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Abstract – Hardware-software co-design is becoming 
increasingly important to the embedded systems industry.  It 
will soon be fundamental to digital systems design.  As such, 
students in Electrical and Computer Engineering and in 
Computer Science should be introduced to hardware-
software co-design  early in their undergraduate education. 

We are designing laboratory modules which introduce 
concepts of hardware-software co-design in an 
undergraduate’s first course on microcontrollers and digital 
systems design. Students use design automation tools to 
develop FPGA-based hardware for use with an 8051-
microcontroller and use common software development 
tools to develop microcontroller-software in C or assembly 
language.  Co-simulation of hardware and software is 
enabled using a simulation model of the 8051 that we 
developed.   

Preliminary results are encouraging.  Students who take 
the lab perform better in the associated lecture class than 
those who do not take the lab and appear to develop a 
greater appreciation for digital systems design.  We believe 
such laboratories will be a common component of computer 
engineering classes in the future. 
 

Introduction 
 
The rapid reduction in size of integrated circuits (ICs) has 
allowed more and more functions to be implemented in a 
very small area, to the point that entire systems may now be 
implemented on a single chip.  These systems are referred to 
by such acronyms as Systems on Silicon (SOS), Systems on 
a Chip (SOC), and Systems in a Package (SIAP).  As the 
number of chips shrinks and the complexity grows, the 
product designer’s ability to resolve problems becomes 
increasingly more difficult and expensive.  Signals once 
available for analysis are now hidden within the chip and 
development of multiple hardware prototypes during the 
debugging process can be ineffective as well as cost-
prohibitive.  What’s more, designers face incredible 
pressures to bring their product to market very quickly.  A 
product’s success or failure often depends on hitting a 
vanishingly short market window.  Consequently, products 
must be developed fast and virtually error-free.   

Adding to the design problem is the increasing ability to 
implement functions in either hardware or software or both.  
Where once the boundary between hardware and software 
was quite distinct, now the designer must spend considerable 

effort deciding how best to partition his problem between the 
two areas.  His decision affects not only the performance of 
his product, but cost, power, risk, and more.  Design of 
hardware and software must be closely coupled for a 
successful result. 

To bring products to market faster and to identify 
problems earlier in the design cycle, industry has turned to 
design processes which rely heavily on hardware-software 
co-design and co-verification and on reuse of complex 
building blocks (reusable cores and/or intellectual property 
(IP)) [1,2,3,4].  Co-design refers to a process where design 
of hardware and software is very closely linked throughout 
the design process.  In the traditional approach, tasks for 
hardware or software are identified immediately and are then 
developed largely independent of one another. They are only 
brought together at the end of the design process when the 
product may be only weeks from a delivery date and when 
errors can be especially difficult to fix. The progressively 
intimate relationship between hardware and software has 
made this development process risky at best.   

The functionality of a product can be improved and the 
risks in development reduced using hardware-software co-
design.  Co-design typically stresses a top-down approach.  
By immediately capturing high-level functionality of a 
design, several possible architectures can be tested quickly 
and critical flaws can be eliminated early in the design 
process. As the design progresses, greater levels of detail are 
incorporated and virtual prototypes of hardware and 
software working together are tested at regular intervals. 
Key to successful implementation of the hardware-software 
co-design process is co-simulation on an accurate hardware-
software model. The goal of this process is to make final 
implementation in hardware an anti-climactic event, free 
from unwanted surprises. 

The recent interest of industry in hardware-software co-
design is highlighted by the explosive growth of articles 
published in this area.  A search of Compendex shows no 
articles on this subject prior to 1993, but shows more than 
300 since.  Integrated Systems Design Magazine, a 
publication on industry concerns and applications, has 
printed more than 43 articles on co-design in the past 2 
years. 

While use of hardware-software co-design is growing in 
industry, few institutions offer courses that introduce it at the 
undergraduate level.  Those that do offer it at the senior or 
graduate-level, often as an elective [4,5,6].  As hardware-



software co-design will soon be fundamental to digital 
systems design, we believe it should be introduced to 
students early in the electrical engineering, computer 
engineering, and computer science curriculum.  Early 
introduction not only ensures that all students are exposed to 
these important concepts, but also allows simplified 
integration of these concepts in upper level courses like 
VHDL modeling, VLSI design, microprocessor and 
microcomputer design, and others. 

The following paper documents laboratories we are 
developing to introduce hardware-software co-design in a 
junior-level course in microcontrollers and digital systems 
design. 
 

