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Abstract This paper is concerned with oscillatory behavior of a class of fourth-order delay dynamic equations

on a time scale. In the general time scales case, four oscillation theorems are presented that can be used in cases

where known results fail to apply. The results obtained can be applied to an equation which is referred to as

Swift-Hohenberg delay equation on a time scale. These criteria improve a number of related contributions to

the subject. Some illustrative examples are provided.
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1 Introduction

This article is concerned with the problem of oscillation of a fourth-order delay dynamic equation

(c(t)(b(t)(a(t)x∆(t))∆)∆)∆ + p(t)x(τ(t)) = 0 (1.1)

on a time scale T unbounded above. Here a, b, c, and p are positive real-valued rd-continuous functions

defined on T, τ ∈ Crd(T,T), τ(t) 6 t, and τ(t) → ∞ as t → ∞.

Since we are interested in oscillatory behavior, we assume throughout this paper that the given time

scale T is unbounded above and is a time scale interval of the form [t0,∞)T := [t0,∞) ∩ T with t0 ∈ T.

By a solution to (1.1), we mean a nontrivial real-valued function x ∈ C1
rd[Tx,∞)T, Tx ∈ [t0,∞)T which

satisfies (1.1) for t ∈ [Tx,∞)T. The solutions vanishing in some neighbourhood of infinity will be excluded

from our consideration. A solution x to (1.1) is said to be oscillatory if it is neither eventually positive

nor eventually negative; otherwise, it is nonoscillatory. (1.1) is called oscillatory if all its solutions are

oscillatory.

The theory of time scales, was introduced by Hilger [25] in his PhD thesis in order to unify continuous

and discrete analysis. The study of dynamic equations on time scales is a new area of mathematics, and

work in this topic is rapidly growing. During the past few years, there has been increasing interest in

obtaining sufficient conditions for oscillation and nonoscillation of solutions to various classes of dynamic
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equations on time scales, we refer the reader to [1–3, 5–7, 10–14, 17–20, 24, 29, 30, 32–35, 37] and the

references cited therein. Thereinto, Agarwal and Bohner [2] studied oscillation of a first-order dynamic

equation

x∆(t) + p(t)x(τ(t)) = 0.

Agarwal et al. [3], Erbe et al. [14], and Şahiner [34] considered oscillatory behavior of

x∆2

(t) + p(t)f(x(τ(t))) = 0.

Regarding oscillation of third-order dynamic equations on time scales, Erbe et al. [13] studied a third-order

dynamic equation

x∆3

(t) + p(t)x(t) = 0.

Hassan [24] and Li et al. [29] considered a third-order nonlinear delay dynamic equation

(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(τ(t))) = 0.

In the following, we present some background details that motivate the investigation of (1.1). The

fourth-order equations have some applications in the real world; see [1,4,8,9,15,16,18–23,26–28,30,35–39].

Agarwal et al. [1] studied a fourth-order dynamic equation

(p(t)(x∆2

(t))α)∆
2

+ q(t)f(xσ(t)) = 0, (1.2)

where α is the quotient of two odd positive integers, p and q are real-valued positive and rd-continuous

functions on a time scale T. As a special case when α = 1 and f(u) = u, the authors obtained the

following result.

Theorem 1.1 (See [1, Theorems 3.1–3.3]). Assume
∫∞
t0

p−1(t)∆t = ∞, α = 1, f(u) = u, and there

exists a strictly increasing function τ ∈ C1
rd([t0,∞)T,T) such that τ(t) > t and τ ◦ σ = σ ◦ τ . Suppose

further that there exists a positive function r ∈ C1
rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t1

[
r(s)q(τ(s))τ∆(s)−

(r∆(s))2

4r(s)h(s, t0; p)

]
∆s = ∞,

for some t1 ∈ [t0,∞)T, where

h(t, t0; p) := min

{∫ t

t0

s− t0
p(s)

∆s,

∫ β(t)

t

β(s)− s

p(s)
∆s

}
,

β : T → T is an increasing function satisfying β(t) > t. Then (1.2) is oscillatory.

Monotone and oscillatory behavior of solutions to a fourth-order dynamic equation

(a(t)(x∆∆(t))α)∆∆ + p(t)(xσ(t))β = 0

with the property that

x(t)
∫ t

t0

∫ s

t0
a−1/α(τ)∆τ∆s

→ 0 as t → ∞

were established by Grace et al. [19]. Grace et al. [20] examined a fourth-order dynamic equation

x∆4

(t) + p(t)xγ(t) = 0, (1.3)

where p is a real-valued positive and rd-continuous function on a time scale T. As a special case when

γ = 1, the authors established the following result.
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Theorem 1.2 (See [20, Theorem 2.5]). Assume γ = 1. If

lim sup
t→∞

{h3(t, t0)Q(t)} > 1

and

lim sup
t→∞

{h1(t, t0)Q
∗(t)} > 1,

where

h1(t, s) := t− s, h2(t, s) :=

∫ t

s

(τ − s)∆τ, h3(t, s) :=

∫ t

s

h2(τ, s)∆τ with t, s ∈ T,

and

Q(t) :=

∫ ∞

t

p(s)∆s, Q∗(t) :=

∫ ∞

t

∫ ∞

s

Q(τ)∆τ∆s for t ∈ [t0,∞)T,

then (1.3) is oscillatory.

Grace et al. [18] studied a fourth-order dynamic equation

x∆4

(t) + p(t)xγ(σ(t)) = 0, (1.4)

where p is a real-valued positive and rd-continuous function on a time scale T. As a special case when

γ = 1, the authors presented the following criterion.

Theorem 1.3 (See [18, Theorem 5]). Assume that there exists an rd-continuous function g : T → T

such that g(t) < t, g(t) is nondecreasing for t ∈ [t0,∞)T, and limt→∞ g(t) = ∞. Let φ(t) := t− g(t) for

t ∈ [t0,∞)T and assume that ∫ ∞

t0

φ(t)h2(g(t), t0)p(t)∆t = ∞.

Suppose that there exists a positive nondecreasing function η ∈ C1
rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t0

[
η(s)Q(s)−

η∆(s)

s

]
∆s = ∞,

or

lim sup
t→∞

∫ t

t0

[
η(s)Q(s)−

(η∆(s))2

4η(s)

]
∆s = ∞,

where

Q(t) :=

∫ ∞

t

∫ ∞

s

p(u)∆u∆s.

