader to the monographs [14, 18, 19], in which comprehensive details and
complete proofs are given. For readers not familiar with the time scales calculus, we give the
following few examples. Throughout,

__
∥ is the time scale,  is the forward jump operator,  is

the graininess, f :
__
∥→  is a function, f  f ∘  is the advance of f, fΔ is the delta derivative of

f, and 
a

b ftΔt is the time scales integral of f between a,b ∈
__
∥ .

Example 2.1. If
__
∥  , then
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t  t, t ≡ 0, fΔt  f ′t for t ∈
__
∥ ,

and


a
b

ft Δt  
a
b

ft dt, where a,b ∈
__
∥ with a  b,

is the usual Riemann integral of classical calculus.

Example 2.2. If
__
∥  tk ∈  : k ∈ ℕ0 with tk  tk1 for all k ∈ ℕ0 consists only of isolated

points, then

tk  tk 1, tk  tk 1 − tk, fΔtk 
ftk 1 − ftk

tk  1 − tk
for k ∈ ℕ0,

and


tm

tn ftΔt  ∑
k  m

n−1
tk ftk, where m,n ∈ ℕ0 with m  n. 1

The examples in Section 7 are specific cases of Example 2.2 as follows.

Example 2.3. Let h  0. If
__
∥  hℤ  hk : k ∈ ℤ, then

t  t  h, t ≡ h, fΔt  fth − ft
h for t ∈

__
∥ ,

and


a
b

ft Δt  h ∑
k  a

h

b
h −1

fkh, where a,b ∈
__
∥ with a  b.

Example 2.4. If
__
∥  ℤ, then

t  t  1, t ≡ 1, fΔt  Δft  ft  1 − ft for t ∈
__
∥ ,

and


a
b

ft Δt  ∑
k  a

b −1
fk, where a,b ∈

__
∥ with a  b.

Example 2.5. Let q  1. If
__
∥  qℕ0  qn : n ∈ ℕ0, then

t  qt, t  q − 1t, fΔt  fqt − ft
q −1t

for t ∈
__
∥ ,

and


qm

qn
ftΔt  q − 1 ∑

k  m

n −1
qkfqk, where m,n ∈ ℕ0 with m  n.
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3. Linear Programming Problems

Throughout this paper,
__
∥ stands for a time scale, we assume 0 ∈

__
∥ , we let T ∈

__
∥ , and we use

ℑ to denote the time scales interval
ℑ  0,T ∩

__
∥ .

By Ek, we denote the space of all rd-continuous functions from ℑ into k. In [1], the authors
have introduced the primal time scales programming problem as

Maximize Ux  
0

T
ft xtΔt,

subject to Bt xt ≤ gt  
0

t
Kt, s xsΔs, t ∈ ℑ,

and x ∈ En, xt ≥ 0, t ∈ ℑ,

2

where f ∈ En, g ∈ Em, and B and K are rd-continuous m  n matrix-valued functions.
Moreover, in [1], the dual time scales programming problem is introduced as

Minimize Vz  
0

T
ft ztΔt,

subject to Bt zt ≥ ft  
t
T

Ks, t zsΔs, t ∈ ℑ,

and z ∈ Em, zt ≥ 0, t ∈ ℑ.

3

A feasible solution of (2) (or (3)) is any one that satisfies the given constraints. An optimal
solution to (2) (or (3)) is a feasible solution with the largest (or smallest) objective function
value. In [1], the following results are established.

Theorem 3.1. (Weak duality theorem) If x and z are arbitrary feasible solutions of (2) and (3),
respectively, then Ux ≤ Vz.

Theorem 3.2. (Optimality condition) If there exist feasible solutions x∗ and z∗ of (2) and (3),
respectively, such that Ux∗  Vz∗, then x∗ and z∗ are optimal solutions of their respective
problems.

Theorem 3.3. (Strong duality theorem) Assume
__
∥ is an isolated time scale. If (2) has an

optimal solution x∗, then (3) has an optimal solution z∗ such that Ux∗  Vz∗.