Course Design 
 
Laboratories are being developed around a new course at 
University of Missouri-Rolla which teaches digital systems 
design from the perspective of microcontrollers and 
embedded systems.  This junior-level class is a “gateway” to 
upper-level courses in computer engineering, as it is a 
requirement for many senior and graduate level classes.  It is 
required for students in computer engineering, but also 
attracts a healthy mix of students from electrical engineering 
and computer science, as well as some students from other 
disciplines.  Students come into the course with a basic 
knowledge of digital logic, use of industrial strength design 
automation tools, and use of FPGAs for rapid prototyping of 
digital designs.  Most, but not all, have had a course in C++ 
programming.  Few have any real knowledge of assembly 
programming or of computer architecture. Laboratories are 
being developed as an adjunct to the lecture course, but are 
only required for computer engineering students (though 
they are not required to take the lab and lecture 
simultaneously).  We chose this course because it is taken 
early in the curriculum, it attracts students from a broad 
range of disciplines, and because an embedded systems 
course offers the opportunity to experiment with unique 
hardware interfaces and to showcase exciting, down-to-
earth, applications that actively engage the student and 
increase their level of interest.  

The laboratories are built around the 8051 
microcontroller.  The 8051 was chosen because of its wide-
spread popularity, its simple architecture, and the likelihood 
that it will remain an important processor for years to come.  
There are more than 20 independent vendors of 8051-based 
components and more than 12 current textbooks on this 
controller.  The fundamentals learned on this controller 
should transfer easily to other processors or to more 
sophisticated architectures. 

Laboratories are being designed to teach fundamentals 
of microcontrollers, digital systems, and hardware-software 
co-design through hands-on development of simple 
embedded systems [7].  Students follow each project from 
conception to implementation.  They design hardware and 
software from a given set of specifications, they co-simulate 

their hardware and software design to test for proper 
operation, and they implement their design in hardware to 
verify their final result.  Key to this process is extensive 
system-level simulation before implementation. We believe 
hardware implementation is important not only because of 
the satisfaction a student gets from building something 
“real”, but because there are many problems which arise in 
the lab which do not appear during simulation, such as 
power considerations, ground bounce, and so on.  

While laboratories are still under development, concepts 
we hope to convey include: 
  Microcontrollers: 

• Programming microcontrollers in assembly language 
• Programming microcontrollers in a high-level 

language (C) 
• Analog and digital I/O 
• Signals and timing necessary to read and write 

external devices 
• Memory usage and addressing modes 
• Interrupts, timers, and counters 
• Inter-device communication 
• Real-time operating systems 

  Hardware-Software Co-Design: 
• Hardware-software co-development 
• Hardware-software co-simulation 
• Partitioning tasks between hardware and software 
• Re-use of complex blocks (IP) 
• Implementation of digital logic in an FPGA 
• Use of laboratory tools and equipment to test 

computer hardware 
Of course, being a lab, students also learn how to deal with 
problems which arise when dealing with “real” hardware 
and learn to work within teams to reach a common objective. 
 

Tools 
 
While the focus of advanced design processes like hardware-
software co-design is applications like systems on a chip, 
building systems on a chip is not feasible for most laboratory 
settings.  A good alternative is a board incorporating a 
microprocessor-FPGA combination.  Software is designed 
for the microprocessor and digital hardware is designed and 
downloaded to the FPGA. 

For our labs, we have chosen the XS40 board from Xess 
corporation [8], which combines an 8051-family 
microcontroller with a 9000-gate Xilinx FPGA.  The board 
also sports a 7-segment LED, a VGA monitor interface, and 
a parallel port connector for communication with a host 
computer.  It comes with a generous supply of wire-wrap 
pin-probe points, which allow students to readily access bus 
signals with logic-analyzer probes or to attach additional 
hardware.  The pins are configured such that the XS40 may 
be plugged directly into a breadboard if desired. 

Students develop their software in C or assembly 
language using Keil Software’s software development tools 



[9], though C is used in most labs.  Before implementing 
their software with hardware, students thoroughly simulate 
their software using Keil’s software simulation tool.  This 
tool is good for discovering high-level problems with the 
code, but not for simulating the hardware-software interface.  
After simulation, their code is compiled to an Intel-format 
hex file. 

Students develop custom digital hardware to be 
implemented in the FPGA using Mentor Graphics’ Design 
Architect.  Mentor Graphics is a good choice for hardware 
design and simulation in an academic lab because their 
powerful industry-grade software is available quite 
inexpensively to institutions of higher-education [10].  
Hardware is simulated (independent of software) using 
Mentor Graphics’ QuickSim.   