Moreover, assume that there exists a positive function ξ ∈ C1
rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t1

[
φ(s)

σ(s)
h2(g(s), t0)ξ

σ(s)p(s) − k
ξ∆(s)

s

]
∆s = ∞,

for every constant k > 0 and for some t1 ∈ [t0,∞)T. Then (1.4) with γ = 1 is oscillatory.

Li et al. [30] considered oscillation of unbounded solutions to a fourth-order delay dynamic equation

(r(t)x∆3

(t))∆ + p(t)x(τ(t)) = 0.

Thandapani et al. [35] studied a fourth-order dynamic equation

(b(t)(a(t)x∆(t))∆)∆
2

+ q(t)xσ(t− δ) = 0, (1.5)

where δ > 0, a, b, and q are real-valued positive and rd-continuous functions on a time scale T. They

obtained the following oscillation criterion.
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Theorem 1.4 (See [35, Theorem 3.5]). Assume that
∫∞
t0

a−1(t)∆t =
∫∞
t0

b−1(t)∆t = ∞. Suppose also

that there exists a positive function α ∈ C1
rd([t0,∞)T,R) such that

lim sup
t→∞

∫ t

t1

[
α(s)q(s) −

(α∆(s))2

4α(s)R∆(s− δ, t0)

]
∆s = ∞,

for some t1 ∈ [t0,∞)T, where

R(t, t0) :=

∫ t

t0

1

a(s)

(∫ s

t0

u− t0
b(u)

∆u

)
∆s.

Then (1.5) is oscillatory.

Zhang et al. [37] investigated a fourth-order nonlinear dynamic equation

(r(t)x∆3

(t))∆ + p(t)f(x(σ(t))) = 0

and obtained some sufficient conditions for oscillation of the studied equation.

The questions regarding oscillatory properties of equations

x(4)(t) +
q0
t4
x(t) = 0 (1.6)

and

x(4)(t) +
q0
t4
x

(
t

2

)
= 0 (1.7)

have been studied in [4, 15, 16, 21–23, 26–28, 36, 38, 39]. Fite [15] obtained that q0 > 0 is not sufficient

to ensure oscillation of solutions to (1.6). Let t0 = 1, r(t) = (t + 1)3, τ(t) = t + 1, β(t) = 2t, and

α(t) = t3. Applications of Theorem 1.1 or Theorem 1.4 imply that (1.6) is oscillatory when q0 > 9/2.

Using Theorem 1.2 or [4, Theorem 2.2] in (1.6), we have that (1.6) is oscillatory if q0 > 18. One can

easily see that Theorem 1.3 cannot be applied in (1.6) due to the arbitrariness in the choice of k. Grace

and Lalli [21–23] proved that condition

q0 > 13824

guarantees oscillation of fourth-order delay differential equation (1.7). Zafer [36] obtained that condition

q0 >
1536

e ln 2

ensures oscillation of (1.7). Grace [16] established that condition

q0 >
48

1 + ln 2

guarantees oscillation of (1.7). Karpuz et al. [27], Zhang and Yan [38], and Zhang et al. [39] obtained

that condition

q0 >
48

e ln 2

ensures oscillation of (1.7).

This study is strongly motivated by the research of [8, 9]. Berchio et al. [9] studied a fourth-order

differential equation

W ′′′′(s) + kW ′′(s) + f(W (s)) = 0,

which is known as Swift-Hohenberg equation if k is positive; see [31]. Bartušek et al. [8] considered a

generalized Swift-Hohenberg differential equation with a deviating argument

x(4)(t) + g(t)x(2)(t) + p(t)x(τ(t)) = 0, (1.8)

where g(t) > g0 > 0. One can find that there is a relationship between (1.1) and a fourth-order dynamic

equation of the form

x∆4

(t) + g(t)x∆2

(σ(t)) + p(t)x(τ(t)) = 0,
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which reduces to (1.8) in the case where T = R. Assume now that v is a positive solution of a second-order

linear dynamic equation

v∆
2

(t) + g(t)v(t) = 0.

It is not difficult to see that

1

v(t)

(
v(t)vσ(t)

(
x∆2

(t)

v(t)

)∆)∆

=
1

v(t)

(
v(t)vσ(t)

x∆3

(t)v(t) − x∆2

(t)v∆(t)

v(t)vσ(t)

)∆

=
1

v(t)
(x∆4

(t)v(t) + x∆3

(σ(t))v∆(t)− x∆3

(t)v∆(t)− x∆2

(σ(t))v∆
2

(t))

= x∆4

(t) +
(x∆3

(σ(t)) − x∆3

(t))v∆(t)

v(t)
−

x∆2

(σ(t))v∆
2

(t)

v(t)

= x∆4

(t) +
(x∆3

(t)− x∆3

(t) + µ(t)x∆4

(t))v∆(t)

v(t)
−

x∆2

(σ(t))v∆
2

(t)

v(t)

=

(
1 +

µ(t)v∆(t)

v(t)

)
x∆4

(t)−
x∆2

(σ(t))v∆
2

(t)

v(t)

=

(
1 +

µ(t)v∆(t)

v(t)

)
x∆4

(t) + g(t)x∆2

(σ(t)),

i.e.,

(
v(t)vσ(t)

(
x∆2

(t)

v(t)

)∆)∆

+ p(t)x(τ(t))

= v(t)

(
1 +

µ(t)v∆(t)

v(t)

)
x∆4

(t) + v(t)g(t)x∆2

(σ(t)) + p(t)x(τ(t))

= vσ(t)x∆4

(t) + v(t)g(t)x∆2

(σ(t)) + p(t)x(τ(t)).

Hence, (
v(t)vσ(t)

(
x∆2

(t)

v(t)

)∆)∆

+ p(t)x(τ(t)) = 0

and

x∆4

(t) +
v(t)g(t)

vσ(t)
x∆2

(σ(t)) +
p(t)

vσ(t)
x(τ(t)) = 0

are equivalent, where v is defined as the above statements, and so it is interesting to study (1.1).

So far, there are few results dealing with oscillatory behavior of solutions of fourth-order delay dynamic

equations on time scales. Therefore, the purpose of this paper is to derive some oscillation theorems

for (1.1). The organization of this paper is as follows: In Section 2, we present the basic definitions

and the theory of calculus on time scales. In Section 3, we establish some oscillation criteria for (1.1)

by employing Riccati technique. The results obtained improve Theorems 1.1–1.4 in the case T = R. In

Section 4, we provide some examples to illustrate the main results. In Section 5, we give some conclusions

for the sake of completeness.

