
Chaman L. Sabharwal and Jennifer L. Leopold, An Implementation of Triangle-Triangle Intersection for Qualitative Spatial 
Reasoning, Proceedings of the 29th International Conference on Computers and Their Applications (CATA–2014), March 24 

– 26, 2014, Las Vegas, Nevada, USA, pp. 23-28, 2014. 
An Implementation of Triangle-Triangle Intersection  

for Qualitative Spatial Reasoning 
Chaman L. Sabharwal and Jennifer L. Leopold 

Missouri University of Science and Technology 
Rolla, Missouri, USA – 65409 

{chaman, leopoldj}@mst.edu 
 

Abstract 
  The intersection between 3D objects is ubiquitous in 

modeling. The objects are represented using the Boundary 
Representation (ANSI Brep) model in many applications 
such as CAD/CAM, collision detection, and spatial 
reasoning. Detection of possible intersection between 
objects can be based on the objects’ boundaries 
(approximate triangulations), computing triangle-triangle 
intersection. Usually there are separate algorithms for 
cross and coplanar intersections. The intersection detection 
is a byproduct of actual intersection computations. For 
qualitative spatial reasoning, intersection detection is 
sufficient, actual intersection is not necessary. Herein we 
present an implementation of a complete uniform 
integrated algorithm independent of cross and coplanar 
intersection. Additionally, we use barycentric coordinates 
for detecting and classifying intersections prior to 
computing precise 3D coordinates. This work is applicable 
to most region connection calculi, particularly VRCC-3D+, 
which uses intersection detection between 3D objects as 
well as their projections in 2D that are essential for 
occlusion detection.  

 
Keywords: Intersection Detection, Classification 
Predicates, Spatial Reasoning, Triangle-Triangle 
Intersection. 

 
1   Introduction 
 
The ability to detect the existence of possible intersection 

between pairs of objects is important in a variety of 
problem domains such as geographic information systems 
[1], real-time rendering [2], collision-detection, geology 
[3], networking and wireless computing. In qualitative 
reasoning, it is not necessary to know the precise 
intersection between pairs of objects; it is sufficient to 
detect and classify the intersection between objects. 
Typically, the boundary of each object is represented as a 
triangulated surface and a triangle-triangle intersection is 
the computational basis for determining intersection 
between objects. Since an object boundary may contain 
thousands of triangles, algorithms to speed up the 
intersection detection process are still being explored for 
various applications, sometimes with a focus on 
innovations in processor architecture [4].  

In qualitative spatial reasoning, spatial relations between 
regions are defined axiomatically using first order logic [5] 
or the 9-Intersection model [6,7]. Using the latter model, 
the spatial relations are defined using the intersections of 
the interior, boundary, and exterior of one region with those 
of a second region. In order to implement these algorithms, 
we must first solve the triangle - triangle intersection 
problem, as it is a lower level problem that must be solved 
in order to determine the 4-Intersection predicates that, in 
turn, determine the qualitative spatial relation between two 
objects. 

This paper is organized as follows: Section 2 briefly 
reviews the background and related inequalities resulting 
from intersection framework. Section 3 discusses the types 
of possible intersection between triangles Section 4 
develops the overall main algorithm for triangle-triangle 
intersection, and classifies the intersections. Section 5 
describes the applications to qualitative spatial reasoning. 
Section 6 concludes, followed by references in Section 7. 

 
2  Background 

 
2.1 The Traditional Algorithm  

 
There is an abundance of papers devoted to the 

intersection between a pair of triangles [2,3,8,9,10,11]. 
Interestingly, most of them simply reinvent the algorithm 
and implement it slightly differently and more efficiently, 
with no innovation. The paper [11] surveyed various 
approaches for determining the cross intersection detection, 
and developed a fast vector version of the cross intersection 
detection, as well as classification of the type of 
intersection. A recent paper [12] considered an approach 
for determining the intersection detection covering both 
cross and coplanar intersection simultaneously. Our 
approach follows [12] and is exhaustive and analytically 
more rigorous than the previous approaches [3, 8, 11]. It 
computes intersection barycentric coordinates that detect 
the intersection to be a single point, or a line or an area. 
The algorithm in [12] is not robust completely as it is 
missing two tests for (tm(s), tM(s)) yielding an approximate 
solution, which are also addressed here in the 
implementation for an accurate solution. Consequently, we 
show that the possible intersection can be detected before 
the precise intersection computations are performed.  



