Cer 418:  Optical Properties of Materials

 

Instructors:                                                                                                                        Richard Brow and Wayne Huebner

 

Time:                        TR, 2:05  - 3:20 p.m.

 

Course: The objective of this course is to give the student a fundamental

Objective:   understanding of the structure«optical property relationships exhibited by isotropic and anisotropic materials.  Topics will include the wave/particle nature of light, how light interacts with materials, color, and applications such lasers, fiber optic communication systems, electro-optics, and integrated optics.

 

Homework:   There will be three homework assignments, which will be graded.  Reading assignments will be given throughout the semester.

 

Grading:       4 tests:                           400 pts.

                     3 Homeworks:                150 pts.

                     ComprehensiveFinal:       150 pts.

                     Total:                             700 pts

 

                        A≥90, 80≤B≤89, 70≤C≤79, 60≤D≤69, F≤59

 

Book: J. Simmons and K. Potter, Optical Properties of Materials, Academic Press, San Diego (2000).

 

Course Outline

 


     I.     Wave Propagation (3 lectures)

                a.     The electromagnetic spectrum

                b. Dispersion

                c. Kramers-Kronig Relations

                d. Wave-particle duality

                e. Light sources and intensity

 

   II.     Optical Properties of Conductors (1 lecture)

                a. Drude Model

                b. Band structure of metals

                c. Coloration in metals

 

  III.     Optical Properties of Insulators: Fundamentals

            (5 lectures)

                a. Harmonic oscillator theory

                b. Refraction

                c. Dispersion

                d. Reflection / transmission

                e. Absorption

                 f. Scattering

 

  IV.     Optical Properties of Insulators:  Applications

            (6 lectures)

                a. Thin films

                b. Glasses and crystals

                c. Photochroism / electrochroism
                d.     UV / IR glasses & crystals

                e. Sources of Color

     

   V. Luminescent Phenomena (3 lectures)

                a. Lasers:  gas, chemical, solid state

                b. Phosphorescence

                c. Triboluminescence

                d. Thermoluminescence

 

  VI.     Optical Properties of Semiconductors (1 lecture)

                a.     Free e’ models

                b. Band structure

                c. Excitons / polaritons

 

VII.     Nonlinear   / Anisotropic Optical Behavior

            (5 lectures)

                a.     Kerr Effect

                b. Second harmonic generation

                c. Optic indicatrix

 

VIII. Applications (5 lectures)

                a. Integrated optics

                b. CD’s

                c. Liquid crystals