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1 Introduction

The so-called Gamma function, which is defined by the convergent improper
integral

Γ(x) :=

∫ ∞

0

ηx−1e−ηdη for x ∈ R+, (1)

has been a focus of interest almost in every branches of mathematics. It
is shown easily by performing a partial integration to (1) that the Gamma
function satisfies the functional relationship

Γ(x+ 1) = xΓ(x) for x ∈ R+. (2)

Therefore, the values of the Gamma function have been tabulated for the
interval (0, 1], and using these values one can evaluate Γ on R+. Suppose for
instance that one needs to compute Γ(5/2). Using the recursion formula in
(2), we see that Γ(5/2) = (3/2)Γ(3/2) = (3/2)(1/2)Γ(1/2). From the table
it is known that Γ(1/2) =

√
π, and thus Γ(5/2) = 3

√
π/4. Let x ∈ N, then

Γ(x + 1) = x! (here ·! stands for the usual factorial function) since one can
show (or look up in the table) that Γ(1) = 1 is valid. On the other hand, it is
not hard to see that the improper integral in (1) diverges for x ∈ R−

0 , and thus
the definition of the Gamma function makes no sense in this case. However,
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for negative values, the definition of the Gamma function is extended by the
functional recursion formula (2), i.e., Γ(x) = Γ(x+ 1)/x for x ∈ R−\Z−

0 .
The relation between the Gamma function Γ and the Laplace transform

L is given by

L
{( I

s

)x−1
}
(z) =

1

sx−1

Γ(x)

zx
for s, x, z ∈ R+,

or particularly

L
{
Ix−1

}
(1) = Γ(x) for x ∈ R+

(see [6, § 2.1]). Above, we have denoted by I, the identity function on R and

for s, t ∈ R+,
(
I(t)/s

)x−1
means the (x− 1)-st power of (t/s).

In this paper, motivated by the relation between the Gamma function
and the Laplace transform in the continuous case we give the definition of
the generalized Gamma function for arbitrary time scales, and prove some
of its typical properties on arbitrary time scales which match with the well-
known ones from its continuous counterpart. Our observation shows that the
results are not very “nice” for arbitrary time scales (of course, unbounded
above and including the origin), but for the particular choices of the time
scales, for instance, the set of reals and/or the set of quantum numbers, we
get “nice” results. We also would like to mention here that our results exactly
coincide with the ones obtained in [5, § 21].

To be able to talk more about the main results, we find useful to introduce
the following basic definitions and facilities for a reader not familiar with the
time scale calculus. A time scale, which inherits the standard topology on R,
is a nonempty closed subset of reals. Here, and later throughout this paper, a
time scale will be denoted by the symbol T, and the intervals with a subscript
T are used to denote the intersection of the usual interval with T. For t ∈ T,
the forward jump operator σ : T → T is defined by σ(t) := inf(t,∞)T while
the backward jump operator ρ : T → T is defined by ρ(t) := sup(−∞, t)T,
and the graininess function µ : T → R+

0 is defined to be µ := σ − I, where I
is the identity function on T. A point t ∈ T is called right-dense if σ(t) = t
and/or equivalently µ(t) = 0 holds; otherwise, it is called right-scattered, and
similarly left-dense and left-scattered points are defined with respect to the
backward jump operator.

For f : T → R and t ∈ Tκ, the ∆-derivative f∆(t) of f at the point t is
defined to be the number, provided it exists, with the property that, for any
ε > 0, there is a neighborhood U of t such that

|[fσ(t)− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U,

where Tκ := T\{t ∈ T : t = maxT and ρ(t) < t} and fσ := f ◦ σ on T. We
shall mean the Hilger derivative of a function when we only say derivative
unless otherwise specified. A function f is called rd-continuous provided that
it is continuous at right-dense points in T, and has finite limit at left-dense
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points, and the set of rd-continuous functions are denoted by Crd(T,R). The
set of functions C1

rd(T,R) is consist of the functions whose derivative is in
Crd(T,R) too. For s, t ∈ T and a function f ∈ Crd(T,R), the ∆-integral of f
is defined by ∫ t

s

f(η)∆η = F (t)− F (s) for s, t ∈ T,

where F ∈ C1
rd(T,R) is an anti-derivative of f , i.e., F∆ = f on Tκ. Table 1

gives the explicit forms of the forward jump, delta derivative and the integral
on the well-known time scales reals, integers and quantum set, respectively.