This method of intersection solution involves three linear 
inequalities. The general principle for elimination of 
variables that works well for equations does not directly 
translate into solving inequalities. For example, the brute 
force method for solving these inequalities may lead to an 
extraneous solution, thus an erroneous solution as shown in 
the following example.  Such approach gives an 
inconsistent solution to the inequalities: 

  - 1 ≤ x + y ≤ 1 (a)
 - 1 ≤ x - y ≤ 1 (b) 

 - 1 ≤ y - x ≤ 1 (c) 
Adding (a) and (b) yields –1 ≤ x ≤ 1, and adding (a) and 

(c) yields  - 1 ≤ y ≤ 1 which is the area enclosed by dotted 
boundary in Fig. 1. This is an inaccurate solution to the 
inequalities (a), (b), and (c). But the accurate solution is in 
the shaded area in Fig. 1, which is |x| ≤ 1, and |y| ≤ (1 - |x|).  

If the coefficients in (c) are modified and (c) becomes 
(c’): 0 ≤ y - x ≤ 0, adding (a) and (c’) yields –1/2 ≤ x ≤ 1/2, 
and y=x from (c’), which is a straight line as  seen in Fig. 2. 

Further if the coefficients in (a) are modified and (a) 
becomes (a’): 0 ≤ x + y ≤ 0, we have y=x from (c’), and 
y=x=0 from (a’), then result is a Single point as shown in in 
Fig. 3. 

Thus to accurately solve these inequalities - 1 ≤ x + y ≤ 
1, - 1 ≤ y - x ≤ 1and - 1 ≤ x - y ≤ 1, we first solve these for 
one variable x, then use this value to solve for the other 
variable y otherwise we have to eliminate the extraneous 
part of the solution.   

First we solve two inequalities in the most general form: 
  m ≤ ax + by ≤ n     (1) 
  M  ≤ Ax + By ≤  N    (2) 
The following algorithm determines xm, xM such that for 

each x in [xm, xM], the inequalities hold. 
boolean solve_x (m, a, b, n, M, A, B, N, xm, xM) 
If a solution is found, it returns true, else it returns false. 

First assume b and B are non-negative. If not, multiply 
them by - 1 to make them non-negative. Multiplying (1) by 
B and (2) by b, subtraction leads to  

  (mB –Mb) ≤ (aB - Ab)x ≤ (nB - Nb)  
which yields the range [xm, xM] for x values provided aB-

Ab ≠ 0. In the case of zero,  (mB –Mb) ≤ (nB - Nb)  must 
be satisfied in order to have solution for y values. 

Now once xm, xM have been determined, for each x in 
[xm, xM] in the inequalities, we determine the range [ym(x), 
yM(x)] for y. That is, after the range [xm, xM] is determined, 
only then for each x in [xm, xM], the range for y is 
determined; in other words, y is a function of x. 

 
Fig. 1. Solution to inequalities: - 1 ≤ x - y ≤ 1, - 1 ≤ x + y ≤ 1 

and -1 ≤ y - x ≤ 1. Using brute force method of elimination of 
variables yields the area enclosed by the dotted boundary, but the 
accurate solution is enclosed by the shaded area. 

 
Fig. 2. Solution to inequalities:  - 1 ≤ x - y ≤ 1, - 1 ≤ x + y ≤ 1,  

and 0 ≤ y - x ≤ 0. The solution results in a shaded line segment. 

