
4-1

EXPERIMENT NUMBER 4
Extending the 8051 with External Hardware: An Address

Latch and Memory-Mapped Port

INTRODUCTION:

In this lab, you play the role of a hardware designer developing components to work with the 8051
and to extend the 8051’s capabilities. The software-design team has not yet finished their design, but
they have created a software model that implements the most important features of that design. You
will use this model to test hardware you develop. By simulating hardware and software early, you
have the opportunity to detect and solve problems in your hardware design before that design is set in
stone (or set in silicon, as the case may be). Waiting for a hardware prototype to be finished before
testing software could add to your troubles. The hardware may be too far along to make changes cost
effectively, and some corrections may be impossible to make with software alone. Changing the
hardware late in the design could add significant costs to development and could significantly extend
the time-to-market, which could be disastrous to your product’s success. By testing the design early
and often, you can quickly and easily correct the problems that occur. Of course, testing should
never replace the process of carefully laying out and developing the design in the first place – a de-
sign which is well thought out before any implementation is done is bound to be the best.

You will design hardware to allow the 8031 on the XS40 board to use external memory and to create
a memory-mapped port for the seven-segment display. The 8031 included on the XS40 board does
not contain internal code memory. An external SRAM is used to store the code. To access this ex-
ternal memory requires an external address latch since the lower address byte and the data are multi-
plexed on port 0. You will incorporate this external latch in the FPGA on the XS40 board using the
eight-bit latch designed in lab 1. You will also create a memory mapped output port for the seven-
segment display from another instance of this same eight-bit latch. Note that while a transparent
latch would be preferable in these applications, the Xilinx 4000E series FPGA provides only edge
triggered flip flops so we must use an edge triggered register instead if a 4000XL series FPGA is not
available.

Hardware will be developed in Design Architect and will be simulated using QuickSim Pro. A pro-
gram for the 8031 will be provided for you. Once your design has been verified through simulation,
you will verify your design in hardware.

OBJECTIVES:

1. Improve hardware-software design skills.
2. Learn how to demultiplex the 8051 address/data bus.
3. Observe the timing of signals involved in a code-fetch memory cycle.
4. Introduce a simulation model of the 8051 microcontroller.
5. Learn how to add a memory mapped output port to the 8051.

4-2

REFERENCES:

1. Appendix D, XS40 Schematic: http://www.ece.umr.edu/courses/cpe214/schematics.pdf

MATERIALS REQUIRED:

• Mentor Graphics software: Design Architect, Quicksim Pro
• XS40 simulation model: http://www.ece.umr.edu/courses/cpe214/dist/lab4.tar
• 8051 program file: http://www.ece.umr.edu/courses/cpe214/dist/hello.hex
• XS40 board
• Windows-based computer with an unused parallel port
• Ftp program

BACKGROUND:

The 8031 requires external code memory because it contains no internal code space. A latch is
needed to latch the lower eight bits of the address from port 0 because this port is multiplexed with
both data and addresses. Figure 1(a) shows a block diagram of the 8031 with external memory and
an address latch. The schematic shows that port 0 is connected both to the memory address lines

One machine cycle

PCL Opcode PCL

PSEN/

Port 2

ALE

Port 0

Osc.

PCH PCH

Figure 1(b) 8051 machine cycle

Port 0

EA/

ALE

Port 2

PSEN/

D Q

G

8031

D0-D7

A0-A7

A8-A15

OE/

MEMORY

Figure 1(a) 8031 code space expansion

RD/

WR/ WE/

4-3

(through the latch) and to the memory data lines. Figure 1(b) is a timing diagram for an external
memory access. A memory access proceeds as follows: 1) The 8031 writes the lower and upper ad-
dress byte out port 0 and port 2, respectively; 2) On the first falling edge of ALE (address latch en-
able), the low byte (PCL) from Port 0 is latched. Once latched, port 0 is available to receive data
from memory; 3) PSEN (program store enable) goes low, enabling memory to send data back to the
8031. 4) Data – the opcode of the next instruction – is received by the 8031. This process is illus-
trated in the timing diagram in Figure 1(b). Notice that Port 2 does not need a latch because its value
does not change during a single bus cycle.

To free up ports on the 8051, external devices can be mapped within the microcontroller’s data mem-
ory address space. In this case, you can read or write the device by using a MOVX instruction. In
this lab, we would like to map the seven-segment display to memory location 0xAA55. We will put
a latch there so that data we write will be shown on the seven-segment display, even after the micro-
controller has gone on to other tasks. The block diagram is illustrated in Figure 2.