Table 1: The explicit forms of the forward jump, graininess, delta derivative
and the integral on some time scales.

T R hZ, (h > 0) qZ, (q > 1)

σ(t) t t+ h qt

f∆(t) f ′(t)
f(t+ h)− f(t)

h

f(qt)− f(t)

(q − 1)t∫ t

s

f(η)∆η

∫ t

s

f(η)dη h

t/h−1∑
η=s/h

f(hη) (q − 1)

logq(t)−1∑
η=logq(s)

f(qη)qη

logq located in the last row and the last column of Table 1 stands for the
common logarithm function with the base of q.

A function f ∈ Crd(T,R) is called regressive if 1 + fµ ̸= 0 on Tκ, and
positively regressive if 1 + fµ > 0 on Tκ. The set of regressive functions
and the set of positively regressive functions are denoted by R(T,R) and
R+(T,R), respectively, and R−(T,R) is defined similarly.

Let f ∈ R(T,R) and s ∈ T, then the generalized exponential function
ef (·, s) on a time scale T is defined to be the unique solution of the initial
value problem {

y∆ = fy on Tκ

y(s) = 1.

The exponential function can also be written in the form

ef (t, s) := exp

{∫ t

s

ξµ(η)
(
f(η)

)
∆η

}
for s, t ∈ T,

where the cylinder transformation ξh for h ∈ R+
0 is defined by

ξh(z) := lim
r→h

1

r
Log(1 + zr) for z ∈ C with 1 + zh ̸= 0.

Table 2 illustrates the exponential function on some well-known time
scales.
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Table 2: The explicit form of the exponential function on some time scales.

T R hZ, (h > 0) qZ, (q > 1)

ef (t, s) exp

{∫ t

s

f(η)dη

} t/h−1∏
η=s/h

(
1 + f(hη)h

) logq(t)−1∏
η=logq(s)

(
1 + f(qη)(q − 1)qη

)

It is known that the exponential function ef (·, s) is strictly positive on
[s,∞)T provided that f ∈ R+([s,∞)T,R), while ef (·, s) alternates in sign
at right-scattered points in [s,∞)T provided that f ∈ R−([s,∞)T,R). For
h ∈ R+

0 , let z, w ∈ Ch, the circle plus and the circle minus are respectively
defined by

z ⊕hw := z + w + zwh and z ⊖hw :=
z − w

1 + wh
.

It is also known that
(
R+(T,R),⊕µ

)
is a subgroup of

(
R(T,R),⊕µ

)
, i.e., 0 ∈

R+(T,R), f, g ∈ R+(T,R) implies f ⊕µ g ∈ R+(T,R) and ⊖µf ∈ R+(T,R),
where ⊖µf := 0⊖µ f on T. If, for h ∈ R+

0 and z, w ∈ C, we define the circle
dot by

z ⊙hw := lim
r→h

1

r

(
(1 + wr)z − 1

)
then

(
R+(T,R),⊕µ,⊙µ

)
becomes a real vector space. The readers are re-

ferred to [1, 2] for further details in the time scale theory.

2 Definitions and preliminaries

In this section, we construct the necessary information for the definition of
the generalized Gamma function on time scales.

To this end, we introduce new binary operations as follows. First, we
define the set of functions P (T,R) := {f ∈ Crd(T,R) : f/ I ∈ R(T\{0},R)},
and similarly, we define P+(T,R) and P−(T,R). For f, g ∈ P (T,R), we
define the “boxplus” addition and the “boxminus” subtraction operations by

f �µg := f + g +
1

I
fgµ and f �µg :=

(f − g)I

I+gµ
on T\{0}

or implicitly

f �µg = f ⊕µ
I
g and f �µg = f ⊖µ

I
g on T\{0}.