 
Fig. 3. Solution to inequalities: : - 1 ≤ x - y ≤ 1, 0 ≤ x + y ≤ 0  

and 0 ≤ y - x ≤ 0. The solution results in a shaded single point. 
  
boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM) 
Given that xm ≤ x ≤ xM are known, it solves the 

inequalities for ym, yM . In the process it may update the 
values of xm, xM as needed. 

If a solution is found, it returns true else it returns false. 
Now for xm ≤ x ≤ xM, the inequalities become 

 m –ax ≤ by ≤ n – ax and   
 M  - Ax ≤ By ≤  N - Ax.    
These inequalities give the range [ym(x), yM(x)] of values 

for y as function of x.  
 
Another point to note in using vector equations 
Solve for u and v 



 

	  

 uU+vV=W 
we can multiply with (UxV)xU, and (UxV)xV, 
to get  
 u=WX(UxV)•V/ UX(UxV)•V   
and  
 v=WX(UxV)•U/ VX(UxV)•U   
Looks like a prefect solution. If we plug it into the 

equation it may or may not be it. 
Example: x i + y j=k will yield x=y=0, but it does not 

satisfy the equation. Some test has to be made to ascertain 
that solution does work.  

This complicates overfitting. We want solution that 
satisfies the constraints of the two triangles. 

 
 

3  Types of Triangle Intersections 
 
For spatial reasoning, we classify pairwise intersection 

based on the predicates IntInt(A,B) (intersection of Interior 
of object A and Interior of object B), IntBnd(A,B) 
(intersection of Interior of object A and Boundary of object 
B), BndInt(A,B), and BndBnd(A,B), without computing the 
precise extent of intersections. The cross intersection can 
be characterized into seven categories [7]. When cross 
intersection is insufficient to determine tangential 
intersection, some applications such as RCC8 and VRCC-
3D+ [6] resort to coplanar intersection to support relations 
such as externally connected (EC) and tangentially 
connected (TPP, TPPconverse). The precise intersection of 
coplanar triangles is a little more complex because it can 
result in area intersection as well. The coplanar triangles 
intersection can be classified as: Single Point Intersection 
(vertex-vertex, vertex-edgeInterior), Line Segment 
Intersection (edge-edgeCollinear, edge-triangleInterior, 
triangleInterior-triangleInterior) in Fig. 6 (a,b,c), Area 
Intersection bounded by 3, 4, 5, 6 edges, (Fig. 7(a,b), Fig. 
8(a, b, c)). A triangle may be entirely contained in the other 
triangle (Fig. 8(d)). In this paper, we present a detailed 
analytical study of the intersection of triangles.  

It is possible that two triangles cross intersect in a line 
segment even when a triangle is on one side of the other 
triangle. In that case, it may be desirable to know which 
side of the other triangle is occupied. In Fig. 6(b), the 
triangle PQR (except QR which is in ABC) is on the 
positive side of triangle ABC. So PQR does not intersect 
the interior of object of triangle ABC. We will use this 
concept in Section 5.  

 

Fig. 4. Disjoint triangles: Planes supporting the triangles may 
be crossing or coplanar. The triangles do not have anything in 
common. 

 
It should be noted that the vertex-edge intersection 

encompasses vertex-vertex and vertex-edgeInterior 
intersection, whereas the vertex-triangle intersection 
encompasses vertex-vertex, vertex-edgeInterior, and 
vertex-triangleInterior. Thus 1D JEPD cross intersection 
between ABC and PQR can be one of the three 
possibilities: (1) collinear along edges, (2) an edge of PQR 
lying in the plane of triangle ABC, or (3) triangles “pierce” 
through each other yielding an intersection segment. 

 

 
 

Fig. 5. Triangles intersect at a single point. The intersections 
between triangles ABC and PQR are JEPD (Jointly Exhaustive 

and Pairwise Distinct) cases of Single Point intersection between 
triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur 

in both cross and coplanar intersections. However, (c) vertex-
triangleInterior and (d) edgeInterior-edgeInterior intersection 

point can occur in cross intersection only. 

