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We obtain some oscillation criteria for solutions to the second-order half-linear
dynamic equation

aðxDÞa� �DðtÞ þ qðtÞxaðtÞ ¼ 0;

when
Ð1

a21=aðsÞDs ¼ 1 or
Ð1

a21=aðsÞDs , 1. These criteria unify and extend
known criteria for corresponding half-linear differential and difference equations.
Some of our results are new even in the continuous and the discrete cases.
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1. Introduction

Consider the second-order half-linear dynamic equation

aðxDÞa� �DðtÞ þ qðtÞxaðtÞ ¼ 0; ð1:1Þ

where a and q are real-valued, positive and rd-continuous functions on a time scale T , R

with supT ¼ 1 and a $ 1 is the ratio of two positive odd integers.

For completeness, we recall the following concepts related to the notion of time scales.

A time scale T is an arbitrary nonempty closed subset of the real numbers R, and since

oscillation of solutions is our primary concern, we make the assumption that supT ¼ 1.

We assume throughout that T has the topology that it inherits from the standard topology

on the real numbers R. The forward and backward jump operators are defined by

s ðtÞ ¼ inf{s [ T : s . t} and rðtÞ ¼ sup{s [ T : s , t};

where inf Y ¼ supT and sup Y ¼ infT and Y denotes the empty set. A point t [ T, t

. infT is said to be left-dense if r(t) ¼ t, right-dense if t , supT and s(t) ¼ t, left-

scattered if r (t) , t and right-scattered if s (t) . t. A function g :T ! R is said to be rd-

continuous provided g is continuous at right-dense points and at left-dense points in T,

left-hand limits exist and are finite. The graininess function m for a time scale T is defined
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by mðtÞ ¼ sðtÞ2 t, and for any function f :T ! R, the notation f s denotes the

composition f +s.
We recall that a solution of equation (1.1) is said to be oscillatory on [t0,1) in case it is

neither eventually positive nor eventually negative. Otherwise, the solution is said to be

nonoscillatory. Equation (1.1) is said to be oscillatory in case all of its solutions are

oscillatory. Since a(t) . 0, we shall consider both the cases

ð1
t0

a21=aðsÞDs ¼ 1; ð1:2Þ

and ð1
t0

a21=aðsÞDs , 1: ð1:3Þ

The purpose of this paper is to obtain some time scale analogues of the results for the

continuous case T ¼ R and the discrete case T ¼ Z due to Agarwal et al. [5,6]. For related

results in the continuous and the discrete cases, see Refs. [1,2,4,7] and in the time scales

case [3,8,11–14].

2. Preliminary results

For a function f :T ! R, the (delta) derivative f D(t) at t [ T is defined to be the number

(if it exists) such that for all 1 . 0 there is a neighborhood U of t with

j f ðsðtÞÞ2 f ðsÞ2 f DðtÞðsðtÞ2 sÞj # 1jsðtÞ2 sj for all s [ U:

If the (delta) derivative f D(t) exists for all t [ T, then we say that f is (delta) differentiable on

T.

We will make use of the product and quotient rules [9, Theorem 1.20] for the

derivative of the product fg and the quotient f/g (where gg s – 0) of two (delta)

differentiable functions f and g

ðfgÞD ¼ f Dgþ f sgD ¼ fgD þ f D gs;
f

g

� �D

¼ f D g2 fgD

ggs
; ð2:1Þ

as well as of the chain rule [9, Theorem 1.90] for the derivative of the composite function

f + g for a continuously differentiable function f : R ! R and a (delta) differentiable

function g :T ! R

ðf + gÞD ¼
ð1
0

f 0ðgþ hmgDÞdh
� �

gD: ð2:2Þ

For b, c [ T and a differentiable function f, the Cauchy integral of f D is defined by

ðc
b

f DðtÞDt ¼ f ðcÞ2 f ðbÞ;
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and infinite integrals are defined asð1
b

f ðtÞDt ¼ lim
c!1

ðc
b

f ðtÞDt:

Note that in the case T ¼ R, we have

sðtÞ ¼ rðtÞ ¼ t; mðtÞ ¼ 0; f DðtÞ ¼ f 0ðtÞ;
ðc
b

f ðtÞDt ¼
ðc
b

f ðtÞdt;
and in the case T ¼ Z, we have

sðtÞ ¼ t þ 1; rðtÞ ¼ t2 1; mðtÞ ¼ 1; f DðtÞ ¼ Df ðtÞ ¼ f ðt þ 1Þ2 f ðtÞ;
and (if b , c)

ðc
b

f ðtÞDt ¼
Xc21

t¼ b

f ðtÞ:

For more discussion on time scales, we refer to Refs. [9,10,16].