In what follows, all occurring functional inequalities considered in this paper are assumed to hold

eventually, i.e., they are satisfied for all sufficiently large t.

2 Some preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Since we are interested

in oscillatory behavior, we suppose that the time scale under consideration is not bounded above and is
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a time scale interval of the form [t0,∞)T. On any time scale we define the forward and backward jump

operators by

σ(t) := inf{s ∈ T | s > t} and ρ(t) := sup{s ∈ T | s < t},

where inf ∅ := supT and sup ∅ := inf T, ∅ denotes the empty set. A point t ∈ T is said to be left-dense if

ρ(t) = t and t > inf T, right-dense if σ(t) = t and t < supT, left-scattered if ρ(t) < t, and right-scattered

if σ(t) > t. The graininess µ of the time scale is defined by µ(t) := σ(t)− t. A function f : T → R is said

to be rd-continuous if it is continuous at each right-dense point and if there exists a finite left limit in all

left-dense points. The set of rd-continuous functions f : T → R is denoted by Crd(T,R).

Fix t ∈ T and let f : T → R. Define f∆(t) to be the number (provided it exists) with the property

that given any ε > 0, there is a neighborhood U of t (i.e., U = (t− δ, t+ δ)∩T for some δ > 0) such that

|[f(σ(t)) − f(s)]− f∆(t)[σ(t) − s]| 6 ε|σ(t)− s| for all s ∈ U.

In this case, f∆(t) is called the (delta) derivative of f at t. f is said to be differentiable if its derivative

exists. The set of functions f : T → R that are differentiable and whose derivative is rd-continuous

function is denoted by C1
rd(T,R). The derivative and the shift operator σ are related by the formula

fσ(t) := f(σ(t)) = f(t) + µ(t)f∆(t).

Let f be a real-valued function defined on an interval [a, b]T := {t ∈ T : a 6 t 6 b}. Let f be a

differentiable function on [a, b]T. Then f is increasing, decreasing, nondecreasing, and nonincreasing on

[a, b]T if f∆(t) > 0, f∆(t) < 0, f∆(t) > 0, and f∆(t) 6 0 for all t ∈ [a, b)T := {t ∈ T : a 6 t < b},

respectively.

We will make use of the following product and quotient rules for the derivative of the product fg and

the quotient f/g (where g(t)g(σ(t)) 6= 0) of two differentiable functions f and g

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),
(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f, the Cauchy integral of f∆ is defined by
∫ b

a

f∆(t)∆t = f(b)− f(a).

The integration by parts formula reads
∫ b

a

f∆(t)g(t)∆t = f(b)g(b)− f(a)g(a)−

∫ b

a

fσ(t)g∆(t)∆t,

and infinite integrals are defined as
∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

3 Main results

In this section, we will present some sufficient conditions which ensure that (1.1) is oscillatory. We begin

with the following lemma.

Lemma 3.1. Assume x is an eventually positive solution to (1.1). If
∫ ∞

t0

∆t

a(t)
=

∫ ∞

t0

∆t

b(t)
=

∫ ∞

t0

∆t

c(t)
= ∞, (3.1)

then there are only the following two possible cases for t ∈ [t1,∞)T, where t1 ∈ [t0,∞)T sufficiently large

(1) x(t) > 0, x∆(t) > 0, (ax∆)∆(t) > 0, (b(ax∆)∆)∆(t) > 0, (c(b(ax∆)∆)∆)∆(t) < 0, or

(2) x(t) > 0, x∆(t) > 0, (ax∆)∆(t) < 0, (b(ax∆)∆)∆(t) > 0, (c(b(ax∆)∆)∆)∆(t) < 0.
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Proof. Let x be an eventually positive solution to (1.1). Then there exists a t1 ∈ [t0,∞)T such that

x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. From (1.1), we have

(c(b(ax∆)∆)∆)∆(t) = −p(t)x(τ(t)) < 0 for t ∈ [t1,∞)T. (3.2)

Thus, c(b(ax∆)∆)∆ is decreasing. Then x∆, (ax∆)∆, and (b(ax∆)∆)∆ are of constant sign eventually.

We claim that (b(ax∆)∆)∆ > 0. If not, there exist a constant M1 > 0 and t2 ∈ [t1,∞)T such that

(b(ax∆)∆)∆(t) 6 −
M1

c(t)
< 0 for t ∈ [t2,∞)T.

Thus, there exist a constant M2 > 0 and t3 ∈ [t2,∞)T such that

(ax∆)∆(t) 6 −
M2

b(t)
< 0 for t ∈ [t3,∞)T.

Hence, there exist a constant M3 > 0 and t4 ∈ [t3,∞)T such that

x∆(t) 6 −
M3

a(t)
< 0 for t ∈ [t4,∞)T,

which yields limt→∞ x(t) = −∞. This is a contradiction. If (ax∆)∆ < 0, then x∆ > 0 due to

∫ ∞

t0

∆t

a(t)
= ∞.

If (ax∆)∆ > 0, then x∆ > 0 due to (b(ax∆)∆)∆ > 0. This completes the proof.

Lemma 3.2. Assume x is a solution to (1.1) which satisfies Case (1) of Lemma 3.1. Then

(b(ax∆)∆)(t) > c(t)

∫ t

t1

∆s

c(s)
(b(ax∆)∆)∆(t). (3.3)

If there exist a function φ ∈ C1
rd([t0,∞)T, (0,∞)) and a t∗ ∈ [t1,∞)T such that

φ(t)

c(t)
∫ t

t1
∆s
c(s)

− φ∆(t) 6 0 for t ∈ [t∗,∞)T, (3.4)

then b(ax∆)∆/φ is a nonincreasing function on t ∈ [t∗,∞)T and

(ax∆)(t) >

(
b(t)

φ(t)

∫ t

t∗

φ(s)

b(s)
∆s

)
(ax∆)∆(t) for t ∈ [t∗,∞)T. (3.5)

Furthermore, if there exist a function ϕ ∈ C1
rd([t0,∞)T, (0,∞)) and a t∗∗ ∈ [t∗,∞)T such that