The address latch is the same latch seen in Figure 1(a). Just as before, the 8031 will first write an ad-

dress, which will be stored at this latch. During a data write instruction, the 8031 would then write
data, which would be stored by the data latch if the address was 0xAA55. Data is “written” when the
WR/ line from the 8031 goes low. Data is latched by the data latch, then, when both the WR/ line is
low and the address is 0xAA55, indicating that the 8031 has performed a MOVX to external data
memory location 0xAA55. As far as the 8031 is concerned, the seven segment display is just another
external memory location.

The steps needed to write a value to the seven segment display are illustrated in the following exam-
ple. Say the 8031 wants to write a number, say 0x42, to the seven segment display. It would do so
using the assembly code:

 MOV A, #42H
 MOV DPTR, #0AA55H
 MOVX @DPTR,A

The timing diagram resulting from the fetch and execution of the MOVX instruction is shown in Fig-
ure 3. This timing diagram was adapted from a diagram in the Philips 8051 Family Hardware Guide.
After the instruction is fetched, the MOVX command writes the address (0xAA55) out P0 and P2.
This address is latched on the falling edge of ALE. After a short while, the data (0x42) is written out
Port 0 to the data bus. The WR/ line goes low, writing this value to the external latch.

Address
Latch

Decoder G

D Q

Data
Latch

Port 0

Port 2

WR/
ALE

Figure 2 Memory mapped output port

4-4

Figure 3 MOVX instruction timing

PRELIMINARY:

• Review the design and simulation of the eight-bit register from lab 1.

• Trace the connection from the oscillator circuit to the FPGA on the XS40 schematic and note
which pin is used to connect the oscillator to the FPGA. The FPGA pins are labeled on the sche-
matic as XCBUSxx. Repeat for the XTAL1 connection on the 8031. Repeat for the CS/ pin of
the SRAM. Trace the connections between the low order addresses from the 8031’s Port 0 and
the high order addresses from Port 2 to the SRAM. Note the position of the FPGA and which
pins are used. Trace the connections between the SRAM I/O lines, the FPGA, and the 8031’s
Port 0. Note in particular that the 8031’s Port 0 and Port 2 pins are wired to the SRAM in a pecu-
liar ‘scrambled’ order. For example, note that P2.6 (address bit 14) does not connect to SRAM’s
address bit 14 but to address bit 6. This was no doubt done to make the printed wiring board lay-
out more efficient and it makes no difference in the operation of the SRAM but can be a bit con-
fusing at first. What it means is that if you want to look at the address bus in ‘normal’ order,
you’ ll need to look at P0 and P2 coming out of the processor and not the address(14:0) pins on the
SRAM. The SRAM’s data bus pins are similarly scrambled. If you open down on the SRAM
schematic while in da, you’ ll see this address mapping a bit more clearly.

• Sketch a design for the address decoder and latch for the seven-segment display in your lab note-
book. Keep in mind that you are using a level sensitive latch and that addresses are latched on the
trailing edge of ALE, not the leading edge. Only use components that are available in the Xilinx
library. Label the inputs and outputs of your design to show how they should be connected to the
rest of the circuit (for example, the output from your latch should be labeled to show it is con-
nected to the pins controlling the seven segment display). Pay special attention to the decoder in-
put signals (the address and WR/) and the decoder output signals (output register clock input), to
make sure your design will function as desired. You do not need to show the internal logic of the
8-bit register, since you already designed this component in lab 1.

4-5

PROCEDURE:

Summary: Create an address latch, address decoder, and output port in Design Architect. Connect
them up as in Figures 1a and 2. Connect necessary control signals to the 8031 through the FPGA.
Cosimulate your hardware with “ demo” software in QuickSim Pro. Download the design to the
XS40 board and verify in hardware.

1. Download the simulation model of the XS40 board from
http://www.ece.umr.edu/courses/cpe214/dist/lab4.tar and untar it in the directory used for lab
1. This file contains a top level model of the XS40 (xess40_schematic) as well as models of
each major component on the XS40 board. Untarring the file in this directory will overwrite
the old simulation model, but will save your 8-bit register design. Run build_simulation to
compile the 8051 VHDL model.

2. Create the address decoder for the seven-segment display. Begin Design Architect (da) and
open a blank sheet. Draw the logic for your decoder within this sheet. Connect the inputs to
and outputs from the decoder to portin and portout ports. Using ports will allow you to create
a decoder “symbol” . When you have finished creating your logic, check and save the compo-
nent as “mydecoder” . Create a symbol for this decoder and check and save it as “myde-
coder” .