The proof of the lemma below therefore is straight forward (see [1, Theo-
rem 2.7]).

Lemma 1.
(
P (T,R),�µ

)
is an Abelian group.
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The following properties directly follow from the properties of ⊕µ and ⊖µ

(see [1, Exercise 2.28]).

Lemma 2. If f, g ∈ P (T+,R), where T+ := (0,∞)T, then

(i) f �µg, f �µg ∈ P (T,R),

(ii) f �µf = 0 on T+,

(iii) �µ(�µf) = f on T+,

(iv) �µ(f �µg) = g �µf on T+,

(v) �µ(f �µg) = (�µf)�µ(�µg) on T+.

Now, for α ∈ R and f ∈ P (T,R), we define the “boxdot” multiplication
by

α�µ f := α⊙µ
I
f on T\{0}.

Lemma 3.
(
P+(T\{0},R),�µ,�µ

)
is a real vector space.

Lemma 4. If f, g ∈ P+(T+,R) and α, β ∈ R, then

(i) α�µf ∈ P+(T+,R),

(ii) α�µ(β �µf) = (αβ)�µf on T+,

(iii) 1�µf = f on T+,

(iv) α�µ(f �µg) = (α�µf)�µ(α�µg) on T+,

(v) (α+ β)�µf = (α�µf)� (β �µf) on T+.

Below, we define the function p, which plays the major role in this paper.

Definition 1. For f ∈ P (T,R), we define

pf (t, s) := ef/I(t, s) for s, t ∈ T+,

and pf (0, s) := 0 provided that 0 ∈ T with µ(0) > 0.

Table 3 illustrates the function p on some well-known time scales.
The following properties also follow from the properties of the exponential

function (see [1, Theorem 2.36]), and thus we omit most of the proofs. But
we first would like to present the following lemma.

Lemma 5. If f ∈ P+(T+,R) and α ∈ R, then

α⊙µ
f

I
=

α�µf

I
on T\{0}.
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Table 3: The function p on some time scales. Here, it is assumed that t ≥ s
and x ∈ R+

0 (note that if x ∈ R+
0 , then px(t, s) is well-defined) and Γ is the

usual Gamma function.

T+
0 := [0,∞)T px(t, s), (x ∈ R+)

R+
0

( t
s

)x
hN0, (h > 0)

Γ(t/h+ x)Γ(s/h)

Γ(t/h)Γ(s/h+ x)

qZ, (q > 1)
( t
s

)logq(1+x(q−1))

Proof. Let t ∈ T+. Then we find by using the definition that

α⊙µ(t)
f(t)

t
= lim

r→µ(t)

1

r

((
1 +

f(t)

t
r
)α

− 1

)
=

1

t
lim

r→µ(t)

t

r

((
1 + f(t)

r

t

)α
− 1

)
=
1

t
lim

r→µ(t)
t

1

r

((
1 + f(t)r

)α − 1
)
=

1

t

(
α�µ(t) f(t)

)
,

which completes the proof.

Lemma 6. If f, g ∈ P+(T+,R), α ∈ R and r, s, t ∈ T+, then

(i) p0(t, s) ≡ 1 and pf (t, t) ≡ 1,

(ii) pσf (t, s) = (1 + fµ/ I)pf (t, s),

(iii) pf (s, t) = 1/pf (t, s) = p�µf (t, s),

(iv) pf (t, s)pf (s, r) = pf (t, r),

(v) pf (t, s)pg(t, s) = pf�µg(t, s),

(vi) pf (t, s)/pg(t, s) = pf�µg(t, s),

(vii)
(
pf (t, s)

)α
= pα�µf (t, s)

Proof. We shall only prove the part (vii) since the rest of the items follow by
using similar arguments. Let f ∈ P+(T+,R), α ∈ R and s, t ∈ T+. Then by
[2, Theorem 2.44] and Lemma 5, we have(

pf (t, s)
)α

=
(
ef/I(t, s)

)α
= eα⊙µ(f/I)(t, s) = e(α�µf)/I(t, s) = pα�µf (t, s).