ϕ(t)
b(t)
φ(t)

∫ t

t∗

φ(s)
b(s)∆s

− ϕ∆(t) 6 0 for t ∈ [t∗∗,∞)T, (3.6)

then ax∆/ϕ is a nonincreasing function on t ∈ [t∗∗,∞)T and

x(t) >

(
a(t)

ϕ(t)

∫ t

t∗∗

ϕ(s)

a(s)
∆s

)
x∆(t) for t ∈ [t∗∗,∞)T. (3.7)

Suppose also that there exist a function δ ∈ C1
rd([t0,∞)T, (0,∞)) and a t∗∗∗ ∈ [t∗∗,∞)T such that

δ(t)
a(t)
ϕ(t)

∫ t

t∗∗

ϕ(s)
a(s)∆s

− δ∆(t) 6 0 for t ∈ [t∗∗∗,∞)T. (3.8)

Then x/δ is a nonincreasing function on t ∈ [t∗∗∗,∞)T.
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Proof. From (ax∆)∆ > 0 and (c(b(ax∆)∆)∆)∆ < 0, we have

(b(ax∆)∆)(t) = (b(ax∆)∆)(t1) +

∫ t

t1

c(s)(b(ax∆)∆)∆(s)

c(s)
∆s > c(t)

∫ t

t1

∆s

c(s)
(b(ax∆)∆)∆(t).

Thus,

(
b(ax∆)∆

φ

)∆

(t) =
(b(ax∆)∆)∆(t)φ(t) − (b(ax∆)∆)(t)φ∆(t)

φ(t)φσ(t)

6
(b(ax∆)∆)(t)

φ(t)φσ(t)

(
φ(t)

c(t)
∫ t

t1
∆s
c(s)

− φ∆(t)

)
6 0.

Therefore, b(ax∆)∆/φ is a nonincreasing function on [t∗,∞)T. Then, we obtain

(ax∆)(t) = (ax∆)(t∗) +

∫ t

t∗

b(s)(ax∆)∆(s)

φ(s)

φ(s)

b(s)
∆s >

(
b(t)

φ(t)

∫ t

t∗

φ(s)

b(s)
∆s

)
(ax∆)∆(t).

Hence,

(
ax∆

ϕ

)∆

(t) =
(ax∆)∆(t)ϕ(t) − (ax∆)(t)ϕ∆(t)

ϕ(t)ϕσ(t)
6

(ax∆)(t)

ϕ(t)ϕσ(t)

(
ϕ(t)

b(t)
φ(t)

∫ t

t∗

φ(s)
b(s)∆s

− ϕ∆(t)

)
6 0.

Thus ax∆/ϕ is a nonincreasing function on [t∗∗,∞)T. So we have

x(t) = x(t∗∗) +

∫ t

t∗∗

a(s)x∆(s)

ϕ(s)

ϕ(s)

a(s)
∆s >

(
a(t)

ϕ(t)

∫ t

t∗∗

ϕ(s)

a(s)
∆s

)
x∆(t).

Then

(
x

δ

)∆

(t) =
x∆(t)δ(t)− x(t)δ∆(t)

δ(t)δσ(t)
6

x(t)

δ(t)δσ(t)

(
δ(t)

a(t)
ϕ(t)

∫ t

t∗∗

ϕ(s)
a(s)∆s

− δ∆(t)

)
6 0.

So x/δ is a nonincreasing function on [t∗∗∗,∞)T. The proof is complete.

Remark 3.3. The functions φ, ϕ, and δ are existent, e.g., by letting

φ(t) :=

∫ t

t1

∆s

c(s)
, ϕ(t) :=

∫ t

t∗

φ(s)

b(s)
∆s and δ(t) :=

∫ t

t∗∗

ϕ(s)

a(s)
∆s.

In the following, we give the main results. For simplification, we use the notation

(α∆(t))+ := max{0, α∆(t)} and (β∆(t))+ := max{0, β∆(t)}.

Theorem 3.4. Let (3.1) hold. Assume there exists a positive function α ∈ C1
rd([t0,∞)T,R) such that

for all sufficiently large t1 ∈ [t0,∞)T, for some t∗ ∈ [t1,∞)T, t∗∗ ∈ [t∗,∞)T, and t4 ∈ [t∗∗,∞)T,

lim sup
t→∞

∫ t

t4

[
ασ(s)p(s)f(s, t∗, t∗∗)−

c(s)φσ(s)((α∆(s))+)
2

4ασ(s)φ(s)

]
∆s = ∞, (3.9)

where φ and ϕ are defined as in Lemma 3.2, and

f(t, t∗, t∗∗) :=
1

φσ(t)ϕ(τ(t))

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s

∫ τ(t)

t∗

φ(s)

b(s)
∆s.

If there exist positive functions β, ς ∈ C1
rd([t0,∞)T,R) such that

ς(t)

a(t)
∫ t

t1
∆s
a(s)

− ς∆(t) 6 0 for all t large enough, (3.10)
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and for some t2 ∈ [t1,∞)T,

lim sup
t→∞

∫ t

t2

[
βσ(ξ)

ς(ξ)

ς(σ(ξ))

1

b(ξ)
g(ξ)−

a(ξ)ς(σ(ξ))((β∆(ξ))+)
2

4βσ(ξ)ς(ξ)

]
∆ξ = ∞, (3.11)

where

g(ξ) :=

∫ ∞

ξ

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s,

then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume without loss of

generality that there exists a t1 ∈ [t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding

as in the proof of Lemma 3.1, we get (3.2) and then x satisfies either Case (1) or Case (2).