 
 

Fig. 6. Triangles intersect in a line segment. (a) edge-
edgeCollinear intersection can occur in both cross and coplanar 
intersections. However, (b) edge-triangleInterior and (c) 
triangleInterior-triangleInterior intersection segment occur in 
cross intersection only.  

 
 

Fig. 7. Triangles intersect in an area (shaded). (a) One edge of 
triangle PQR and two edges AB and AC of triangle ABC 



intersect, vertex A is in the interior of PQR. (b) One edge of 
triangle PQR with three edges of ABC, and vertex A in the 
interior of PQR. The common area is bounded by three edges. The 
intersections vertex-triangleInterior, edge_triangle, edgeInterior-
triangleInterior hold.  

 

 
 

Fig. 8. Triangles intersect in an area (continued). The coplanar 
triangle intersections are bounded by four, five, and six edge 
segments. (a) Two edges of triangle PQR and two edges AB and 
AC of triangle ABC intersect, vertex A is in the interior of PQR, 
vertex R is in the interior of triangle ABC. The intersection area is 
bounded by four edges. (b) Two edges of triangle PQR and three 
edges of triangle ABC intersect; vertex C is in the interior of 
PQR. The intersection area is bounded by five edges. (c) Three 
edges of triangle PQR and three edges of triangle ABC intersect; 
every vertex of one triangle is outside the other triangle. The 
intersection is bounded by six edges. (d) No edge of triangle PQR 
intersects any edge of triangle ABC; vertices P, Q, R are in the 
interior of triangle ABC. The intersection area is the triangle PQR. 
 
4  Intersection Algorithm 

 
The examples Fig. 1-4 in section 3  indicate that there 

can be various types of intersections for both cross 
intersection and coplanar intersection between the triangles. 
All other configurations are homeomorphic to the figures 
presented in this paper. For qualitative spatial reasoning, in 
some cases (when the knowledge of cross intersection is 
insufficient), we resort to coplanar intersection to 
distinguish the externally or tangentially connected objects. 
The algorithm is implemented in Python 3.3.3.  

 
4.1  General Purpose Algorithm 

 
If a vertex of PQR is in the interior of ABC (or the 

converse is true), then an area intersection occurs, (Fig. 4(a, 
b), Fig. 5(a,b,d)). If no two edges intersect and 
vertex_triangleInterior (vertex, triangle = tr2) for every 
vertex of a triangle tr1, then the triangle tr1 is contained in 
tr2 and conversely. If no edge-edge intersection takes place 
and no vertex of one triangle is inside the other triangle (or 
the converse is true), then they are disjoint.   

Some of the existing methods may use alternate edge-
oriented techniques to determine the area of intersection, 
however those will be limited [8] lacking classification 
capability. Our algorithm is more comprehensive and 
analytically rigorous; it is implicitly capable of handling 
any specific type of intersection simultaneously, which may 
be a single point, a segment or an area.  

 
THE ALGORITHM – A GENERAL APPROACH 

 
boolean triTriIntersection (tr1 = ABC,  tr2 = PQR) 
The triangles ABC and PQR are  
X = A + u U + v V with U = B - A, V = C - A, 0 ≤ u, v, u 

+ v ≤ 1 
X = P + s S + t T with S = Q - P, T = R - P, 0 ≤ s, t, s + t 

≤ 1 
The general set up for detecting intersections is to solve 

the equation 
A + u U + v V = P + s S + t T  
with 0 ≤ u, v, u + v, s, t, s + t ≤ 1,  

Rearranging the equation, we have  
u U + v V = AP + s S + t T   (1) 
 
This is an underdetermined system of equations 

involving four parameters u, v, s, t and three equations in x, 
y, and z- coordinates.  This means one of the parameters 
can be arbitrarily assigned.  The other three parameters can 
be determined in terms one parameter provided the system 
is consistent otherwise not solution can be found due to 
inconsistency. We need additional constraint to have valid 
solution. Here the parameters u, v, s, t are bound such that 0 
≤ u, v, u+v ≤ 1 and 0 ≤ s, t, s+t ≤ 1.  In addition, the 
solution is s, t must be consistent. This may be confirmed 
by checking the (s,t)-intersection must correspond to (u,v).  
This can be quickly determined that the point X = P + s S + 
t T lies in the uv-plane by checking the dot product 
AX•UxV=0 

For simplicity in solving (1), we use the following 
notation.  