3. Add the registers and decoder to the design within the FPGA. Open the xc4005 sheet. Place
your decoder (the decoder symbol) and two instantiations of your register within the sheet.
You will be wiring them up similar to Figure 2, so you may want to place them in a similar
manner. Wire the latches and decoder to each other and to the seven-segment display and to
the address and control lines from the 8031. Use the circuit sketch you made in the prelimi-
nary assignment as a guide. The example software (hello.hex) makes the assumption that
segment g (P20) is wired to the least significant bit of the data byte (P0.0) so wire the display
accordingly. The connections to the seven-segment display on the xc4005 component sche-
matic sheet are not in order so be careful how you wire them up. It’s helpful to relate the
xc4005 pins to those shown on the xess40_schematic sheet. Table 1 shows the FPGA/7Seg
connections.

4. To complete the circuit, you must also make the following connections:

a) The clock signal is not directly connected to the 8031 on the XS40 board, rather you must
route it to the 8031 through the FPGA. To route the clock, connect pin 13 of the FPGA
(which is connected to the on-board clock oscillator) to pin 37 (which is connected to the
XTAL1 clock input of the 8031). Verify these pin numbers from your preliminary notes
in your lab notebook.

4-6

Table 1 FPGA - Seven Segment Connections

FPGA 7Seg
P19 a
P23 b
P26 c
P25 d
P24 e
P18 f
P20 g

b) Address line 15 should be connected to the CS\ pin of the SRAM. Use your preliminary
notes to verify the FPGA pin number to use.

c) Connect the address and data lines from the 8031 to SRAM, as shown in Figure 1a. Port 2
of the 8031, which writes out the high address byte, is already connected directly to the
SRAM on the XS40 board, so you don’ t have to make any connections there (See sche-
matic, appendix D). You will need to connect your address latch between port 0 and
SRAM. Port 0 is connected to the FPGA as are the low-order address and data lines of the
SRAM. Connect the wires to port 0 to the input of your address latch and connect the
output of the latch to the pins running to SRAM.

The schematic has two drivers (buffers) connected up to port 0, an input buffer and a tri-
state driver (see below). The input buffer boosts the input signal to be used within the
FPGA. The tri-state driver is used to write data from the FPGA back out to port 0. The
tri-state driver is used so that the FPGA does not write something to port 0 while some-
thing else is driving those signal lines (i.e. the 8031 or SRAM). Normally, the E (enable)
line of the tri-state driver would be connected to logic such that the FPGA would only
drive signals out to port 0 on a read. For this exercise, the FPGA never needs to write data
back to port 0, so we can disable the tri-state drivers simply by grounding the enable lines
(E=0). Go ahead and ground these lines if they haven’ t already been grounded for you.

d) An 8051 microcontroller typically uses two separate chips for data and for code memory.
The XS40 board, however, uses a single SRAM chip for both program and data memory.
The extra logic is required so that the SRAM’s OE/ pin will go low when either PSEN/
(code fetch) or RD/ (data fetch) go low. The logic is a simple AND gate, as shown in
Figure 1a. In this case, OE/ = RD/ & PSEN/, so that OE/ is high only when both RD/ and
PSEN/ are high (e.g. not active) and are low otherwise. To implement this logic, tie the
pins RD/ and PSEN/ from the 8031 to the OE/ of the SRAM using a nor2b2 (the DeMor-

f b

e c

g

d

a

Enable – ground

To nowhere (for now)

To address latch To Port 0

4-7

gan equivalent of an AND gate). Also tie WR/ from the 8031 to WE/ of the SRAM. Re-
call that pins P3.7 and P3.6 of port 3 double as the RD/ and WR/ lines.

e) Connect the reset pin of the 8031 (XCBUS36) to jumper J1-2, pin p44, which is part of
the parallel port jack. By connecting reset to the PC parallel port, we can reset the 8031
directly from the PC using the GXPORT program.

5. Check and save your design and exit Design Architect. (If you are unsure of your design, you
might minimize Design Architect instead. That way, if you have to make changes to your de-
sign you only have to recall the window instead of restarting da.

6. The subdirectory program_files contains two dummy files that hold the contents of the 8031’s
program memory. Code.hex contains data for the 8031 model’s internal code space while
sram.hex contains data for the SRAM model. Since the XS40 uses external code space, you
will need to either make sram.hex the same as your program file or point sram.hex to your hex
file using a symbolic link. If hello.hex is not already in program_files, download a copy of it
from http://www.ece.umr.edu/courses/cpe214/dist/hello.hex and copy it over the file sram.hex
located in the sub-directory: program_files. This program, hello.hex, will be run by the 8031
to help verify your design. QuickSim automatically loads the file sram.hex and runs it on the
8031 model during simulation.