Finally, we recall the following lemma from Ref. [15] which will be needed for the

proof of one of the results in the next section.

Lemma 2.1. If X and Y are nonnegative and g . 1, then

X g 2 gXY g21 þ ðg2 1ÞY g $ 0;

where equality holds if and only if X ¼ Y.

3. Main results

The following result is concerned with the oscillation of equation (1.1) when condition

(1.3) holds.

Theorem 3.1. Let condition (1.3) hold. If there exists a positive nondecreasing delta

differentiable function j such that for every t1 [ ½t0;1ÞT

lim sup
t!1

ðt
t1

½jðsÞqðsÞ2 haðsÞjDðsÞ�Ds ¼ 1 ð3:1Þ

and

ð1
t1

1

aðsÞ
ðs
t1

uaðuÞqðuÞDu
� �1=a

Ds ¼ 1; ð3:2Þ

where

hðtÞ ¼
ðt
t1

a21=aðsÞDs
� �21

and uðtÞ ¼
ð1
t

a21=aðsÞDs; ð3:3Þ

then equation (1.1) is oscillatory.
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Proof. Suppose to the contrary that x is a nonoscillatory solution of equation (1.1) on [t0,

1)T. It suffices to discuss the case that x is eventually positive (as2x also solves (1.1) if x

does), say x(t) . 0 for t $ t1 $ t0. Since aðxDÞa is decreasing, it is eventually of one sign

and hence x D is eventually of one sign. Thus, we shall distinguish the following two cases:

(I) x D(t) . 0 for t . t1; and

(II) x D(t) , 0 for t . t1.

Case (I). We first note that in this case (2.2) implies

ðxaÞD ¼ axD
ð1
0

ðxþ hmxDÞa21dh . 0 on ½t1;1ÞT;

and hence x a is increasing on [t1,1)T. Now, let

w :¼ jaðxDÞa
xa

on ½t1;1ÞT:

Then, on [t1,1)T we have by (2.1) that

wD ¼ j

xa

� �D

aðxDÞa� �sþ j

xa
aðxDÞa� �D

¼ 2jqþ aðxDÞa� �s jDxa 2 jðxaÞD
xaðxsÞa

� �

¼ 2jqþ jD aðxDÞa� �s
ðxsÞa 2

jðxaÞD aðxDÞa� �s
xaðxsÞa ð3:4Þ

# 2jqþ jD aðxDÞa� �s
ðxsÞa # 2jqþ jDaðxDÞa

xa

¼ 2jqþ ajD
xD

x

� �a
: ð3:5Þ

Now

xðtÞ ¼ xðt1Þ þ
ðt
t1

xDðsÞDs

¼ xðt1Þ þ
ðt
t1

a21=aðsÞ aðsÞðxDðsÞÞa� �1=a
Ds

$

ðt
t1

a21=aðsÞDs
� �

ðaðtÞðxDðtÞÞaÞ1=a;
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and thus

xDðtÞ
xðtÞ

� �a
#

1

aðtÞ
ðt
t1

a21=aðsÞDs
� �2a

¼ haðtÞ
aðtÞ for t [ ½t1;1ÞT: ð3:6Þ

Using (3.6) in (3.5), we have

wD # 2jqþ hajD on ½t1;1ÞT: ð3:7Þ
Integrating (3.7) from t1 to t, we obtain

0 , wðtÞ # wðt1Þ2
ðt
t1

	
jðsÞqðsÞ2 haðsÞjDðsÞ
Ds;

which gives a contradiction using (3.1).

Case (II). For s $ t $ t1, we have

aðsÞð2xDðsÞÞa $ aðtÞð2xDðtÞÞa;
and hence

2xDðsÞ $ a21=aðsÞa1=aðtÞð2xDðtÞÞ: ð3:8Þ
Integrating (3.8) from t $ t1 to u $ t and letting u ! 1 yields

xðtÞ $
ð1
t

a21=aðsÞDs
� �

ð2a1=aðtÞxDðtÞÞ ¼ 2uðtÞa1=aðtÞxDðtÞ for t [ ½t1;1ÞT;

and thus

ðxðtÞÞa $ 2ðuðtÞÞaaðtÞðxDðtÞÞa $ 2ðuðtÞÞaaðt1ÞðxDðt1ÞÞa ¼ bðuðtÞÞa

for t [ ½t1;1ÞT;
ð3:9Þ

with b U 2aðt1ÞðxDðt1ÞÞa . 0. Using (3.9) in equation (1.1), we find

2 aðxDÞa� �DðtÞ $ buaðtÞqðtÞ for t [ ½t1;1ÞT: ð3:10Þ
Integrating (3.10) from t1 to t, we have

