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On the oscillation of second-order half-linear dynamic equations’
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We obtain some oscillation criteria for solutions to the second-order half-linear
dynamic equation

(ae®®) () + g(x*(r) = 0,

when [“a~1/%(s)As =0 or [“a~'/%(s)As < co. These criteria unify and extend
known criteria for corresponding half-linear differential and difference equations.
Some of our results are new even in the continuous and the discrete cases.
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1. Introduction

Consider the second-order half-linear dynamic equation

(a(xA)“)A(t) + q(nx*(1) = 0, (1.1)

where a and ¢ are real-valued, positive and rd-continuous functions on a time scale T C R
with sup T = oo and « = 1 is the ratio of two positive odd integers.

For completeness, we recall the following concepts related to the notion of time scales.
A time scale T is an arbitrary nonempty closed subset of the real numbers R, and since
oscillation of solutions is our primary concern, we make the assumption that sup T = oo.
We assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward and backward jump operators are defined by

o@)=inf{s€T:5>1¢} and pi) =sup{s€ T :5<r},

where inf@d = sup T and sup@ = infT and @ denotes the empty set. A point t € T, ¢
> inf T is said to be left-dense if p(f) =1, right-dense if r < sup T and o(f) = 1, left-
scattered if p () < t and right-scattered if o (f) > t. A function g: T — R is said to be rd-
continuous provided g is continuous at right-dense points and at left-dense points in T,
left-hand limits exist and are finite. The graininess function u for a time scale T is defined
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by w(t) =o(t) —t, and for any function f:T — R, the notation ¢ denotes the
composition f °© o.

We recall that a solution of equation (1.1) is said to be oscillatory on [#,, ®0) in case it is
neither eventually positive nor eventually negative. Otherwise, the solution is said to be
nonoscillatory. Equation (1.1) is said to be oscillatory in case all of its solutions are
oscillatory. Since a(f) > 0, we shall consider both the cases

ra”/“(s)As = oo, (1.2)

and

J a %(s)As < oo. (1.3)
fo

The purpose of this paper is to obtain some time scale analogues of the results for the
continuous case T = R and the discrete case T = Z due to Agarwal et al. [5,6]. For related
results in the continuous and the discrete cases, see Refs. [1,2,4,7] and in the time scales
case [3,8,11-14].

2. Preliminary results

For a function f : T — R, the (delta) derivative f*(r) at ¢t € T is defined to be the number
(if it exists) such that for all & > 0 there is a neighborhood U of r with

| f(at(t)) = f(s) = f2@)(a() — 5)| < elotr) — s forall s € U.

If the (delta) derivative f A(t) exists for all ¥ € T, then we say that fis (delta) differentiable on
T.

We will make use of the product and quotient rules [9, Theorem 1.20] for the
derivative of the product fg and the quotient f/g (where gg? # 0) of two (delta)
differentiable functions f and g

_fre—f&*

- @2.1)
g8

A
(fo)* =+ %% =fe* +1%g”, (i—i)

as well as of the chain rule [9, Theorem 1.90] for the derivative of the composite function
feog for a continuously differentiable function f: R — R and a (delta) differentiable
function g: T — R

1
(fog)* = { J flg+ hMgA)dh}gA- (2.2)
0
For b, ¢ € T and a differentiable function f, the Cauchy integral of f 4 is defined by

Lf%)m =f(c) — f(b),
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and infinite integrals are defined as

C

J fOAr = limjf(t)At.
b c—o |

Note that in the case T = R, we have
o =p) =1, pH =0, f30=F, Lf(t)At = be(r)dr,
and in the case T = Z, we have
o) =t+1, pOy=t—1, pO=1, f2O=AM0O=ft+1)—f0),

and (if b < ¢)

¢ c—1
Lf(t)At =Y f.
t=>b

For more discussion on time scales, we refer to Refs. [9,10,16].
Finally, we recall the following lemma from Ref. [15] which will be needed for the
proof of one of the results in the next section.
Lemma 2.1. If X and Y are nonnegative and vy > 1, then
XY — XY L4 (y— 1YY =0,

where equality holds if and only if X =Y.

3. Main results

The following result is concerned with the oscillation of equation (1.1) when condition
(1.3) holds.

THEOREM 3.1. Let condition (1.3) hold. If there exists a positive nondecreasing delta
differentiable function & such that for every t; € [ty, )T

lim SUPJ [£(5)g(s) — n“()EX(5)]As = o0 (3.1)
and
1) 1 s 1/a
J (—J Ho‘(u)q(u)Au) As = oo, (3.2)
I a(s) n
where
1 —1 00
() = <J al/a(s)As) and  6(r) :J a~%s)As, (3.3)

then equation (1.1) is oscillatory.
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Proof. Suppose to the contrary that x is a nonoscillatory solution of equation (1.1) on [,
oo)T. It suffices to discuss the case that x is eventually positive (as — x also solves (1.1) if x
does), say x(¢) > 0 for t = t; = t,. Since a(x®% is decreasing, it is eventually of one sign
and hence x * is eventually of one sign. Thus, we shall distinguish the following two cases:

@D xA(t) > 0 for t > t;; and
D x2@) < 0 forr > 1,.