This completes the proof.

Remark 1. In particular, if f ∈ P (T,R) and s, t ∈ T+, then pf�µ1(t, s) =
e(f−1)/σ(t, s).
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Remark 2. If f ∈ Crd(T,R
+
0 ), then pf (t, s) > 0 for s, t ∈ T+ since f/I ∈

R+(T+,R) (see [1, Theorem 2.44(i)]).

We need the following properties of the function p in the sequel.

Theorem 1. Let x ∈ R+, 0 ∈ T and s ∈ T+. Then the following properties
hold.

(i) limt→0+ px(t, s) = 0 provided that µ(0) = 0.

(ii) px(·, s) is of exponential order for any positive number on T+
0 :=

[0,∞)T provided that supT = ∞, i.e.

lim
t→∞

(
px(t, s)e⊖µα(t, 0)

)
= 0 for any α ∈ R+. (3)

Proof. (i) We shall first show that the limit exists. Clearly, p∆x (t, s) =
(x/t)px(t, s) > 0 for all t ∈ T+, which implies that px(·, s) is increasing
on T+. Thus, ℓs := limt→0+ px(t, s) exists and satisfies ℓs ∈ [0, 1)R by Lem-
ma 6 (i). To prove ℓs = 0, assume the contrary that ℓs ∈ (0, 1)R. Then,
p∆x (t, s) ≥ xℓs/t for all t ∈ (0, s]T. We estimate by [3, Theorem 5.1] for all
t ∈ (0, s]T that

1− px(t, s) =

∫ s

t

p∆x (η, s)∆η ≥ xℓs

∫ s

t

1

η
∆η

≥xℓs

∫ s

t

1

η
dη = xℓs ln

(s
t

)
,

which yields a contradiction by letting t → 0+ since the right-hand diverges
but the right-hand side is (1− ℓs), which is finite. This contradiction proves
that ℓs = 0.

(ii) As T is unbounded above, for every fixed α ∈ R+, we may find rα ∈
[s,∞)T such that x/t ≤ α for all t ∈ [rα,∞)T. Therefore, we have

0 < px(t, s) = px(rα, s)px(t, rα) ≤ px(rα, s)eα(t, rα) (4)

for all t ∈ [rα,∞)T. Since px(·, s) ∈ Crd(T+,R+
0 ) and limt→0+ px(t, s) = 0

provided that µ(0) = 0 by the part (i), we may find Mα ∈ R+ such that
px(t, s) ≤ Mα for all t ∈ [0, rα]T (see [1, Theorem 1.65]). Therefore, from (4),
we have

0 ≤ px(t, s) ≤ Kαeα(t, 0) for all t ∈ T+,

where Kα := max{Mα, px(rα, s)}e⊖µα(rα, 0), and (3) is a consequence of [4,
Lemma 4.4].

Thus, the proof is completed.

The following property shows that the function p1 is a first-order polyno-
mial in the usual sense.
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Lemma 7. If s ∈ T, then

ef∆/f (t, s) =
f(t)

f(s)
for all t ∈ T

for any f ∈ C1
rd(T,R) with f∆/f ∈ R(T,R) provided that f does not vanish

on [s, t)T.

Proof. The proof follows directly by showing that the function y = f/f(s)
solves the initial value problemy∆ =

f∆

f
y on [s, t]κT

y(s) = 1.

Corollary 1. If s ∈ T+, then

p1(t, s) =
t

s
for all t ∈ T+.

Proof. The proof follows by letting f = I in Lemma 7.

Below, we show that the derivative and the integral of the function p
satisfy properties which we are familiar from the continuous case.