4. The Primal Fractional Problem

In this section, we consider linear fractional programming problems on time scales as an
extension of continuous-time linear fractional programming problems and extend the results in
[34, 37, 39–41 to the general time scales model for arbitrary time scales. The primal time
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scales linear fractional programming model is formulated as

Maximize Ux 
  

0
T f t xtΔt

  
0
T h t xtΔt

,

subject to Bt xt ≤ gt  
0

t
Kt, s xsΔs, t ∈ ℑ,

and x ∈ En, xt ≥ 0, t ∈ ℑ,

4

where , ∈ ,   0, f,h ∈ En, g ∈ Em, g,h ≥ 0, and B and K are matrix-valued functions of
size m  n. Together with (4), we consider the problem

Maximize Wy,    
0

T
ft ytΔt,

subject to B yt ≤ gt  
0

t
Kt, s ysΔs, t ∈ ℑ,

  
0

T
ht ytΔt  1,

and y ∈ En, yt ≥ 0, t ∈ ℑ,  ∈ ,  ≥ 0.

5

In the remainder of this section, we establish some relationships between (4) and (5).

Theorem 4.1. Let x be feasible for equation (4) and define
 : 1

  
0
T h t xtΔt

and y : x. 6

Then y, is feasible for (5) and
Wy,  Ux.

Proof. Assume that x is feasible for (4) and define y, by (6). Since   0 and ht ≥ 0 for
t ∈ ℑ, we have   0. Now

Bt xt ≤ gt  
0

t
Kt, s xsΔs,

for t ∈ ℑ, implies that

Btyt  Bt xt ≤  gt  
0

t
Kt, sxsΔs

 gt  
0

t
Kt, s ysΔs,

for t ∈ ℑ, and x ∈ En, xt ≥ 0 for t ∈ ℑ imply y ∈ En, yt ≥ 0 for t ∈ ℑ. Moreover, we have

1     
0

T
h t xtΔt    

0

T
h t ytΔt.

Thus, y, is feasible for (5). Finally,
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Wy,    
0

T
f tytΔt     

0

T
f t xtΔt


  

0
T f t xtΔt

  
0
Th t xtΔt

 Ux,

completing the proof. 

Theorem 4.2. Let y, be feasible for equation (5).
i. If   0, then x : y

 is feasible for (4) and

Ux  Wy,.
ii. If   0, then xc :

c
1− c y, 0 ≤ c  1, is feasible for (4) and

Uxc 
1− c

  cWy,.

Proof. Assume that y, is feasible for (5). First, suppose   0 and define x : y
 . Now

Btyt ≤ gt  
0

t
Kt, sysΔs

for t ∈ ℑ implies

Btxt  1


Btyt ≤ 1


gt  
0

t
Kt, s ysΔs

 gt  
0

t
Kt, s xsΔs,

for t ∈ ℑ, and y ∈ En, yt ≥ 0 for t ∈ ℑ imply x ∈ En, xt ≥ 0 for t ∈ ℑ. Thus, x is feasible
for (4). Finally, since

1    
0

T
h t ytΔt     

0

T
h t xtΔt ,

we get

Ux 
  

0

T ftxtΔt

  
0

T htxtΔt
    

0

T
ftxtΔt

   
0

T
ftytΔt  Wy,,

completing the proof of i. Next, suppose   0 and define xc :
c
1−c y, where 0 ≤ c  1. Now

  0, gt ≥ 0 for t ∈ ℑ, and

Bt yt ≤ 
0

t
Kt, s ysΔs

for t ∈ ℑ imply
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Btxct 
c
1 − c Btyt ≤ c

1 − c 0
t
Kt, sysΔs

 
0

t
Kt, sxcsΔs ≤ gt  

0

t
Kt, sxcsΔs,

for t ∈ ℑ, and y ∈ En, yt ≥ 0 for t ∈ ℑ imply x ∈ En, xct ≥ 0 for t ∈ ℑ. Thus, xc is
feasible for (4). Finally, since


0

T
h t ytΔt  1,

we get

Uxc 
  

0

T ftxctΔt

  
0

T htxctΔt

 

c
1− c 0

T ftytΔt

 
c
1− c


1 − c  c 

0

T ftytΔt
  1 − c

  cWy,,

completing the proof of ii. 

Lemma 4.1. Suppose x is feasible for (4) and y, 0 is feasible for (5). Then xr : x  ry,
r  0, is also feasible for (4) and

Uxr 
Ux  rWy,0

1  r
,

where  is defined in (6).