Assume Case (1) holds. Define the function ω by

ω(t) := α(t)
(c(b(ax∆)∆)∆)(t)

(b(ax∆)∆)(t)
for t ∈ [t1,∞)T. (3.12)

Then ω(t) > 0 for t ∈ [t1,∞)T and

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

(b(ax∆)∆)(t)
+ ασ(t)

(
c(b(ax∆)∆)∆

b(ax∆)∆

)∆

(t),

which implies that

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

(b(ax∆)∆)(t)
+ ασ(t)

(c(b(ax∆)∆)∆)∆(t)

(b(ax∆)∆)σ(t)

− ασ(t)
(c(b(ax∆)∆)∆)(t)(b(ax∆)∆)∆(t)

(b(ax∆)∆)σ(t)(b(ax∆)∆)(t)
. (3.13)

Since b(ax∆)∆/φ is a nonincreasing function on t ∈ [t∗,∞)T, we have

(b(ax∆)∆)σ(t) 6
φσ(t)

φ(t)
(b(ax∆)∆)(t). (3.14)

It follows from Lemma 3.2 that

x(τ(t))

(b(ax∆)∆)σ(t)
=

1

bσ(t)

x(τ(t))

x∆(τ(t))

x∆(τ(t))

(ax∆)∆(τ(t))

(ax∆)∆(τ(t))

((ax∆)∆)σ(t)

>
1

bσ(t)

(
a(τ(t))

ϕ(τ(t))

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s

)
1

a(τ(t))

×

(
b(τ(t))

φ(τ(t))

∫ τ(t)

t∗

φ(s)

b(s)
∆s

)
φ(τ(t))bσ(t)

φσ(t)b(τ(t))

=
1

ϕ(τ(t))φσ(t)

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s

∫ τ(t)

t∗

φ(s)

b(s)
∆s. (3.15)

Hence by (3.2) and (3.12)–(3.15), we obtain

ω∆(t) 6 −ασ(t)p(t)f(t, t∗, t∗∗) +
(α∆(t))+

α(t)
ω(t)−

1

c(t)

ασ(t)

α2(t)

φ(t)

φσ(t)
ω2(t).

Thus,

ω∆(t) 6 −ασ(t)p(t)f(t, t∗, t∗∗) +
c(t)φσ(t)((α∆(t))+)

2

4ασ(t)φ(t)
.

Integrating the above inequality from t4 (t4 ∈ [t∗∗,∞)T) to t, we get

∫ t

t4

[
ασ(s)p(s)f(s, t∗, t∗∗)−

c(s)φσ(s)((α∆(s))+)
2

4ασ(s)φ(s)

]
∆s 6 ω(t4)− ω(t) 6 ω(t4),
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which contradicts (3.9).

Assume Case (2) holds. Define the function ν by

ν(t) := β(t)
(ax∆)(t)

x(t)
for t ∈ [t1,∞)T. (3.16)

Then ν(t) > 0 for t ∈ [t1,∞)T and

ν∆(t) = β∆(t)
(ax∆)(t)

x(t)
+ βσ(t)

(ax∆)∆(t)

x(σ(t))
− βσ(t)

(ax∆)(t)x∆(t)

x(t)x(σ(t))
. (3.17)

Hence by (3.16) and (3.17), we have

ν∆(t) =
β∆(t)

β(t)
ν(t) + βσ(t)

(ax∆)∆(t)

x(σ(t))
−

1

a(t)

βσ(t)

β2(t)

x(t)

x(σ(t))
ν2(t). (3.18)

Since x(t) > 0 and (ax∆)∆(t) < 0, we obtain

x(t) = x(t1) +

∫ t

t1

a(s)x∆(s)

a(s)
∆s >

(
a(t)

∫ t

t1

∆s

a(s)

)
x∆(t).

Thus,

(
x

ς

)∆

(t) =
x∆(t)ς(t) − x(t)ς∆(t)

ς(t)ςσ(t)
6

x(t)

ς(t)ςσ(t)

(
ς(t)

a(t)
∫ t

t1
∆s
a(s)

− ς∆(t)

)
6 0.

Hence, x/ς is nonincreasing eventually and

x(t)

x(σ(t))
>

ς(t)

ς(σ(t))
,

x(τ(t))

x(t)
>

ς(τ(t))

ς(t)
. (3.19)

Hence by (3.18) and (3.19), we see that

ν∆(t) 6
β∆(t)

β(t)
ν(t) + βσ(t)

(ax∆)∆(t)

x(σ(t))
−

1

a(t)

ς(t)

ς(σ(t))

βσ(t)

β2(t)
ν2(t). (3.20)

On the other hand, by (1.1), we get

(c(b(ax∆)∆)∆)(z)− (c(b(ax∆)∆)∆)(t) +

∫ z

t

p(s)x(τ(s))∆s = 0.

It follows from x∆(t) > 0 and (3.19) that

(c(b(ax∆)∆)∆)(z)− (c(b(ax∆)∆)∆)(t) + x(t)

∫ z

t

p(s)
ς(τ(s))

ς(s)
∆s 6 0.

Letting z → ∞ in the above inequality, we obtain

−(c(b(ax∆)∆)∆)(t) + x(t)

∫ ∞

t

p(s)
ς(τ(s))

ς(s)
∆s 6 0

due to limz→∞(c(b(ax∆)∆)∆)(z) = l1 > 0, i.e.,

(b(ax∆)∆)∆(t) > x(t)

[
1

c(t)

∫ ∞

t

p(s)
ς(τ(s))

ς(s)
∆s

]
.

Therefore,

−(b(ax∆)∆)(z) + (b(ax∆)∆)(t) + x(t)

∫ z

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s 6 0.
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Letting z → ∞ in the latter inequality, from limz→∞ −(b(ax∆)∆)(z) = l2 > 0, we have

(ax∆)∆(t) + x(t)
1

b(t)

∫ ∞

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s 6 0.

Thus, by (3.19), we get

(ax∆)∆(t)

x(σ(t))
6 −

x(t)

x(σ(t))

1

b(t)

∫ ∞

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s

6 −
ς(t)

ς(σ(t))

1

b(t)

∫ ∞

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s. (3.21)

Substituting (3.21) into (3.20), we obtain

ν∆(t) 6 −βσ(t)
ς(t)

ς(σ(t))

1

b(t)

∫ ∞

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s

+
(β∆(t))+

β(t)
ν(t)−

1

a(t)

ς(t)

ς(σ(t))

βσ(t)

β2(t)
ν2(t),

which yields

ν∆(t) 6 −βσ(t)
ς(t)

ς(σ(t))

1

b(t)

∫ ∞

t

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s+

a(t)ς(σ(t))((β∆(t))+)
2

4βσ(t)ς(t)
.

Integrating the above inequality from t2 (t2 ∈ [t1,∞)T) to t, we have

∫ t

t2

{
βσ(ξ)

ς(ξ)

ς(σ(ξ))

1

b(ξ)

∫ ∞

ξ

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s−

a(ξ)ς(σ(ξ))((β∆(ξ))+)
2

4βσ(ξ)ς(ξ)

}
∆ξ

6 ν(t2)− ν(t) 6 ν(t2),

which contradicts (3.11). The proof is complete.

