An Assessment of Laboratories and Materials Teaching Hardware-Software Co-Design

D.G. Beetner and H.J. Pottinger

Electrical and Computer Engineering
University of Missouri-Rolla

Outline

- ■Background and Motivation
- ■Laboratory Design
- Laboratory Equipment
- Experiments
- ■Evaluation

Background

- Hardware and software developed separately in past
- ■Increasingly risky
 - Systems on a Chip
 - Short market windows
 - Difficult to partition hardware and software
- ■Co-Design reduces number of prototypes and time-to-market
- Rapidly growing demand

Background

- ■Hardware-Software Co-design fundamental to digital systems design
- ■Undergraduates in CpE, EE, and CS should be introduced to this concept
- Developed software and laboratories which introduce Co-design at the junior level

Laboratory Objective

- ■Teach concepts of microcontrollers and hardware-software co-design
 - Hardware-Software partitioning
 - Re-use of intellectual property (IP)
 - Hardware-Software co-simulation
 - Embedded software in C and ASM
 - Communication with external devices
 - Real-time systems

Course Design

- Associated course
 - Junior level
 - Focused on 8051 microcontroller
 - Mix of CpE, EE, and CS students
 - Lab is not required
- ■Student background
 - -C++
 - Electronic design automation tools
 - Rapid prototyping with FPGAs

Experiment Outline

- Develop and simulate software
- Develop and simulate hardware
- ■Co-simulate hardware and software
- ■Verify design in hardware

- Keil Software Development Tools
 - C and ASM
 - 8051 software simulation
 - Free evaluation software

- Mentor Graphics design automation tools
- 8051 simulation model
 - Clock-cycle accurate
 - Executes compilergenerated code
 - Complete functionality

- Mentor Graphics design automation tools
- 8051 simulation model
 - Clock-cycle accurate
 - Executes compilergenerated code
 - Complete functionality

- XS40 board by Xess corporation
 - -8031 microcontroller
 - Xilinx FPGA
 - VGA port
 - 7-segment LED
 - Generous pinprobe points

Experiments

- ■Several labs developed
 - Introduction to Hardware-Software Co-Simulation
 - Hardware-Software Co-Verification
 - Extending the 8051 with External Hardware
 - Design with intellectual property: Creating a VGA display
 - Bi-directional serial communication with interrupts

Projects

- Digital LCD alarm clock
- Virtual pet
- MP3 player controller
- "Pong" game
- Automatic pet feeder
- Simon game

Evaluation

- ■Technical accuracy of models
- ■Educational effectiveness of labs

Evaluation of Models

- ■Standard software-testing methodologies
 - White-box testing
 - ASM and VHDL testbenches
 - Code coverage (line coverage, decision coverage, etc)
- ■Evaluation in lab by students and instructors
- Bugs found and eliminated

Evaluation of labs

- ■Instruments:
 - Non-credit examination
 - Course grades
 - Student and instructor surveys
 - Faculty observations
- Compared students who did and did not take the lab
- ■4 semesters (170 students)

Evaluation of Labs

- Students who took the lab:
 - Performed 33% better on evaluation exam
 - Received 20-30% higher final grade in lecture course
 - About 1 letter grades higher on tests
- Results largely independent of race or sex
- Little difference between students in other CpE courses

Surveys and Observations

- Significantly more microcontrollers in senior design course
- ■Steady increase in students taking lab
- Students appreciate usefulness of concepts taught
- Students particularly enjoy project
 - Apparently do not apply principals from lab

Conclusions

- Hardware models are accurate
- ■Labs teach fundamental concepts of hardware-software co-design
- Labs improve performance in the lecture course
- Additional labs under development

Additional Information

- http://www.umr.edu/~daryl/nsf-ccli/
 - WEB SEMINAR on Thursday, August 2nd,
 1:00 Central Time.
- ■<u>daryl@umr.edu</u> or <u>hjp@umr.edu</u>.

Acknowledgements

- National Science Foundation Course Curriculum and Laboratory Improvement program, DUE-9952540
- Mentor Graphics
- Keil Software
- ■Jim Frenzel, University of Idaho