Proof. Using the assumptions and notation of the statement, we have

Btxrt  Btxt  rBtyt

≤ gt  
0

t
Kt, sxsΔs  r 

0

t
Kt, sysΔs

 gt  
0

t
Kt, sxrsΔs

for t ∈ ℑ, so that xr is seen to be feasible for (4). Finally,

Uxr 
  

0

T ftxrtΔt

  
0

T htxrtΔt


  

0

T ftxtΔt  r 
0

T ftytΔt

  
0

T htxtΔt  r

 Ux  rWy, 0
1  r ,
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completing the proof. 

Theorem 4.3. Let x∗ be optimal for (4) and define
∗ : 1

  
0
T h t x∗tΔt

and y∗ : ∗x∗. 7

Then y∗,∗ is optimal for (5) and
Wy∗,  Ux∗.

Proof. Assume that x∗ is optimal for (4) and define y∗,∗ by (7). By Theorem 4.1, y∗,∗ is
feasible for (5) and Wy∗,∗  Ux∗. Now let y, be an arbitrary feasible solution of (5).
First, assume   0. By Theorem 4.2 i, x : y

 is feasible for (4) and Ux  Wy,. Since
Ux ≤ Ux∗, we get

Wy,  Ux ≤ Ux∗  Wy∗,∗.
Next, assume   0. By Theorem 4.2 ii, xc 

c
1− c y is feasible for (4), for any 0 ≤ c  1, and

Uxc 
1−c
  cWy, 0. Since Uxc ≤ Ux∗ for all 0 ≤ c  1, we get

Wy∗,∗  Ux∗ ≥ Uxc 
1− c

  cWy,,∀ 0 ≤ c  1,

and thus, by letting c → 1−, we find
Wy∗,∗ ≥ Wy,.

Hence, for all feasible y,, we have Wy, ≤ Wy∗,∗, showing that y∗,∗ is optimal for
(5). 

Theorem 4.4. Let y∗,∗ be optimal for (5).
i. If ∗  0, then x∗ : y∗

∗
is optimal for (4) and

Ux∗  Wy∗,∗.
ii. If ∗  0 but y, is not optimal for (5) for any   0, then (4) has no optimal solution.

Proof. Assume that y∗,∗ is optimal for (5). First, suppose ∗  0 and define x∗ : y∗
∗
. By

Theorem 4.2 i, x∗ is feasible for (4) and Ux∗  Wy∗,∗. Now let x be an arbitrary feasible
solution for (4) and define y, by (6). By Theorem 4.1, y, is feasible for (5) and
Wy,  Ux. Since Wy, ≤ Wy∗,∗, we get

Ux  Wy, ≤ Wy∗,∗  Ux∗,
and thus x∗ is optimal for (4). Next, suppose ∗  0 and Wy,  Wy∗, 0 for all feasible
y, with   0. Let x be an arbitrary feasible solution for (4) and define y, by (6). By
Theorem 4.1, we have Ux  Wy,. By Lemma 4.1, x1  x  y∗ is also feasible for (4) and
Ux1 

UxWy∗,0
1 . Since Wy,  Wy∗, 0 and   0, we get

Ux1 
Ux  Wy∗, 0

1    Ux  Wy,
1    Ux  Ux

1    Ux,
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showing that no feasible x can be optimal for (4). 

5. The Dual Fractional Problem

In this section, we rewrite (5) as a linear problem of the form (2) and find its dual (3),
which we shall express later as (10). Define

_̃_
∥  0,T ∩

__
∥   −1,T  1,

and
ℑ̃  ℑ  −1,T.

By Ẽk, we denote the space of all rd-continuous functions from ℑ̃ into k. Note that, on
_̃_
∥ , we

have
−1  0 and T  T  1.

Defining

f−1 



0


0

, h−1 



0


0

, B−1  0,

Kt,−1   gt 0 , t ∈ I, y−1 



∗



∗

,

we find that

  
0

T
f t ytΔt  

−1

T
f tytΔt,

  
0

T
ht ytΔt  

−1

T
ht ytΔt,

and

gt  
0

T
Kt, s ytΔt  

−1

T
Kt, s ytΔt, t ∈ ℑ.

Hence, by putting
fT  0, gT  0, BT  0,

KT, t 
ht
−ht
0

, t ∈ ℑ  −1,



10 R. AL-SALIH, and M. BOHNER

g̃T 

−1
1
0

, g̃t  0 for t ≠ T

(this is for the case m  1; if m  1, then we add a zero row to all other K and to B, hence
getting a problem with m̃  2), we may rewrite (5) as

Maximize 
−1

T
f t ytΔt,

such that Bt yt ≤ g̃t  
−1

t
Kt, s ysΔs, t ∈ ℑ̃,

and y ∈ Ẽn, yt ≥ 0, t ∈ ℑ.