Remark 3.5. The function ς is existent, e.g., by letting ς(t) :=
∫ t

t1
∆s
a(s) .

Motivated by Theorem 3.4, we can obtain the following result.

Theorem 3.6. Let (3.1) hold. Assume for all sufficiently large t1 ∈ [t0,∞)T, for some t∗ ∈ [t1,∞)T,

and t∗∗ ∈ [t∗,∞)T, the second-order dynamic equation

(c(t)u∆(t))∆ + p(t)f(t, t∗, t∗∗)u
σ(t) = 0 (3.22)

is oscillatory, where φ and ϕ are defined as in Lemma 3.2 and f is as in Theorem 3.4. If there exists a

positive function ς ∈ C1
rd([t0,∞)T,R) such that (3.10) holds and the second-order dynamic equation

(a(t)u∆(t))∆ +
ς(t)

ς(σ(t))

g(t)

b(t)
uσ(t) = 0 (3.23)

is oscillatory, where g is defined as in Theorem 3.4, then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume without loss of

generality that there exists a t1 ∈ [t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding

as in the proof of Lemma 3.1, we get (3.2) and then x satisfies either Case (1) or Case (2).

Assume Case (1) holds. From the proof of Theorem 3.4, we obtain (3.15). Define the function ω by

ω(t) :=
(c(b(ax∆)∆)∆)(t)

(b(ax∆)∆)(t)
for t ∈ [t1,∞)T. (3.24)

Then ω(t) > 0 for t ∈ [t1,∞)T and

ω∆(t) = −
p(t)x(τ(t))

(b(ax∆)∆)σ(t)
−

(c(b(ax∆)∆)∆)(t)(b(ax∆)∆)∆(t)

(b(ax∆)∆)σ(t)(b(ax∆)∆)(t)
(3.25)
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due to (3.2). Hence by (3.15), (3.24), and (3.25), we obtain

ω∆(t) + p(t)f(t, t∗, t∗∗) +
ω2(t)

c(t) + µ(t)ω(t)
6 0.

It follows from a result of [12] that (3.22) is nonoscillatory for t large enough.

Assume Case (2) holds. From the proof of Theorem 3.4, we obtain (3.21). Define the function ν by

ν(t) :=
(ax∆)(t)

x(t)
for t ∈ [t1,∞)T. (3.26)

Then ν(t) > 0 for t ∈ [t1,∞)T and

ν∆(t) =
(ax∆)∆(t)

x(σ(t))
−

(ax∆)(t)x∆(t)

x(t)x(σ(t))
. (3.27)

Hence by (3.21), (3.26), and (3.27), we have

ν∆(t) +
ς(t)

ς(σ(t))

1

b(t)
g(t) +

ν2(t)

a(t) + µ(t)ν(t)
6 0.

It follows from a result of [12] that (3.23) is nonoscillatory for t large enough. The proof is complete.

Remark 3.7. Theorem 3.6 provides a comparison criterion for oscillation of (1.1). One can use some

known results in Theorem 3.6 to obtain various classes of oscillation criteria for (1.1). For example, one

can easily establish Hille and Nehari type criteria for (1.1) when using the results reported in [32]. The

details are left to the reader.

In what follows, we show that assumption (3.9) can be replaced with other conditions by defining

Riccati substitutions which differ from (3.12).

Theorem 3.8. Let (3.1) hold. Assume there exists a positive function α ∈ C1
rd([t0,∞)T,R) such that

for all sufficiently large t1 ∈ [t0,∞)T, for some t∗ ∈ [t1,∞)T, t∗∗ ∈ [t∗,∞)T, and t4 ∈ [t∗∗,∞)T,

lim sup
t→∞

∫ t

t4

[
ασ(s)p(s)F (s, t∗, t∗∗)−

b(s)ϕσ(s)((α∆(s))+)
2

4
∫ s

t1
∆u
c(u)α

σ(s)ϕ(s)

]
∆s = ∞, (3.28)

where φ and ϕ are defined as in Lemma 3.2, and

F (t, t∗, t∗∗) :=
1

ϕσ(t)

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s.

If there exist positive functions β, ς ∈ C1
rd([t0,∞)T,R) such that (3.10) and (3.11) hold for some t2 ∈

[t1,∞)T, where g is defined as in Theorem 3.4, then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume without loss of

generality that there exists a t1 ∈ [t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding

as in the proof of Lemma 3.1, we get (3.2) and then x satisfies either Case (1) or Case (2).

Assume Case (1) holds. Define the function ω by

ω(t) := α(t)
(c(b(ax∆)∆)∆)(t)

(ax∆)(t)
for t ∈ [t1,∞)T. (3.29)

Then ω(t) > 0 for t ∈ [t1,∞)T and

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

(ax∆)(t)
+ ασ(t)

(
c(b(ax∆)∆)∆

ax∆

)∆

(t),

which implies that

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

(ax∆)(t)
+ ασ(t)

(c(b(ax∆)∆)∆)∆(t)

(ax∆)σ(t)
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− ασ(t)
(c(b(ax∆)∆)∆)(t)(ax∆)∆(t)

(ax∆)σ(t)(ax∆)(t)
. (3.30)

By Lemma 3.2, we have

(ax∆)∆(t) >

∫ t

t1
∆s
c(s)

b(t)
(c(b(ax∆)∆)∆)(t),

(ax∆)σ(t)

(ax∆)(t)
6

ϕσ(t)

ϕ(t)
, (3.31)

and

x(τ(t))

(ax∆)σ(t)
=

1

aσ(t)

x(τ(t))

x∆(τ(t))

x∆(τ(t))

x∆(σ(t))

>
1

aσ(t)

(
a(τ(t))

ϕ(τ(t))

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s

)
ϕ(τ(t))

ϕσ(t)

aσ(t)

a(τ(t))

=
1

ϕσ(t)

∫ τ(t)

t∗∗

ϕ(s)

a(s)
∆s. (3.32)

Hence by (3.2) and (3.29)–(3.32), we obtain

ω∆(t) 6 −ασ(t)p(t)F (t, t∗, t∗∗) +
(α∆(t))+

α(t)
ω(t)−

∫ t

t1
∆s
c(s)

b(t)

ασ(t)

α2(t)

ϕ(t)

ϕσ(t)
ω2(t).