Let AP = P - A be a vector, δ = (UxV)•(UxV), and α, β, γ 
be vectors  

 

For intersection between triangles ABC and PQR, dot 
equation (1) with (UxV)xU and (UxV)xV, we quickly get  

u = - ( γ•V + s α•V + t β•V) 
v = γ•U + s α•U + t β•U 
Adding the two equations,  
   u + v = γ• (U - V) + s α• (U - V) + t β•(U - V) 
In order that 0 ≤ u, v, u + v ≤ 1, we get the following 

inequalities for possible range of values for s and t 
 
 (a)  - γ•U ≤ α•U s + β•U t ≤ 1 - γ•U 
 (b)   - 1 - γ•V ≤ α•V s + β•V t ≤ - γ•V 
 (c)  - γ• (U - V)≤α•(U - V) s + β•(U - V) t ≤ 1- γ•(U - V) 

α =
S × (U ×V )

δ
,β = T × (U ×V )

δ
,γ = AP× (U ×V )

δ



 

	  

 
These linear inequalities (a) - (c) are of the form 
   m ≤ ax + by ≤ n  
The solution to this system of inequalities is derived in 

Section 3. We apply the results of those methods here in 
solving (a) - (c) pairwise. 

sm = 0, sM =  1 
If solve_x (- γ•U, α•U, β•U, 1 - γ•U, -1 - γ•V,   α•V, β•V,  

- γ•V, xm, xM)  // (a), (b) 
 sm = max (sm, xm), sM = min (sM, xM) 
If solve_x (- γ•U, α•U, β•U, 1 - γ•U, - γ•(U - V),   α• (U - 

V), β•(U - V), 1 - γ•(U - V), xm, xM)  // (a), (c) 
 sm = max (sm, xm), sM = min (xM, sM) 
If solve_x (- 1 - γ•V, α•V, β•V, - γ•V, - γ•(U - V), 

  α•(U - V), β•(U - V), 1 - γ•(U - V), xm, xM)  // (a), (c) 
 sm = max (sm, xm), sM = min (xM, sM) 
if sm > sM 
 return false 
else  
 for s∈[sm, sM] // we solve the (a)-(c) inequalities for t  
  tm(s) = 0; tM(s) = 1; 
  if solve_y( - γ•U, α•U, β•U, 1 - γ•U, -1- γ•V,   α•V, 

β•V,  - γ•V, s, ym, yM) //(a), (b)   
   tm(s) = max (tm(s), ym), tM(s) = max (tM(s), yM)  
  if solve_y(- γ•U, α•U, β•U, 1 - γ•U, - γ•(U-V), α•(U-

V), β•( U-V), 1 - γ•( U-V),  s, ym, yM) //(a), (c) 
   tm(s) = max (tm(s), ym), tM(s) = min (tM(s), yM)  
  if solve_y( -1- γ•V, α•V,β•V, - γ•V, - γ•(U-V), α•(U-

V), β•( U-V),1 - γ•( U-V),  s, ym, yM) //(b), (c) 
   tm(s) = max (tm(s), ym), tM(s) = min (tM(s), yM),  
  if tm(s) > tM(s)  
   return false 
  else  
   tm(s) ≤ t ≤ tM(s) 
   return true 
/* end of algorithm */ 
 