Once hardware and software have individually been 
simulated successfully, students may co-simulate their 
hardware-software design.  Key to this step is a VHDL 
behavioral model of the 8051 we developed for this purpose.  
We felt a bus-functional model was too abstract and 
inconvenient for the typical junior-level student and that a 
synthesizable model was too complex and would simulate 
too slowly.  Features supported by our clock-cycle-accurate 
model at the time of this publication include: 

• Entire 255-instruction 8051 command-set 
• 4-port digital I/O 
• 4Kb of internal program memory 
• 256 bytes of internal (byte) memory 
• Up to 64Kb of external code or data memory, with 

accompanying (timing accurate) control signals 
• Critical SFRs (e.g. ACC, PSW, DPTR, etc) 
• External interrupts 
• Bit-addressable memory 

An essential feature of our model is a VHDL “wrapper” for 
the internal ROM which loads and interprets an Intel hex-
format file upon simulation.  

Using the model of the 8051, students co-simulate their 
design using Mentor Graphics’ QuickHDL Pro.  QuickHDL 
Pro allows simulation of a mixture of schematic and HDL 
models.  Through this simulation, students verify proper 
operation of their hardware with their software. Complete 
access to signals allows students to quickly identify the 
source of any problems.  These problems are rectified by 
going back to the software-development or schematic-
capture tools.  Once the student is comfortable with their 
design, they may compile their hardware to a bit-file, ready 
for download and verification on an FPGA. 

The final step, hardware verification, is performed using 
the XS40 board.  The hardware configuration file is 
downloaded to the FPGA and the compiled software is 
downloaded to the on-board SRAM.  After so much 
simulation one would expect few surprises during 
implementation of their design.  The design should almost 
certainly work.  However, surprises do still occur.  More on 
that point later. 

Experiments 
 
Experiments were developed to meet the goals listed in the 
“Course Design” section of this paper. While lab 
development is still underway, some of our current labs 
include: 

• Programming the 8051 using Keil uVision-51.  An 
introductory lab.  Students write a simple assembly 
program using Keil uVision-51 to read and write ports 
of the 8051.  They debug their code using Keil 
dScope-51 and create an assembled Intel hex-format 
file of their program.  Emphasis is placed on basics of 
assembly language programming and on use of the 
Keil software development toolchain. 

• Hardware-software co-simulation with the 8051-
simulation model, QuickSim, and the XS40 
prototyping board. Students  use QuickHDL Pro 
from Mentor Graphics to simulate hardware signals 
generated by the program they developed in the last 
lab.  After simulation, their software is implemented 
on the XS40 board. Students verify that signals from 
the 8051 are the same when simulated as when 
measured.  An emphasis is placed on use of design 
automation tools, on co-simulation, and on use of the 
XS40 board 

• External memory addressing -- logic 
implementation with an FPGA and programming 
in C. Students design hardware and software to write 
numeric messages to the 7-segment display on the 
XS40 board.   A subroutine is written in C which 
takes a numeric digit and writes the appropriate codes 
to external memory to show that number on the 7-
segment display.  Students design an address decoder 
and address latch to place the 7-segment display at a 
particular location in the 8051's external memory 
space.   Results are verified, in part, by downloading 
their design to the XS40 and measuring outputs of the 
8051 while slowly stepping the system clock. 

• Hardware-software partitioning. Students write a 
program in C which writes numbers to the 7-segment 
display.  Unlike the last lab, hardware is developed 
such that a number written to an external address is 
properly encoded and displayed, replacing the code-
conversion subroutine of the last exercise. For 
example, if the number “9” is written to location 
0x7FFF (the display address) then the 7-segment 
display will display a “9”.  Students continue to 
simulate with Keil and QuickHDL Pro before 
implementing and testing their design on the XS40 
board. 

• VGA character display. Students design hardware 
and software to display characters on a VGA monitor 
using the XS40 board.  Students are given previously 
designed hardware “IP” for a VGA timing generator, 
a frame buffer, a character ROM, a character 



synchronizer, and a row-column generator.  Students 
use these modules to create a VGA character display 
unit implemented in the FPGA.  Students write a 
program in C which interacts with their hardware to 
scroll a message across the VGA display.  Interaction 
between hardware and software is verified in Mentor-
Graphics before implementation. 

Labs under development include:  
• Serial Communication and Message Encoding with a 

Pseudorandom Noise Sequence;  
• Digital Thermometer Implemented with a Dallas-

Semiconductor 1-wire Device;  
• Communication using Quadrature-Phase Pulse-

Width-Modulation; 
• Real-Time Control of an Embedded System.   