Theorem 2. If x ∈ R+, then

(i) p∆x (t, s) = (x/s)px�µ1(t, s) for all t ∈ T+
0 , where s ∈ T+,

(ii) p∆�µx
(t, s) = −(x/s)pσ1 (t, t)p

σ
�µ(x�µ1)

(t, s) for all t ∈ T+, where s ∈
T+,

(iii)
∫ t

s
px�µ1(η, r)∆η = (r/x)

(
px(t, r) − px(s, r)

)
for all s, t ∈ T+

0 , where
r ∈ T+,

(iv)
∫ t

s
pσ1 (η, η)p

σ
�µ(x�µ1)

(η, r)∆η = (s/x)
(
p�µx(s, r) − p�µx(t, r)

)
for all

s, t ∈ T+
0 , where r ∈ T+.

Proof. (i) Using Definition 1, Lemma 6 (iv) and Theorem 1, for all t ∈ T+,
we have

p∆x (t, s) = e∆x/I(t, s) =
x

t
px(t, s) =

x

s

1

p1(t, s)
px(t, s) =

x

s
px�µ1(t, s).

(ii) We can easily compute by using the part (i) of the proof that

p∆�µx
(t, s) =

(
1

px(t, s)

)∆

= − p∆x (t, s)

px(t, s)pσx(t, s)
= −x

s

px�µ1(t, s)

px(t, s)pσx(t, s)

=− x

s

1

p1(t, s)pσx(t, s)
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for all t ∈ T+. Applying now Lemma 6 (iii)–(v) and making some arrange-
ments, for all t ∈ T+, we get

p∆�µx
(t, s) =− x

s

pσ1 (t, t)

pσ1 (t, s)p
σ
x(t, s)

= −x

s

pσ1 (t, t)

pσx�µ1
(t, s)

= −x

s
pσ1 (t, t)

1

pσx�µ1
(t, s)

=− x

s
pσ1 (t, t)p

σ
�µ(x�µ1)

(t, s).

(iii) We will use the conclusion of the part (i). For all s, t ∈ T+, we have∫ t

s

px�µ1(η, r)∆η =
r

x

∫ t

s

p∆x (η, r)∆η =
r

x
px(η, r)

∣∣∣∣η=t

η=s

=
r

x

(
px(t, r)− px(s, r)

)
.

(iv) The proof of the part (iv) can be given similar to that of the part (iii),
thus we omit it here.

The proof is therefore completed.

The following lemma plays an important role in proving asymptotic prop-
erties of the Gamma function.

Lemma 8. If s, t ∈ T+ with t > s, then

lim
x→∞

px(t, s)

x
= ∞.

Proof. As x → ∞, we may suppose that x ∈ R+. For k ∈ N, we define

mk
x(t, s) :=

∫ t

s

mk−1
x (η, s)

1 + xµ(η)
∆η for s, t ∈ T and x ∈ R+.

where m0
x(t, s) := 1. Then, as in the proof [4, Theorem 7.1], for k ∈ N, we

have
dk

dxk
ex(t, s) = mk

x(t, s)ex(t, s) > 0 for all x ∈ R+,

which implies that the functions e·(t, s) and e′·(t, s) are positive increasing
and convex on R+, and thus, limx→∞ ex(t, s) = ∞ and limx→∞ e′x(t, s) = ∞.
Therefore, we see that

lim
x→∞

ex(t, s)

x
= lim

x→∞
e′x(t, s) = ∞,

where we have applied the usual L’Hôpital’s rule in the last step. By Def-
inition 1, we have the inequality px(t, s) ≥ ex/t(t, s) for all x ∈ R+, which
completes the proof.
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3 The Gamma operator

In this section, we give our definitions and lemmas to prove the main results
stated in the sequel. Throughout the paper, we shall assume that 0 ∈ T and
supT = ∞.

As we have mentioned previously, we shall define the generalized Gamma
function by means of the generalized Laplace transform on time scales. The
definition of the Laplace transform of a function f ∈ Crd(T

+
0 ,R) is given by

LT{f}(x) =
∫ ∞

0

f(η)eσ⊖µx(η, 0)∆η for x ∈ (α,∞)R,

where α ∈ R is the exponential order of the function f (see [4, Definition 4.1]).
Now, we are ready to introduce the definition of the generalized Gamma

function.