Case (I). We first note that in this case (2.2) implies
1
(xY? = axAJ (x + hpx®)*'dh >0 on [, ),
0

and hence x ¢ is increasing on [¢;, o0)y. Now, let

ga(x®)"

xa

on [t;,0)y.

Then, on [t;, o)1 we have by (2.1) that

A
v (£ ) () "+ £ atey)?

o [E5% — Exm)A
=—&+ (a(xA)a) {—f x“(xi())’f’ ) }

E (a®*)”  Ex)* (ae™))”

= — 34
fq + (x(r)a xa(x(r)a ( )
A Aya\ 7 Aya
S_qur§(?();a)) S—§q+§Aa()Z)
x7) X
A o
= —& +a&* <xx) : (3.5)

Now

x(1) = x(1)) + J x2(5)As

n

= x(f) + J a”'(s) (als)x®()%) Vs

n

= (J al/a(S)AS) (O E0) DEA

3l
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and thus

.XA(f) a< 1 4 “1/a 7‘1_ T]a([)
<X(t) > = % (Jlla (S)AS> = W for t € [t17 OO)T' (36)

Using (3.6) in (3.5), we have

wh = =&+ 1% on [t),)y. (3.7)

Integrating (3.7) from #; to ¢, we obtain

0 <w()=w)— J [&s)a(s) — n*(5)E%(9)] As,

n

which gives a contradiction using (3.1).

Case (II). For s =t = t;, we have
a(s)(—x2()* = at(—x (1),
and hence
—x2(s) = a Y ¥(s)a (1) (—xA(1)). (3.8)

Integrating (3.8) from ¢ = ¢, to u = t and letting u — oo yields

x(1) = (Fa““(s)As)(—a““(r)x%)) = —0(Na/“(Ox (1) for t € [t,00)y,

t

and thus

@x()* = —(0(0)) alt)(x (1) = —(6(1) ) (x (11))* = b(6(1))

3.9
for t € [t1700)1,
with b := —a(t))(x2(1,))* > 0. Using (3.9) in equation (1.1), we find
— (@) (1) = bO%D)g(t) for 1 € [11,00) 7. (3.10)

Integrating (3.10) from #, to ¢, we have

t !

0%(s)q(s)As = bJ 0“(s)q(s)As,

3l

—a(OP )" = —at)(x (1) + bJ

1

so that

b [ 1/a
—xA(n) = (—J 0“(s)q(s)As> . (3.11)
a(t)

3l
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Integrating (3.11) from ¢, to ¢, we obtain

t S l/a
00 > x(t)) = —x(t) + x(t)) = J (LJ 9“(u)q(u)Au> As— o0 as t— o0

f a(s) t

by (3.2), a contradiction. This completes the proof. O

We note that the proof of Theorem 3.1 is presented in a form that it contains the case when
condition (1.2) holds. From the proof of Theorem 3.1, we can easily see that if condition (1.2)
holds, then Case (II) is disregarded and the only case valid is Case (I). For if a solution x of (1.1)
satisfies x(f) > 0 for all t =1t =1, and x A(t2) < 0 for some 1, = ¢, then a(f)(x2)*x
(1) = a(t)(x2)*(12) implies (a(t)"/*x2(r) = (a(12))"/*x2(1,) = ¢ < 0 for all £ = 1, and
thus

0 < x(1) = x(t2) + CJ (a(s)) /*As— —c0 as t— o0

153
due to (1.2), a contradiction. Thus, we have the following result.

THEOREM 3.2. Let condition (1.2) hold. If there exists a positive nondecreasing delta
differentiable function & such that for every t| € [ty, )t condition (3.1) holds, then
equation (1.1) is oscillatory.

Next, we present the following result.

THEOREM 3.3. Let conditions (1.3) and (3.2) hold. If there exists a nondecreasing positive
delta differentiable function & such that for t| € [ty, ©) T

. ' a(s) (&%)
h?lsol:pjtl l:g(S)Q(s) - (a+ 1)a+1 ( £o(s) >:| As = oo, (3.12)

then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say x(#) > 0 for t = #; = .
Proceeding as in the proof of Theorem 3.1, we obtain the Cases (I) and (II). The proof of
Case (IT) is similar to that of Case (II) in the proof of Theorem 3.1 and hence is omitted.
Thus, we only consider Case (I) and define w as in the proof of Theorem 3.1 and obtain (3.4).
Now from (2.2)

1 1
(x9? = axAJ (x + pwhx®)* 'dh = wcAJ x* 'dh = ax® ' X2, (3.13)
0 0
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Using (3.13) in (3.4), we obtain on [#;, o) that