Each of these labs requires development and testing of both 
hardware and software.  In many labs, students are given 
pre-designed hardware or software building blocks which 
they incorporate in their design. Hardware-blocks are often 
designed by students in an upper level VHDL course.  These 
students tend to work harder and do a better job with their 
VHDL design because they know their design will be 
implemented by others.  These students are given an 
exposure to design for re-use and an added appreciation for 
their work. 

Toward the end of the semester, students taking our lab 
complete a self-directed team-based design project.  They 
choose a device they would like to build, they specify its 
characteristics, they plan their design, they build it, simulate 
it, and finally implement it in hardware.  Their progress is 
tracked through regular contact with the lab instructor and 
through an on-going project web page.  When complete, 
they give an oral presentation to the class and demonstrate 
their final product.  Some projects built by the students 
include: 

• Remote control and display for a PC-based MP3 
player 

• “Simon” game 
• Four function calculator 
• Digital LCD alarm clock 
• Automated pet feeder 
• Virtual pet 
• Electronic piano 
• Autonomous robot 
• “Pong” game implemented with an 8051 and a VGA 

display 
Many projects use the XS40 board, but many students also 
design their own circuit board around a discrete 8051-family 
microcontroller.  Students especially appreciate a project 
they can take home with them at the end of the semester and 
show off to their friends.  
 
 
 

Preliminary Results 
 
Complete assessment of these laboratories is still underway, 
but preliminary results are promising.  Since offering this 
class, there has been a significant increase in the number of 
students using microcontrollers in their senior design 
project.  This increase indicates the student’s enjoy the 
material and also that they are walking away from the course 
with some applicable knowledge.  An exit survey of students 
from the lab supports this contention.  The overall consensus 
is that they enjoyed the lab, particularly the opportunity to 
make something “real”.  The lab also appears to improve 
performance in the lecture course.  While data are 
preliminary, a study of test scores over 1 semester show that 
students who chose to take the lab scored an average of 13 
points higher (approximately 1.3 letter grades) on tests in the 
lecture than students who chose not to take the lab.  One 
semester’s worth of scores is not enough to make a 
definitive statement of performance, but it is encouraging. 

An advantage of implementing designs in hardware is 
that students often encounter problems that would not appear 
in simulation.  One problem encountered by our students 
occurred when they attempted to locate an external device at 
address 0x7FFF.  Rapid switching of the address lines from 
all 1’s to mostly 0’s created a sufficient ground bounce to 
cause a fluctuation in the address-latch enable line and a 
very confusing error to the students.  Without simulation, 
they would have spent significant effort fruitlessly searching 
their code for a cause.  Because they simulated first, they 
were confident that their code and the basic structure of their 
hardware was correct and could immediately look 
elsewhere.  We should note that Xess has corrected the 
ground bounce problem in the second version of the XS40 
when they added separate power and ground planes. 

A discouraging result is that students would often 
abandon the simulation-heavy design process stressed in the 
lab when they implement their own project.  They would 
immediately jump from code and hardware creation to 
hardware implementation, the classic “burn-and-try” 
approach (If it compiles, it must work, right?).  In the future, 
we would like to adjust our labs to better emphasize the time 
and effort which can be saved through proper simulation.   

Our laboratories have also resulted in beneficial side-
effects unrelated to student learning.  An example is the fate 
of the Simon-game project mentioned earlier. This project 
was taken up by students in a later semester who polished 
and formalized the design, producing a compact printed 
circuit board that could be manufactured en mass.  It is now 
used in a pre-college outreach program, where students 
solder the necessary components on the printed circuit board 
and walk home with a small game they helped build.  The 
hope is to get these students excited about electronics and 
computers so they might consider a career in electrical or 
computer engineering. 
 



Conclusions 
 
Hardware-software co-design is quickly becoming a critical 
skill to industries which develop computer-based products.  
Introduction to these skills at an early level allows higher 
level courses to seamlessly incorporate these concepts in 
their curriculum, without significant overlap, and also 
ensures exposure to a maximum number of students.  Our 
8051 processor model was key to successful implementation 
of our labs.  Students enjoyed the labs and appear to do 
better in the lecture as a result of taking them.  The labs 
improve their understanding of hardware-software co-design 
and of embedded systems, which has had a beneficial ripple-
effect on upper level courses.  Future adjustments are 
needed, however, to truly convey the importance of 
simulation over the simpler “burn and try” approach.  While 
our data is preliminary, results indicate that these labs are 
successfully achieving their goals and can be an important 
part of the electrical engineering, computer engineering, or 
computer science curriculum. 
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