7. Start QuickSim Pro using the command:

qspro -as hdl xess40_schematic

8. Simulate and verify your design. Set QuickSim to trace: a) WR/, PSEN/, ALE, P0, and P2
from the 8031, b) the latched address from P0, and c) the seven output lines to the seven-
segment display. The steps needed to add these traces were shown in lab 1. Add the
GLOBALSETRESET line as an editable waveform and pulse it as in lab 1, so that the flip
flops will be in a known state. Also keep the RST input to the 8031 low by forcing J1-2 high.
You may also want to look at the SRAM control lines. Be careful about which lines you se-
lect to display or you’ ll get the addresses and data in XS40-scrambled order!

9. Run the simulation for about 100,000 nanoseconds, which is equivalent to 1200 clock cycles
(with a 12MHz clock), or about 45 to 80 instruction cycles. During simulation, a
QSPro(HDL) window will show the output to the seven-segment display. You should see the
message “hello world” appear in this window, each character displayed one after the other.
The character displayed should change on the trailing edge of WR/ when the address lines
contain 0xAA55. If your design does not work at first, you should carefully check the ad-
dress, data, and control signals to solve the problem. Compare what you expect to happen
when signals change on these lines to what you actually see happening. If needed, look at sig-
nals between parts inside your FPGA. The ability to look at signals inside chips is a big
advantage of simulation. You could not do this if you were using actual hardware chips or at
least it would be rather difficult to do so. Fix any problems in the original design using De-
sign Architect and recompile and reload your simulation. Indicate what problems occurred
and what you did to solve the problems in your lab notebook.

4-8

10. Once software simulation is complete and you can simulate the correct message on the seven-
segment display, print out a copy of the trace that contains the WR/ signal, address bus sig-
nals, and the signals sent to the seven-segment display. Exit QuickSim (and Design architect,
if necessary).

11. Create a bit file of your design, which will be downloaded to the FPGA on the XS40 board.
This can be accomplished using the ‘xmake’ command as shown in lab 1.

12. Download the hex program file (hello.hex) and your bit file to the XS40 board using
GXSLOAD program (see lab 1). Use the digital oscilloscope’s digital inputs to display the
WR/ signal and the seven signals going to the seven-segment display. Clear the scope screen
with the Erase button. Set it to trigger on the WR/ signal rising edge, capture a single trace,
and set the time division to 5 µs/div. Reset the 8031 by toggling bit D0 of the parallel port us-
ing GXSPORT. Toggle the reset line and capture a screen full of information. Print these re-
sults and compare them with those obtained in QuickSim. Mark and explain any discrepan-
cies.

13. If all went well, the trace from your scope should match the trace from your simulation, so the
program and your design work, right? Look at the seven-segment display. It should be show-
ing the sequence “hello world” . Does it? Why doesn’ t the seven-segment display show the
correct values? Remember, we already know from simulation that several aspects work: the
8031 is connected correctly to the address latch and to SRAM; the address latch works; the
decoder and data latch work, the data latch is connected correctly to the seven-segment dis-
play, the program causes the correct values to be sent to the seven-segment display. What
else is left? Write your solution in your notebook.

A significant advantage of simulation before implementation is that you can eliminate most
problems ahead of time. Problems are much easier to solve in a simulation environment, but
you won’ t always eliminate them all. When you see a new problem when you implement the
design in hardware, you have a measure of confidence in your design and can immediately
eliminate several possible causes that were already tested through simulation. The problem
can be solved much more quickly as a result. It’s much easier to change a connection or a
component in a schematic capture program than it is to change a trace on a printed circuit
board or an ASIC.

14. Your TA should have a “working” version of the hex file which corrects the problem seen in
step 13 above. Get this hex file from your TA and run the program again. Does the seven
segment display show the correct message now?

QUESTIONS:

1. In part 4b of the procedure, we connected address line 15 to the CS/ pin of the SRAM. As a
result, at what addresses (locations in the address space) can the 8031 access the SRAM?
Will the 8031 write data to the SRAM when it performs an external memory write to address
0xFFFF? Why/why not?

4-9

2. Name some advantages of simulating hardware before creating a hardware prototype. If you
did not have software (or, at least, a model of the complete software), why would it still be
advantageous to simulate your hardware?

3. In step 13 of the procedure, we found one error with our design that was not uncovered (eas-
ily) with simulation. Describe three other possible errors that might not be discovered with
simulation.

4. Given that some errors are not easily found through simulation, can you list some reasons
why we continue to use simulation, rather than skipping simulation entirely and going straight
to the final hardware test?

5. Take your oscilloscope printout from step 13 and mark each external memory write and the
value written. Indicate what letters on the seven-segment display these values represent.

6. Explain why the seven-segment display is a “write-only” memory location. How could we
extend the hardware to allow reading from the seven-segment display? Sketch the necessary
hardware modifications in your lab notebook.