We first solved the three inequalities pairwise for a range 

of values for s, so that sm ≤ s ≤ sM holds good 
simultaneously with three inequalities. Then from this 
range of s values, we solved for t(s) as a function of s such 
that tm(s) ≤ t(s) ≤ tM(s).  There is no closed form function as 
such, It is a numerical solution to t(s) for each s.  Thus if 
sm=sM and t(s) is constant, it result in a single point else it is 
a line segment.  Also if sm < sM  and tm(s) = tM(s) for each s, 
it is a line segment.   If sm < sM   and tm(s) < tM(s) for some 
s, the it is an area intersetion.  The parmetric bounding box 
for overall intersection is [sm , sM]x[tm , tM ] where tm = min{ 
tm(s): sm ≤ s ≤ sM}, and tM = max{ tM(s): sm ≤ s ≤ sM}. The 
bilinear parameter coordinates for range of parameters are 
denoted by pm = (sm, tm), pM = (sM, tM) the corresponding 
3D points are denoted by Pm = P + sm S + tm(sm) T, and PM 
= P + sM S + tM(sM)T.   In general P([sm, sM],t(s))= P + s S + 
t(s) T. 

 This discussion may be summarized and the intersection 
points can be classified as follows:   

If the algorithm returns false,  
 No Intersection 
Elseif (Pm = PM)  
 Single Point Intersection 
Elseif (sm = sM or (tm(s) = tM(s) for sm ≤ s ≤ sM) 
 Line segment intersection common to two triangles 
Else 
 Area Intersection common to two triangles 
 
This will implicitly cover the case when a triangle is 

inside the other triangle as well. If triangles do not 
intersect, then the triangles are declared disjoint. This 
completes the discussion of general algorithm for 
intersection between triangles. 

Similarly, if required, we can determine (u, v) - 
parameter values corresponding to triangle ABC. This 
algorithm detects whether the triangles intersect regardless 
of crossing or coplanar triangles, and we classify the 
intersection as a vertex, edge-interior or triangle-interior 
point in Section 4.2.  

This completes the general purpose algorithm discussion 
for determining the triangle - triangle intersection algorithm 
completely.  

 
4.2  Classification Of Intersection 

In Section 3, we developed sub-algorithms that support 
the main algorithm at its intermediate steps. In addition to 
existence or nonexistence of an intersection, this algorithm 
also supports other auxiliary computations, (e.g. 
classification of intersection and the calculation of actual 
3D intersection points, segment or area) which are 
necessary for some applications.  

If an application requires the (u,v) parameters for triangle 
ABC corresponding to (s,t) of triangle PQR, they can be 
quickly determined by using the computed (s,t) values as 
follows.  

Input: X is a point of triangle PQR corresponding to 
parameters (s,t), X = P + s S + t T. 
Output: (u,v)  coordinates corresponding to (s,t).  
Let  
A + u U + v V = X  
Rearranging the equation, we get  
u U + v V = AX  
To solve this, we dot product the equation with vectors 

(UxV)xU and (UxV)xV. 

Let  

then u = - γ•V  and  v = γ•U  
 
The parameter values (s,t) are constrained by the 

barycentric constraints on (u,v).  However solving this 
equation there may be extraneous (u,v) values which are 
pruned to stay within the (U,V) constraints. 

 

γ =
AX × (U ×V )

(U ×V )•(U ×V )



 
 
 
This algorithm may be used with any application (e.g., 

qualitative spatial reasoning, surface modeling, image 
processing etc.). The algorithm determines whether 
intersection exists or not (i.e., it returns true or false). If 
true, the parameter coordinates of intersection are readily 
available. Now we can derive all the classification 
information from the parametric coordinates; only logical 
tests are sufficient for classification of the intersections. It 
is not the intent of this algorithm to determine whether the 
triangles are crossing or coplanar. This can be quickly 
determined as follows: if UxV•SxT ≠0, then triangles cross 
else triangle planes are parallel. If AP•UxV = 0 or AP•SxT 
= 0, then the triangles are coplanar.  

In order to determine whether an intersection point 
X=(u,v) is a vertex of ABC, or on the edge of ABC, or an 
interior point of triangle ABC, no extra computational 
effort is required now. Logical tests are sufficient to 
establish the classification of this intersection. Since 0 ≤ u, 
v, u + v ≤ 1, we can classify X relative to ABC in terms of 
the following predicates: 

vertex ((u, v)): If (u, v) ∈ { (0, 0), (0, 1), (1, 0)}, then X 
is one of the vertices of ABC. 