NS S N i
wo = €q+§ow ag(x) (xo)*
A A
_ _§q+%wg_a§_§g (’%)WU. (3.14)

Since a(x*)* is decreasing and x “ is increasing, we have

& (x0T xe £

we _ (a(xA)a)" _ a(xA)a _ K

and therefore

xh —1l/a  —1/a, 1/a —1/a,—1/a g e oy1/a
725 a wit=¢"a I (w?) on [fy,00)y. (3.15)
Using (3.15) in (3.14), we find
A fA o —1/a g oy1+1/a
wo = —§q+§w — aa —(éj(r)1+1/a w?) on [t,00). (3.16)
Now set
—1/(a+1)
X = (ag)a/(a+1)a / W(T,
é‘o’
and

o e SA « B B a
Y = S a/(a+)e—a/(a+1)¢go 1/(a+1)
(51) () [

in Lemma 2.1 with y = (a + 1)/a > 1 to conclude that

aa

A Aya+1
—1/a f (Wo')l-H/a _ é: W0'+ a (f ) = 0,

(gg—)lJrl/a E ((1+ 1)a+1 ga
and therefore by (3.16)
Aya+1
wh = —¢&g+ @ +“1)a+1 (¢ g)a on [t,00)r. (3.17)

Integrating (3.17) from ¢, to ¢, we have

t

a(s) (!

G e | (3.18)

w(t) = wit)) - J [f(s)q(s) -

3l

Taking the lim sup of both sides of (3.18) as r— oo and using (3.12), we obtain a
contradiction to the fact that w(r) > 0 for # = #,. This completes the proof. U
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When condition (1.2) holds, we have the following result.

THEOREM 3.4. Let condition (1.2) hold. If there exists a nondecreasing positive delta
differentiable function & such that for any t; € [ty,00)1 condition (3.12) holds, then
equation (1.1) is oscillatory.

Finally, we present the following interesting result.

THEOREM 3.5. Let conditions (1.3) and (3.2) hold. If there exists a positive delta
differentiable function & such that for every t| € [to, )1

t l/a A 2
lim; supJ {as)q(s) - (“ 4a(s)> Ciéfj) >(n”(S))“_1]AS _— (3.19)

where m is as in (3.3), then equation (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say x(zr) >0 for
t =1t =ty = 0. Proceeding as in the proof of Theorem 3.3, we obtain (3.16) which can
be written as

A
wh = —& +%w" - aail/“%l/a(w”)l/“*l(wﬁ on [t,00)y. (3.20)
(&)
Now inequality (3.6), i.e.,
X al/a
.
xA n’

implies on [#;, o) that

a—1 a—1/a
wlla=1 — gl/a—lal/a—l<%> - fl/a—lal/a—la = gl/a—lnl—a‘ (3.21)
x n

Using (3.21) in (3.20), we have on [#{, o) that

WA = _fq—l-f—AWU _ aa—l/ai(no)l—a(WU)Z
& ()
e (Ve T £ ’
1T dagnn) e & 2 aa VT
1/a (A2
=g+ 2 E) oy

da €

Integrating both sides of this inequality from #; to ¢, taking the lim sup of the resulting
inequality as r — oo and applying condition (3.19), we obtain a contradiction to the fact
that w(t) > 0O for ¢ € [t;, ). This completes the proof. U
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When condition (1.2) holds, we have the following result.

THEOREM 3.6. Let condition (1.2) hold. If there exists a positive delta differentiable
SJunction & such that for any t; € [ty, )y condition (3.19) holds, then equation (1.1) is
oscillatory.

Example 3.7. Here, we shall reformulate the above conditions which are sufficient for the
oscillation of equation (1.1) when (1.2) holds on different time scales:
If T = R, then conditions (3.1), (3.12) and (3.19), respectively, become

lim suth {f(s)q(s) — E'(s) (JY a 1/0‘(u)du) _“] ds = oo, (3.22)

t— 00 t 1

/ a+1
a(s)  (£'(s) } ds = o0, (3.23)

limsupJ [f(S)q(S) - (a+ 1)a+1 £a(s)

— 00 1

and

! 1/a 2 s -«
lim supJ [f(s)q(s) -4 401(5) (iig) <J al/a(u)du) ]ds = o0, (3.24)

We remark that while (3.23) is well known, e.g. [5], conditions (3.22) and (3.24) are new.
If T = Z, then conditions (3.1), (3.12) and (3.19), respectively, become

t s—1 o
limsupy [S(S)q(S) ~ (A& (Za“a(m) ] — o, (3.25)

s=t u=t,

t A a+1
s o e o
and
Ll a'* ) ALY (S~ e\
hfrlsupz 996 === S a Ve = 0. (3.27)

We remark that condition (3.26) is included in [6, Theorem 2.1], while conditions (3.25)
and (3.27) are new.

We may employ other types of time scales, e.g. T =hZ with h >0, T =¢q
g>1,T= Nz, etc. [9,10]. The details are left to the reader.
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