Definition 2 (The Gamma operator). For f ∈ P+(T+
0 ,R+) and s ∈ T+, we

define the generalized Gamma function centered at s by

ΓT(f ; s) := LT{pf�µ1(·, s)}(1),

or explicitly

ΓT(f ; s) =

∫ ∞

0

pf�µ1(η, s)e
σ
⊖µ1(η, 0)∆η

provided that the improper integral exists.

Remark 3. In view of Remark 1, the generalized Gamma function can be
rewritten as

ΓT(f ; s) =

∫ ∞

0

e(f−1)/σ(η, s)e
σ
⊖µ1(η, 0)∆η for f ∈ P (T+

0 ,R
+),

where s ∈ T+ is fixed.

Table 4 illustrates the generalized Gamma function on some well-known
time scales.

Figure 1 shows the plot of graphic of ΓT(·; 1) on particular cases of the
time scales given in Table 4.

3.1 Convergence of the Gamma function

Out first result is on the convergence of the Gamma function.

Theorem 3. If s ∈ T+, then ΓT(x; s) converges for any x ∈ R+.

Proof. Using Theorem 1 (i), Theorem 2 (iii) and [1, Theorem 3.87], we get

ΓT(x; s) =LT{px�µ1(·, s)}(1) =
s

x
LT{p∆x (·, s)}(1)

=
s

x

(
LT{px(·, s)}(1)− lim

t→0+
px(t, s)

)
=
s

x
LT{px(·, s)}(1). (5)
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Table 4: The generalized Gamma function on some particular time scales.

T ΓT(x; s), (x ∈ R+)

R+
0

∫ ∞

0

(η
s

)x−1

e−ηdη

hN0, (h > 0) h
∞∑
η=0

( η−1∏
ζ=s/h

ζ + x

ζ + 1

)
1

(h+ 1)η+1

qZ, (q > 1)
(q − 1)s(

1 + (q − 1)x
)logq(s)

∞∑
η=−∞

(
1 + (q − 1)x

)η∏η
ζ=−∞

(
1 + (q − 1)qζ

)

Figure 1: The solid curve belongs to graph of T = R+
0 with s = 1, and the

dashed curve belongs to the graph of T = hN0 with h = 1, s = 1, while the
dotted curve belongs to the graph of T = qZ with q = 2, s = 1.

1 2 3

1

2

3

As px(·, s) is of exponential for order any positive number, we deduce from [4,
Theorem 5.2] that LT{px(·, s)}(1) is finite (because of 1 > 0). This completes
the proof.

3.2 Asymptotic properties of the Gamma function

Theorem 4. If s ∈ T+, then limx→0+ ΓT(x; s) = ∞.

Proof. Clearly, e⊖µ1(·, 0) is positive and strictly decreasing on T+
0 . On the

other hand, by Lemma 6 (vi) and Remark 2, we have

px�µ1(t, s) =
px(t, s)

p1(t, s)
> 0 for all t ∈ T+

0 .

By using the definition of the Gamma function, Theorem 1 (i) and Theo-
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rem 2 (iii), we get

ΓT(x; s) ≥
∫ s

0

px�µ1(η, s)e
σ
⊖µ1(η, 0)∆η ≥ e⊖µ1(s, 0)

∫ s

0

px�µ1(η, s)∆η

=
s

x
e⊖µ1(s, 0)

(
px(s, s)− px(0, s)

)
=

s

x
e⊖µ1(s, 0)

for all x ∈ R+, which yields the desired result by letting x → 0+.

Theorem 5. If s ∈ T+, then limx→∞ ΓT(x; s) = ∞.

Proof. Let t ∈ T+ with t > s. For all x ∈ R+, we have

ΓT(x; s) ≥
∫ t

s

px�µ1(η, s)e
σ
⊖µ1(η, 0)∆η ≥ e⊖µ1(s, 0)

∫ t

s

px�µ1(η, s)∆η.