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u 
< 1) or (u + v = 1, 0 < u < 1)), then X is on an edge of 
ABC, excluding vertices.  

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 
< u + v < 1), X is an interior point (excluding boundary) of 
the triangle ABC. 

Similarly for triangle PQR, vertex((s,t)), edgeInterior 
((s,t)), and triangleInterior ((s, t)) are determined. 

 
5  Application  

  
Qualitative Spatial Reasoning relies on intersections 

between objects whose boundaries are triangulated. The 
spatial relations are determined by the 9-Intersection/4-
Intersection model [6,7]. That is, for any pair of objects A 
and B, the interior-interior intersection predicate, IntInt(A, 
B), has true or false value depending on whether the 
interior of A and the interior of B intersect without regard 
to precise intersection. Similarly IntBnd(A, B) represents 
the truth value for the intersection of the interior of A and 
the boundary of B, and BndBnd(A,B) represents the 
predicate for the intersection of the boundaries of A and B. 
These four qualitative spatial reasoning predicates are 
sufficient to define RCC8 spatial relations (see Table 1). 

In the application VRCC-3D+, the boundary of an object 
is already triangulated; that is, we will need to intersect 
pairs of only triangles. To reduce the computational 
complexity, the algorithm uses axis aligned bounding boxes 
(AABB) to determine the closest triangles which may 
possibly intersect. For example, for objects A and B, if 
bounding boxes for triangles of A are disjoint from 

bounding boxes for triangles of B, either A is contained in 
B (BndInt, IntInt is true) or B is contained in A (IntBnd, 
IntInt is true) or A is disjoint from B. The test for such 
containment of objects can be designed by casting an 
infinite ray through the centroid of A. If the ray intersects B 
an odd number of times, then B is contained in A or  A is 
contained in B. If A is not contained in B and B is not 
contained in A, then A and B are disjoint (i.e., IntInt(A, B), 
IntBnd(A, B), BndInt(A, B), and BndBnd(A, B) are all 
false).  

Without the knowledge of BndBnd(A,B), BndInt(A,B), 
IntBnd(A,B), calculation of IntInt(A,B) is too costly. On 
the other hand, with this prior knowledge, it becomes quite 
inexpensive as the odd parity can be used for quick IntInt 
detection. 

If the triangles cross intersect (e.g., triangleInterior–
triangleInterior is true), then IntInt, IntBnd, BndInt, 
BndBnd will be true. However if the triangles are coplanar 
and intersect, only BndBnd(A, B) is true and IntInt(A, B), 
IntBnd(A, B), BndInt(A, B) are false for the objects; 
otherwise, BndBnd(A, B) is also false.  

It is possible that two triangles cross intersect in a line 
segment even when a triangle is on one side of the other 
triangle, so edgeInterior–triangleInterior is true. In that 
case, it may be desirable to know which side of the other 
triangle is occupied. In Fig. 3(b), the triangle PQR is on the 
positive side of triangle ABC. For example, if triangle1 of 
object A cross intersects the negative side of triangle2 of 
object B, then BndInt(A, B) is true. 

Table 1 is a characterization of the intersection 
predicates, which subsequently can be used to resolve the 
eight RCC8 relations. Here we assume all normals are 
oriented towards the outside of the object. Each 
characterization in Table 1 describes when the associated 
predicate is true. If the truth test fails, then other triangles 
need to be tested. If no pair of triangles results in a true 
value, then the result is false.  

 
TABLE 1. CHARACTERIZATION OF INTERSECTION 

PREDICATES 

 
This characterizes the intersection predicates which help 

in resolving the RCC8 relations. 

BndBnd At least one pair of triangles (cross or coplanar) 
intersects. 

BndInt At least one pair tr1 and tr2 intersect, at least one 
vertex of tr1 is on the negative side of triangles of 
object 2. Or object 1 is contained inside object2, 
i.e. every vertex of object1 is on the negative side 
of triangles of object 2. 