2aðtÞðxDðtÞÞa $ 2aðt1ÞðxDðt1ÞÞa þ b

ðt
t1

uaðsÞqðsÞDs $ b

ðt
t1

uaðsÞqðsÞDs;

so that

2xDðtÞ $ b

aðtÞ
ðt
t1

uaðsÞqðsÞDs
� �1=a

: ð3:11Þ
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Integrating (3.11) from t1 to t, we obtain

1 . xðt1Þ $ 2xðtÞ þ xðt1Þ $
ðt
t1

b

aðsÞ
ðs
t1

uaðuÞqðuÞDu
� �1=a

Ds!1 as t!1

by (3.2), a contradiction. This completes the proof. A

Wenote that the proof of Theorem3.1 is presented in a form that it contains the casewhen

condition (1.2) holds. From the proof of Theorem 3.1, we can easily see that if condition (1.2)

holds, thenCase (II) is disregarded and the onlycasevalid isCase (I). For if a solution xof (1.1)

satisfies x(t) . 0 for all t $ t1 $ t0 and x D(t2) , 0 for some t2 $ t1, then aðtÞðxDÞa �
ðtÞ # aðt2ÞðxDÞaðt2Þ implies ðaðtÞÞ1=a xDðtÞ # ðaðt2ÞÞ1=a xDðt2Þ V c , 0 for all t $ t2 and

thus

0 , xðtÞ # xðt2Þ þ c

ðt
t2

ðaðsÞÞ21=aDs!21 as t!1

due to (1.2), a contradiction. Thus, we have the following result.

Theorem 3.2. Let condition (1.2) hold. If there exists a positive nondecreasing delta

differentiable function j such that for every t1 [ [t0,1)T condition (3.1) holds, then

equation (1.1) is oscillatory.

Next, we present the following result.

Theorem 3.3. Let conditions (1.3) and (3.2) hold. If there exists a nondecreasing positive

delta differentiable function j such that for t1 [ [t0 ,1)T

lim sup
t!1

ðt
t1

jðsÞqðsÞ2 aðsÞ
ðaþ 1Þaþ1

ðjDðsÞÞaþ1

jaðsÞ
� �� �

Ds ¼ 1; ð3:12Þ

then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say x(t) . 0 for t $ t1 $ t0.

Proceeding as in the proof of Theorem 3.1, we obtain the Cases (I) and (II). The proof of

Case (II) is similar to that of Case (II) in the proof of Theorem 3.1 and hence is omitted.

Thus, we only consider Case (I) and definew as in the proof of Theorem 3.1 and obtain (3.4).

Now from (2.2)

ðxaÞD ¼ axD
ð1
0

ðxþ mhxDÞa21dh $ axD
ð1
0

xa21dh ¼ axa21 x D: ð3:13Þ
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Using (3.13) in (3.4), we obtain on [t1,1)T that

wD # 2jqþ jD

js
ws 2 aj

xD

x

� �
aðxDÞa� �s
ðxsÞa

¼ 2jqþ jD

js
ws 2 a

j

js
xD

x

� �
ws: ð3:14Þ

Since a(x D)a is decreasing and x a is increasing, we have

ws

js
¼ aðxDÞa� �s

ðxaÞs #
aðxDÞa
xa

¼ w

j
;

and therefore

xD

x
¼ j21=a a21=aw1=a $ j21=aa21=a j

js

� �1=a

ðwsÞ1=a on ½t1;1ÞT: ð3:15Þ

Using (3.15) in (3.14), we find

wD # 2jqþ jD

js
ws 2 aa21=a j

ðjsÞ1þ1=a
ðwsÞ1þ1=a on ½t1;1ÞT: ð3:16Þ

Now set

X ¼ ðajÞa=ðaþ1Þ a
21=ðaþ1Þ

js
ws;

and

Y ¼ a

aþ 1

� �a jD

js

� �a�
a2a=ðaþ1Þj2a=ðaþ1Þjsa1=ðaþ1Þ

�a

in Lemma 2.1 with g ¼ (a þ 1)/a . 1 to conclude that

aa21=a j

ðjsÞ1þ1=a
ðwsÞ1þ1=a 2

jD

js
ws þ a

ðaþ 1Þaþ1

ðjDÞaþ1

ja
$ 0;

and therefore by (3.16)

wD # 2jqþ a

ðaþ 1Þaþ1

ðjDÞaþ1

ja
on ½t1;1ÞT: ð3:17Þ

Integrating (3.17) from t1 to t, we have

wðtÞ # wðt1Þ2
ðt
t1

jðsÞqðsÞ2 aðsÞ
ðaþ 1Þaþ1

ðjDðsÞÞaþ1

jaðsÞ
� �

Ds: ð3:18Þ

Taking the lim sup of both sides of (3.18) as t ! 1 and using (3.12), we obtain a

contradiction to the fact that w(t) . 0 for t $ t1. This completes the proof. A
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When condition (1.2) holds, we have the following result.