Using Theorem 2 (iii), we get

ΓT(x; s) ≥
s

x
e⊖µ1(s, 0)

(
px(t, s)− 1

)
for all x ∈ R+. Now, letting x → ∞ and using Lemma 8, we see that the
claim is true.

3.3 Functional properties of the Gamma function

Theorem 6. If s ∈ T+, then ΓT(1; s) = 1.

Proof. We get

ΓT(1; s) =

∫ ∞

0

p1�µ1(η, s)e
σ
⊖µ1(η, 0)∆η =

∫ ∞

0

eσ⊖µ1(η, 0)∆η

=− e⊖µ1(η, 0)
∣∣∣η→∞

η=0
= 1,

where we have applied [4, Theorem 3.4(iii)] in the last step to complete the
proof.

Next, we give another result emphasizing an important property of the
generalized Gamma function which we are familiar from the continuous case.

Theorem 7. If s ∈ T+, then

ΓT(x�µ 1; s) =
x

s
ΓT(x; s) for all x ∈ R+.

Proof. Using (5) and Lemma 6 (v),(vi), we get

ΓT(x; s) =
s

x
LT{px(·, s)}(1) =

s

x
LT{p(x�µ1)�µ1(·, s)}(1)

=
s

x
ΓT(x�µ1; s).

The proof is completed.
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Remark 4. The conclusion of Theorem 7 can be rearranged to obtain

ΓT

(xσ
I

+ 1; s
)
=

x

s
ΓT(x; s) for all x ∈ R+,

where s ∈ T+ is fixed. Note that for T = R, we have σ = I, for T = Z, we
have σ = I+1, and for T = qZ with q > 1, we have σ = qI. For T = R and
T = qZ, the quantity σ/I is a constant, we therefore get a “nice” recursion
formula.

3.4 An inequality related to the Gamma function

The following result can be regarded as the generalization of the well-known
logarithmic convexity of the usual Gamma function.

Theorem 8 (Logarithmic convexity). If s ∈ T+, then

log

(
ΓT

(( 1
α
�µ x

)
�µ

( 1
β
�µ y

)
; s

))
≤ 1

α
log
(
ΓT(x; s)

)
+

1

β
log
(
ΓT(y; s)

)
for all x, y ∈ R+ and all α, β ∈ (1,∞)R with 1/α+ 1/β = 1.

Proof. We can compute that

ΓT

(( 1
α
�µ x

)
�µ

( 1
β
�µ y

)
; s

)
=

∫ ∞

0

p((α−1�µx)�µ(β−1�µy))�µ1(η, s)e
σ
⊖µ1(η, 0)∆η

=

∫ ∞

0

pα−1�µx(η, s)pβ−1�µy(η, s)p�µ1(η, s)e
σ
⊖µ1(η, 0)∆η

=

∫ ∞

0

(
px(η, s)

)1/α(
py(η, s)

)1/β
p�µ1(η, s)e

σ
⊖µ1(η, 0)∆η

=

∫ ∞

0

(
px�µ1(η, s)e

σ
⊖µ1(η, 0)

)1/α(
py�µ1(η, s)e

σ
⊖µ1(η, 0)

)1/β
∆η,

which yields by an application of the Hölder’s inequality [1, Theorem 6.13]
that

ΓT

(( 1
α
�µ x

)
�µ

( 1
β
�µ y

)
; s

)
≤
(∫ ∞

0

px�µ1(η, s)e
σ
⊖µ1(η, 0)∆η

)1/α

×
(∫ ∞

0

py�µ1(η, s)e
σ
⊖µ1(η, 0)∆η

)1/β

=
(
ΓT(x; s)

)1/α(
ΓT(y; s)

)1/β
.

Finally, taking the logarithm of both sides we get the desired inequality.