IntBnd At least one pair tr1 and tr2 intersect, at least one 
vertex of tr2 is on the negative side of triangles of 
object 1. Or object 2 is contained inside object1, 
i.e. every vertex of object2 is on the negative side 
of triangles of object 1. 

IntInt At least one pair of triangles cross intersects  
(triangleInterior-triangleInterior) Or an object is 
contained in the other. 



 

	  

 
6   Conclusion 
 

For the 9-Intersection model used in qualitative spatial 
reasoning, triangle - triangle intersection plays a prominent 
role. Herein we presented an implementation of a  complete 
framework for determining and characterizing the 
intersection of geometric objects. In contrast to other 
algorithms, this approach is a general technique to detect 
any type of intersection. It creates classifications by 
applying logical tests rather than computational arithmetic 
tests. Thus our algorithm not only detects whether or not an 
intersection exists, but also classifies intersections as a 
single point, a line segment, or an area. The algorithm 
provides more information than required by spatial 
reasoning systems. Consequently, we hope the new ideas 
and additional information including classification of 3D 
intersection presented herein will be useful in other related 
applications.  

 
 

7   References 
 
[1] Max J. Egenhofer, R.G. Golledge, Spatial and 

Temporal Reasoning in Geographic Information 
Systems, Oxford University Press, USA, 1998. 

[2] Oren Tropp, Ayellet Tal, Ilan Shimshoni, A fast 
triangle to triangle intersection test for collision 
detection, Computer Animation and Virtual 
Worlds, Vol17 (50), pp.527 - 535, 2006.  

[3] G. Caumon, Collon - Drouaillet P, Le Carlier de 
Veslud C, Viseur S, Sausse J (2009) Surface - 
based 3D modeling of geological structures. 
Math Geosci 41:927–945, 2009. 

[4] Ahmed H. Elsheikh, Mustafa Elsheikh, A reliable 
triangular mesh intersection algorithm and its 
application in geological modeling, Engineering 
with Computers, pp.1 - 15, 2012. 

[5]  D. A. Randell, Z. Cui, and A.G. Cohn,   A Spatial 
Logic Based on Regions and Connection., KR, 
92, pp. 165–176, 1992. 

[6] Max J. Egenhofer, R. Franzosa, Point-Set 
topological Relations, International Journal of 
Geographical Information Systems 5(2), pp. 161 
- 174, 1991.  

[7]  Chaman L Sabharwal and Jennifer  L Leopold, 
“Reducing 9-Intersection to 4-Intersection for 
identifying relations in region connection 
calculus, ” in The 24th International Conference 
on Computer Applications in Industry and 
Engineering, 2011, pp. 118–123, 2011. 

[8] Guigue P, Devillers O. Fast and robust triangle - 
triangle overlap test using orientation 
predicates. Journal of GraphicsTools 2003; 8 
(1): pp. 25–42, 2003. 

[9] Held M. ERIT a collection of efficient and reliable 
intersection tests. Journal of Graphics Tools 
1997; 2(4): pp. 25–44, 1997. 

[10] Badouel Didier, An Efficient Ray - Polygon 
Intersection,  Graphics Gems (Andrew S. 
Glassner, ed.), Academic Press, pp. 390 - 393, 
1990. 

[11] Chaman Sabharwal, and Jennifer Leopold, “A 
Fast Intersection Detection Algorithm for 
Qualitative Spatial Reasoning”, Proceedings of 
the 19h International Conference on Distributed 
Multimedia Systems (DMS’13), Brighton, UK, 
Aug. 8 - 10,  pp. 145-149, 2013. 

 [12] Chaman Sabharwal, Jennifer Leopold, and 
Douglas McGeehan,: Triangle-Triangle 
Intersection Determination and Classification to 
Support Qualitative Spatial Reasoning, Polibits, 
Research Journal of Computer Science and 
Computer Engineering with Applications Issue 
48 (July–December 2013), pp. 13–22, 2013. 

 