8

From Section 3, the dual of (8) is found as

Mnimize 
−1

T
g̃ t ztΔt,

such that Bt zt ≥ ft  
t
T

K s, t zsΔs, t ∈ ℑ̃,

and z ∈ Ẽm̃, zt ≥ 0, t ∈ ℑ.

9

Introducing now the notation

zT 

p
q
∗



∗

and   q − p,

we find


−1

T
g̃tztΔt  g̃TzT  q − p  ,


t

T
Ks, tzsΔs  

t

T
Ks, tzsΔs − ht, t ∈ ℑ  −1,

and

−1
T K s,−1 zsΔs  0

T
g szs

0


0

Δs,

so equation (9) can be rewritten as
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Minimize Vz,  

Bt zt  ht ≥ ft  
t
T

Ks, tzsΔs, t ∈ ℑ,

subject to −   
0

T
gt ztΔt ≤ −,

z ∈ Em, zt ≥ 0, t ∈ ℑ.

10

6. Duality Theorems

In this section, we state and prove the weak duality theorem and the optimality condition
theorem for linear fractional programming model on arbitrary time scales, while the strong
duality theorem is established for isolated time scales.

Theorem 6.1. (Weak duality theorem) If x and z, are arbitrary feasible solutions of (4)
and (10), respectively, then Ux ≤ Vz,.

Proof. Assume that x is a feasible solution of (4) and that z, is a feasible solution of (10).
Define y, by (6). By Theorem 4.1, y, is feasible for (5) and Wy,  Ux. Hence, by
Theorem 3.1,Wy, ≤ Vz,, so

Ux  Wy, ≤ Vz,,
completing the proof. 

Theorem 6.2. (Optimality condition) If there exist feasible solutions x∗ and z∗,∗ of (4) and
(10), respectively, such that Ux∗  Vz∗,∗, then x∗ and z∗,∗ are optimal solutions of
their respective problems.

Proof. Assume that x∗ is a feasible solution of (4), that z∗,∗ is a feasible solution of (10),
and that Ux∗  Vz∗,∗. Define y∗,∗ by (7). By Theorem 4.1, y∗,∗ is feasible for (5)
andWy∗,∗  Ux∗. Hence,

Wy∗,∗  Ux∗  Vz∗,∗.
By Theorem 3.2, y∗,∗ is optimal for (5) and z∗,∗ is optimal for (10). Since ∗  0, by
Theorem 4.4, x∗  y∗

∗
is optimal for (4). 

Theorem 6.3. (Strong duality theorem) Assume  is an isolated time scale. If (4) has an
optimal solution x∗, then (10) has an optimal solution z∗,∗ such that Ux∗  Vz∗,∗.

Proof. Assume that (4) has an optimal solution x∗ and define y∗,∗ by (7). By Theorem 4.3,
y∗,∗ is optimal for (5) and Wy∗,∗  Ux∗. By Theorem 3.3, (10) has an optimal
solution z∗,∗ such that Vz∗,∗  Wy∗,∗. Hence,

Ux∗  Wy∗,∗  Vz∗,∗,
and here the proof completes. 
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7. Illustrative Examples

In this section, three examples are given in order to illustrate our duality theorems on
isolated time scales.

Example 7.1. Let
__
∥ ℤ and ℑ  0,1,2,3,4. Then, we consider the isolated time scales

linear fractional programming primal model

Maximize Ux 
1
3  0

4 t xtΔt

1
2 

1
2 0

4 t xtΔt


1
3 ∑ t0

4 t xt
1
2 

1
2 ∑ t0

4 t xt

subject to 6xt ≤ t  
0

t xsΔs  t ∑
s 0

t−1

xs, t ∈ ℑ,

and xt ≥ 0, t ∈ ℑ,

where we have used  and the integral given in Example 2.4. Using MATLAB command
linprog or LINDO solver, we have

x∗0  0.000000, x∗1  0.166665, x∗2  0.361110,
x∗3  0.587964, x∗4  0.852625, Ux∗  1.801792.