Thus,

ω∆(t) 6 −ασ(t)p(t)F (t, t∗, t∗∗) +
b(t)ϕσ(t)((α∆(t))+)

2

4
∫ t

t1
∆s
c(s)α

σ(t)ϕ(t)
.

Integrating the above inequality from t4 (t4 ∈ [t∗∗,∞)T) to t, we have

∫ t

t4

[
ασ(s)p(s)F (s, t∗, t∗∗)−

b(s)ϕσ(s)((α∆(s))+)
2

4
∫ s

t1
∆u
c(u)α

σ(s)ϕ(s)

]
∆s 6 ω(t4)− ω(t) 6 ω(t4),

which contradicts (3.28).

The proof of Case (2) is the same as that of Theorem 3.4, and hence is omitted. This completes

the proof.

Theorem 3.9. Let (3.1) hold. Assume there exists a positive function α ∈ C1
rd([t0,∞)T,R) such that

for all sufficiently large t1 ∈ [t0,∞)T, for some t∗ ∈ [t1,∞)T, t∗∗ ∈ [t∗,∞)T, and t4 ∈ [t∗∗,∞)T,

lim sup
t→∞

∫ t

t4

[
ασ(s)p(s)

δ(τ(s))

δσ(s)
−

δσ(s)((α∆(s))+)
2

4G(s, t1, t∗)ασ(s)δ(s)

]
∆s = ∞, (3.33)

where φ and ϕ are defined as in Lemma 3.2, and

G(t, t1, t∗) :=

∫ t

t1
∆s
c(s)

a(t)φ(t)

∫ t

t∗

φ(s)

b(s)
∆s.

If there exist positive functions β, ς ∈ C1
rd([t0,∞)T,R) such that (3.10) and (3.11) hold for some t2 ∈

[t1,∞)T, where g is defined as in Theorem 3.4, then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume without loss of

generality that there exists a t1 ∈ [t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding

as in the proof of Lemma 3.1, we get (3.2) and then x satisfies either Case (1) or Case (2).

Assume Case (1) holds. Define the function ω by

ω(t) := α(t)
(c(b(ax∆)∆)∆)(t)

x(t)
for t ∈ [t1,∞)T. (3.34)
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Then ω(t) > 0 for t ∈ [t1,∞)T and

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

x(t)
+ ασ(t)

(
c(b(ax∆)∆)∆

x

)∆

(t),

which yields

ω∆(t) = α∆(t)
(c(b(ax∆)∆)∆)(t)

x(t)
+ ασ(t)

(c(b(ax∆)∆)∆)∆(t)

xσ(t)

− ασ(t)
(c(b(ax∆)∆)∆)(t)x∆(t)

xσ(t)x(t)
. (3.35)

By Lemma 3.2, we have

x∆(t) >
1

a(t)

(
b(t)

φ(t)

∫ t

t∗

φ(s)

b(s)
∆s

)∫ t

t1
∆s
c(s)

b(t)
(c(b(ax∆)∆)∆)(t) (3.36)

and
x(τ(t))

xσ(t)
>

δ(τ(t))

δσ(t)
,

x(t)

xσ(t)
>

δ(t)

δσ(t)
. (3.37)

Hence by (3.2) and (3.34)–(3.37), we obtain

ω∆(t) 6 −ασ(t)p(t)
δ(τ(t))

δσ(t)
+

(α∆(t))+
α(t)

ω(t)−G(t, t1, t∗)
ασ(t)

α2(t)

δ(t)

δσ(t)
ω2(t).

Thus,

ω∆(t) 6 −ασ(t)p(t)
δ(τ(t))

δσ(t)
+

δσ(t)((α∆(t))+)
2

4G(t, t1, t∗)ασ(t)δ(t)
.

Integrating the above inequality from t4 (t4 ∈ [t∗∗,∞)T) to t, we get

∫ t

t4

[
ασ(s)p(s)

δ(τ(s))

δσ(s)
−

δσ(s)((α∆(s))+)
2

4G(s, t1, t∗)ασ(s)δ(s)

]
∆s 6 ω(t4)− ω(t) 6 ω(t4),

which contradicts (3.33).

The proof of Case (2) is the same as that of Theorem 3.4, and hence is omitted. This completes

the proof.

Remark 3.10. Condition (3.11) can be replaced by

∫ ∞

t0

p(v)
ς(τ(v))

ς(v)
∆v = ∞, or g(t0) = ∞.

4 Examples and discussion

In the following, we present some examples to show applications of the main results in the previous

section.

Example 4.1. For t > 1, consider a fourth-order delay differential equation

(
1

t

(
1

t

(
1

t
x′(t)

)′)′)′
+

λ

t6
x

(
t

2

)
= 0, (4.1)

where λ > 0 is a constant, a(t) = b(t) = c(t) = 1/t, p(t) = λ/t6, and τ(t) = t/2. Set φ(t) =
∫ t

t1
sds

= (t2− t1
2)/2, ϕ(t) =

∫ t

t∗
s(s2− t1

2)/2ds = t4/8− t∗
4/8− t2t1

2/4+ t1
2t∗

2/4, ς(t) =
∫ t

t1
sds = (t2− t1

2)/2,

α(t) = t, and β(t) = t. Then
t2

3
6 φ(t) 6

t2

2
,

t4

9
6 ϕ(t) 6

t4

8
,
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and

f(t, t∗, t∗∗) :=
1

φσ(t)ϕ(τ(t))

∫ τ(t)

t∗∗

ϕ(s)

a(s)
ds

∫ τ(t)

t∗

φ(s)

b(s)
ds >

t4

2600
,

for t large enough. Thus, (3.9) and (3.11) hold. Using Theorem 3.4, (4.1) is oscillatory.

Example 4.2. For t > 1, consider a fourth-order differential equation (1.6), where q0 > 0 is a constant,

a(t) = b(t) = c(t) = 1, p(t) = q0/t
4, and τ(t) = t. Set

φ(t) = ς(t) =

∫ t

t1

ds, ϕ(t) =

∫ t

t∗

φ(s)ds, α(t) = t and β(t) = t.