520 M. Bohner and B. Karpuz

3.5 Extension of the Gamma function

Motivated by the definition of the usual Gamma function and the functional
relation proved in Theorem 7, we conclude the section with an extended
definition of the generalized Gamma function.

Definition 3 (Extension of the Gamma function). For x ∈ R and s ∈ T+,
we extend the definition of the generalized Gamma function by setting

ΓT(x; s) :=
s

x
ΓT(x�µ1; s)

provided that ΓT(x�µ1; s) is computable.

4 The Bracket numbers and the Factorial op-
erator

In this section, we introduce the factorial operator on time scales.

Definition 4. We define the bracket number operator [·]T : N0 → Crd(T+,R)
by

[n]T :=

{
0, n = 0

[n− 1]T �µ1, n ∈ N,

and the bracket factorial operator [·]T! : N0 → Crd(T+,R) by

[n]T! :=


1, n = 0
n∏

k=1

[k]T, n ∈ N.

Table 5 illustrates the bracket number operators on some well-known time
scales.

Table 5: The bracket numbers on some particular time scales. For the con-
tinuous and the quantum cases, the bracket numbers are constant functions.

T [n]T, (n ∈ N) [n]T!, (n ∈ N)

R+
0 n n!

hN0, (h > 0)
I

h

((h
I
+ 1
)n

− 1

) ( I

h

)n n∏
k=1

((h
I
+ 1
)k

− 1

)
qZ, (q > 1)

qn − 1

q − 1

1

(q − 1)n

n∏
k=1

(
qk − 1

)
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Remark 5. It is not hard to see that

[n]T = [n− 1]T
σ

I
+ 1 for all n ∈ N on T+.

Table 5 suggests us the conclusion of the following lemma.

Lemma 9. If n ∈ N, then

[n]T =
n∑

k=1

(
n

k

)(µ
I

)k−1

and [n]T =
n∑

k=1

(σ
I

)k−1

are alternative forms of the bracket operator [·]T on T+.

Proof. We proceed by mathematical induction to prove the first equality. It
is obvious that the claim is true for n = 1. Suppose now that the claim is
true for some n ∈ N, then we have

[n+ 1]T =[n]T �µ1 =

(
n∑

k=1

(
n

k

)(µ
I

)k−1
)

�µ1

=
n∑

k=1

(
n

k

)(µ
I

)k−1

+ 1 +
n∑

k=1

(
n

k

)(µ
I

)k
=

n∑
k=1

(
n

k

)(µ
I

)k−1

+ 1 +

n+1∑
k=2

(
n

k − 1

)(µ
I

)k−1

=
n+1∑
k=1

(
n

k

)(µ
I

)k−1

+
n+1∑
k=1

(
n

k − 1

)(µ
I

)k−1

=
n+1∑
k=1

[(
n

k

)
+

(
n

k − 1

)](µ
I

)k−1

=
n+1∑
k=1

(
n+ 1

k

)(µ
I

)k−1

on T+, hence the claim is also true when n is replaced by (n + 1). This
completes the proof of the first part. The proof of the latter equality makes
use of mathematical induction and the conclusion of Remark 5, and we omit
it here.

Theorem 9. Let n ∈ N, and assume that [k]T is a constant function on T+

for all k ∈ [1, n]N. Then

ΓT([n]T; s) =
[n− 1]T!

sn−1
,

where s ∈ T+.
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Proof. We will give the proof by using mathematical induction again. The
claim is true for n = 1 since [1]T = 1 and [0]T! is assumed to be 1. We
suppose that the claim is true for some n ∈ N, and then by using Theorem 7
and Definition 4, we get

ΓT([n+ 1]T; s) =ΓT([n]T �µ1; s) =
[n]T
s

ΓT([n]T; s)

=
[n]T
s

[n− 1]T!

sn−1
=

[n]T!

sn
,

which shows that the claim is true for (n + 1) too. The proof is therefore
completed.

Remark 6. As an immediate consequence of Lemma 9, we see that the
assumptions of Theorem 9 hold for T = R and T = qZ with q > 1.
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