On the other hand, the isolated time scales linear fractional programming dual model is

Minimize Vz  

subject to

6zt   t
2 ≥ t  

t

T zsΔs  t  ∑
s t1

4

zs, t ∈ ℑ,

−
2  

0

4 tztΔt  −
2 ∑

t0

4

tzt ≤ − 13

and zt ≥ 0, t ∈ ℑ,

where we have used again Example 2.4. Using MATLAB command linprog or LINDO solver,
we have

z∗0  0.037903, z∗1  0.046646, z∗2  0.054140,
z∗3  0.060564, z∗4  0.066069, ∗  1.801792,

and the optimal value is Vz∗,∗  1.801792, confirming Ux∗  Vz∗,∗.

Example 7.2. Let
__
∥ 5ℤ and ℑ  0,5,10,15,20. Then, we consider the isolated time scales

linear fractional programming primal model
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Maximize Ux 
3  

0

20 t xtΔt

2  
0

20 t2 xtΔt


3 ∑k0
4 25kx5k

2  125∑k0
4 k2x5k

subject to 7xt ≤ t  
0

t xsΔs  t  5∑
k0

t
5 −1

x5k, t ∈ ℑ,

and xt ≥ 0, t ∈ ℑ,

where we have used  and the integral given in Example 2.3. Using MATLAB command
linprog or LINDO solver, we have

x∗0  0.0, x∗5  0.0, x∗10  0.00,
x∗15  0.0, x∗20  0.0, Ux∗  1.5.

On the other hand, the isolated time scales linear fractional programming dual model is

Minimize Vz,  

subject to

7zt  t2 ≥ t  
t

T zsΔs  t  5 ∑
k t

5 1

4

z5k, t ∈ ℑ,

−2  
0

4 tztΔt  −2  25∑
k0

4

kz5k ≤ −3,

and zt ≥ 0, t ∈ ℑ,

where we have used again Example 2.3. Using MATLAB command linprog or LINDO solver,
we have

z∗0  0.0, z∗5  0.0, z∗10  0.0,
z∗15  0.0, z∗20  0.0, ∗  1.5,

and the optimal value is Vz∗,∗  1.500000, confirming Ux∗  Vz∗,∗.

Example 7.3. Let
__
∥ 2ℕ0 and ℑ  1,2,4. Then, we consider the isolated time scales linear

fractional programming primal model
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Maximize Ux 
5  

1

4 t xtΔt

3  
1

4 xtΔt

5 ∑k0

2 4k x2k

3 ∑k0
2 2k x2k

subject to 7xt ≤ t3  
1

t xsΔs  t3  ∑
k0

log2t−1
2kx2k, t ∈ ℑ,

and xt ≥ 0, t ∈ ℑ,

where we have used  and the integral given in Example 2.5. Using MATLAB command
linprog or LINDO solver, we have

x∗1  0.000000, x∗2  0.000000,
x∗4  9.142772, Ux∗  3.823105.

On the other hand, the isolated time scales linear fractional programming dual model is

Minimize Vz  6 
1

22 tztΔt  6∑
k0

2

4kz2k

subject to

7zt   ≥ t  
t

4 zsΔs  t  ∑
k1log2t

2

2kz2k, t ∈ ℑ,

−3  
1

4 t3ztΔt  −3 ∑
t 0

2

2k2k3z2k ≤ −5,

and zt ≥ 0, t ∈ ℑ,

where we have used again Example 2.5. Using MATLAB command linprog or LINDO solver,
we have

z∗1  0.000000, z∗2  0.000000,
z∗4  0.025271, ∗  3.823105,

and the optimal value is Vz∗,∗  3.823105, confirming Ux∗  Vz∗,∗.

7. Conclusions

An efficient formulation and a computational approach have been successfully constructed
in this paper in order to solve a general class of linear fractional programming problems on
arbitrary time scales. A general form for the primal and the dual time scales models has been
formulated. To guarantee that our time scales formulation is indeed a useful formulation, we
have established the weak duality theorem and the optimality condition on arbitrary time
scales, while the the strong duality theorem is given for isolated time scales. Obtaining the
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exact optimal solution is the key issue for solving these types of problems, which this paper
achieves by using time scales formulation as particular cases for isolated time scales setting
such as

__
∥ qℕ0 and

__
∥ hℤ. Moreover, since the error bound of continuous-time linear

fractional programming problems is dependent on both primal and dual models, another key
issue for solving these types of problems is to solve both primal and dual models at the same
time to abstain the error bound of the solution. Another contribution of this paper is obtaining
the optimal solution by solving either the primal problem or the dual problem only, using
isolated time scales, which reduces the large computational effort.
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