Then, for every k ∈ (0, 1),

kt 6 φ(t) 6 t,
k2t2

2
6 ϕ(t) 6

t2

2
,

and

f(t, t∗, t∗∗) :=
1

φσ(t)ϕ(τ(t))

∫ τ(t)

t∗∗

ϕ(s)

a(s)
ds

∫ τ(t)

t∗

φ(s)

b(s)
ds >

k5

6
t2,

for t large enough. Thus, (3.9) and (3.11) are satisfied if q0 > 3/(2k5). Using Theorem 3.4, (1.6) is

oscillatory when q0 > 3/(2k0
5) for some constant k0 ∈ (0, 1). For example, one can take q0 > 5/3 (let

k0 = (9/10)1/5). This result shows that Theorem 3.4 improves Theorems 1.1–1.4 in the case where T = R;

see the details in Section 1. It is well known (see [28, Theorem 2.15]) that (1.6) is oscillatory if q0 > 1.

How to extend this sharp criterion to fourth-order dynamic equations on time scales remains open at the

moment.

Example 4.3. For t > 1, consider a fourth-order delay differential equation (1.7), where q0 > 0 is a

constant. Similar to the statement of Example 4.2, one can find that (1.7) is oscillatory if q0 > 12/k50 for

some constant k0 ∈ (0, 1). For example, one can take q0 > 13 (let k0 = (12/13)1/5).

Example 4.4. For t ∈ [1,∞)T, consider a fourth-order delay dynamic equation

x∆4

(t) + p(t)x(τ(t)) = 0 (4.2)

with

p(t) >
γ

t
∫ τ(t)

t∗∗

∫ u

t∗
(s− t1)∆s∆u

eventually, where t∗∗ ∈ [t∗,∞)T ⊆ [t1,∞)T ⊆ [1,∞)T, γ > 0 is a constant. We assume there exists a

constant k0 > 1 such that σ(t) 6 k0t. Let

a(t) = b(t) = c(t) = 1, φ(t) = t− t1, ϕ(t) =

∫ t

t∗

(s− t1)∆s, ς(t) = t− t1 and α(t) = β(t) = t.

Then, for each constant k1 ∈ (0, 1),

lim sup
t→∞

∫ t

t4

[
ασ(s)p(s)f(s, t∗, t∗∗)−

c(s)φσ(s)((α∆(s))+)
2

4ασ(s)φ(s)

]
∆s

> lim sup
t→∞

∫ t

t4

[
γ

s
−

σ(s)− t1
4σ(s)(s− t1)

]
∆s > lim sup

t→∞

∫ t

t4

[
γ

s
−

1

4(s− t1)

]
∆s

>

[
γ −

1

4k1

]
lim sup
t→∞

∫ t

t4

∆s

s
= ∞, if γ > 1/(4k1),

and, for each constant k2 ∈ (0, 1),

g(ξ) =

∫ ∞

ξ

[
1

c(s)

∫ ∞

s

p(v)
ς(τ(v))

ς(v)
∆v

]
∆s

>

∫ ∞

ξ

∫ ∞

s

γ

v
∫ τ(v)

t∗∗

∫ u

t∗
(s− t1)∆s∆u

τ(v) − t1
v − t1

∆v∆s
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> γk2

∫ ∞

ξ

∫ ∞

s

1

v
∫ τ(v)

t∗∗

∫ u

t∗
(s− t1)∆s∆u

τ(v)

v
∆v∆s

> γk2

∫ ∞

ξ

∫ ∞

s

1

v
∫ τ(v)

t∗∗

∫ u

t∗
s∆s∆u

τ(v)

v
∆v∆s

> 6γk2

∫ ∞

ξ

∫ ∞

s

v−4∆v∆s >
6γk2

(1 + k0 + k0
2)(1 + k0)

1

ξ2
,

and hence, for each constant k3 ∈ (0, 1) and for each constant k4 ∈ (0, 1),

lim sup
t→∞

∫ t

t2

[
βσ(ξ)

ς(ξ)

ς(σ(ξ))

1

b(ξ)
g(ξ)−

a(ξ)ς(σ(ξ))((β∆(ξ))+)
2

4βσ(ξ)ς(ξ)

]
∆ξ

> lim sup
t→∞

∫ t

t2

[
6γk2

(1 + k0 + k0
2)(1 + k0)

σ(ξ)
ξ − t1

σ(ξ) − t1

1

ξ2
−

σ(ξ) − t1
4σ(ξ)(ξ − t1)

]
∆ξ

>

[
6γk2k3

(1 + k0 + k0
2)(1 + k0)

−
1

4k4

]
lim sup
t→∞

∫ t

t2

∆ξ

ξ
= ∞,

if

γ >
(1 + k0 + k0

2)(1 + k0)

24k2k3k4
.

Therefore, we have by Theorem 3.4 that (4.2) is oscillatory when

γ > max

{
1

4k1
,
(1 + k0 + k0

2)(1 + k0)

24k2k3k4

}
,

for some constants k1, k2, k3, k4 ∈ (0, 1). For example, one can take

γ > max

{
5

18
,
5(1 + k0 + k0

2)(1 + k0)

108

}

(let k1 = 9/10 and k2 = k3 = k4 = (9/10)1/3).

5 Conclusions

In this paper, we suggest some classes of oscillation results for a generalized fourth-order delay dynamic

equation (1.1) with a canonical form (3.1). With the help of the methods given in this paper, one can

derive some Philos-type oscillation criteria for (1.1). The details are left to the reader.

Three examples provided are differential equations and a direct comparison is made between the re-

sults obtained for these examples and the conditions contained in the existing literature; see, for example,

Example 4.3 shows that the true constant for the separation of types of solutions (oscillatory and nonoscil-

latory) of fourth-order equation (1.7) is smaller than those presented in [16, 21–23,27, 36, 38, 39].

On one hand, results reported in this paper can be applied to fourth-order dynamic equations with

delayed arguments. On the other hand, we point out that, contrary to [1, 18–20, 35, 37], we do not

need impose restrictive assumptions on the coefficients a, b and c in our oscillation theorems which,

in certain sense, is a significant improvement compared to the results in the cited papers. Note that

Theorems 1.1–1.4 cannot be applied to (4.2) due to the effect of the delayed argument τ . The methods

used in this paper are different from those reported in [1,18–20,35,37]. From the results on oscillation of

fourth-order Euler differential equation (1.6) (see Example 4.2 and the details introduced in Section 1),

one can see that this paper provides an improved universal method for the study of oscillatory properties

of fourth-order dynamic equations on a time scale.
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