Theorem 3.4. Let condition (1.2) hold. If there exists a nondecreasing positive delta

differentiable function j such that for any t1 [ [t0 ,1)T condition (3.12) holds, then

equation (1.1) is oscillatory.

Finally, we present the following interesting result.

Theorem 3.5. Let conditions (1.3) and (3.2) hold. If there exists a positive delta

differentiable function j such that for every t1 [ [t0,1)T

lim sup
t!1

ðt
t1

jðsÞqðsÞ2 a1=aðsÞ
4a

� � ðjDðsÞÞ2
jðsÞ

� �
ðhsðsÞÞa21

� �
Ds ¼ 1; ð3:19Þ

where h is as in (3.3), then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say x(t) . 0 for

t $ t1 $ t0 $ 0. Proceeding as in the proof of Theorem 3.3, we obtain (3.16) which can

be written as

wD # 2jqþ jD

js
ws 2 aa21=a j

ðjsÞ1þ1=a
ðwsÞ1=a21ðws2 on ½t1;1ÞT: ð3:20Þ

Now inequality (3.6), i.e.,

x

xD
$

a1=a

h
;

implies on [t1,1)T that

w1=a21 ¼ j1=a21a1=a21 x

xD

� �a21

$ j1=a21a1=a21 a
a21=a

ha21
¼ j 1=a21h12a: ð3:21Þ

Using (3.21) in (3.20), we have on [t1,1)T that

wD # 2jqþ jD

js
ws 2 aa21=a j

ðjsÞ2 ðh
sÞ12aðwsÞ2

¼ 2jqþ ðjDÞ2a1=a

4ajðhsÞ12a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aa21=a j ðhsÞ12a

p
js

ws 2
jD

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aa21=ajðhsÞ12a

p
 !2

# 2jqþ a1=a

4a

ðjDÞ2
j

ðhsÞa21:

Integrating both sides of this inequality from t1 to t, taking the lim sup of the resulting

inequality as t ! 1 and applying condition (3.19), we obtain a contradiction to the fact

that w(t) . 0 for t [ [t1,1)T. This completes the proof. A
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When condition (1.2) holds, we have the following result.

Theorem 3.6. Let condition (1.2) hold. If there exists a positive delta differentiable

function j such that for any t1 [ [t0,1)T condition (3.19) holds, then equation (1.1) is

oscillatory.

Example 3.7. Here, we shall reformulate the above conditions which are sufficient for the

oscillation of equation (1.1) when (1.2) holds on different time scales:

If T ¼ R, then conditions (3.1), (3.12) and (3.19), respectively, become

lim sup
t!1

ðt
t1

jðsÞqðsÞ2 j 0ðsÞ
ðs
t1

a21=aðuÞdu
� �2a� �

ds ¼ 1; ð3:22Þ

lim sup
t!1

ðt
t1

jðsÞqðsÞ2 aðsÞ
ðaþ 1Þaþ1

ðj 0ðsÞÞaþ1

jaðsÞ
� �

ds ¼ 1; ð3:23Þ

and

lim sup
t!1

ðt
t1

jðsÞqðsÞ2 a1=aðsÞ
4a

ðj 0ðsÞÞ2
jðsÞ

ðs
t1

a21=aðuÞdu
� �12a

" #
ds ¼ 1: ð3:24Þ

We remark that while (3.23) is well known, e.g. [5], conditions (3.22) and (3.24) are new.

If T ¼ Z, then conditions (3.1), (3.12) and (3.19), respectively, become

lim sup
t!1

Xt
s¼t1

jðsÞqðsÞ2 ðDjðsÞÞ
Xs21

u¼t1

a21=aðuÞ
 !2a" #

¼ 1; ð3:25Þ

lim sup
t!1

Xt
s¼t1

jðsÞqðsÞ2 aðsÞ
ðaþ 1Þaþ1

ðDjðsÞÞaþ1

ðjðsÞÞa
� �

¼ 1; ð3:26Þ

and

lim sup
t!1

Xt
s¼t1

jðsÞqðsÞ2 a1=aðsÞ
4a

ðDjðsÞÞ2
jðsÞ

Xs
u¼t1

a21=aðuÞ
 !12a

2
4

3
5 ¼ 1: ð3:27Þ

We remark that condition (3.26) is included in [6, Theorem 2.1], while conditions (3.25)

and (3.27) are new.

We may employ other types of time scales, e.g. T ¼ hZ with h . 0, T ¼ q N0 with

q . 1, T ¼ N2
0, etc. [9,10]. The details are left to the reader.
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