
Laboratories Teaching Concepts in Microcontrollers and
Hardware-Software Co-Design

Daryl Beetner, Hardy Pottinger, and Kyle Mitchell

Department of Electrical and Computer Engineering
University of Missouri-Rolla

Rolla, MO 65409

Abstract – Hardware-software co-design is becoming
increasingly important to the embedded systems industry. It
will soon be fundamental to digital systems design. As such,
students in Electrical and Computer Engineering and in
Computer Science should be introduced to hardware-
software co-design early in their undergraduate education.

We are designing laboratory modules which introduce
concepts of hardware-software co-design in an
undergraduate’s first course on microcontrollers and digital
systems design. Students use design automation tools to
develop FPGA-based hardware for use with an 8051-
microcontroller and use common software development
tools to develop microcontroller-software in C or assembly
language. Co-simulation of hardware and software is
enabled using a simulation model of the 8051 that we
developed.

Preliminary results are encouraging. Students who take
the lab perform better in the associated lecture class than
those who do not take the lab and appear to develop a
greater appreciation for digital systems design. We believe
such laboratories will be a common component of computer
engineering classes in the future.

Introduction

The rapid reduction in size of integrated circuits (ICs) has
allowed more and more functions to be implemented in a
very small area, to the point that entire systems may now be
implemented on a single chip. These systems are referred to
by such acronyms as Systems on Silicon (SOS), Systems on
a Chip (SOC), and Systems in a Package (SIAP). As the
number of chips shrinks and the complexity grows, the
product designer’s ability to resolve problems becomes
increasingly more difficult and expensive. Signals once
available for analysis are now hidden within the chip and
development of multiple hardware prototypes during the
debugging process can be ineffective as well as cost-
prohibitive. What’s more, designers face incredible
pressures to bring their product to market very quickly. A
product’s success or failure often depends on hitting a
vanishingly short market window. Consequently, products
must be developed fast and virtually error-free.

Adding to the design problem is the increasing ability to
implement functions in either hardware or software or both.
Where once the boundary between hardware and software
was quite distinct, now the designer must spend considerable

effort deciding how best to partition his problem between the
two areas. His decision affects not only the performance of
his product, but cost, power, risk, and more. Design of
hardware and software must be closely coupled for a
successful result.

To bring products to market faster and to identify
problems earlier in the design cycle, industry has turned to
design processes which rely heavily on hardware-software
co-design and co-verification and on reuse of complex
building blocks (reusable cores and/or intellectual property
(IP)) [1,2,3,4]. Co-design refers to a process where design
of hardware and software is very closely linked throughout
the design process. In the traditional approach, tasks for
hardware or software are identified immediately and are then
developed largely independent of one another. They are only
brought together at the end of the design process when the
product may be only weeks from a delivery date and when
errors can be especially difficult to fix. The progressively
intimate relationship between hardware and software has
made this development process risky at best.

The functionality of a product can be improved and the
risks in development reduced using hardware-software co-
design. Co-design typically stresses a top-down approach.
By immediately capturing high-level functionality of a
design, several possible architectures can be tested quickly
and critical flaws can be eliminated early in the design
process. As the design progresses, greater levels of detail are
incorporated and virtual prototypes of hardware and
software working together are tested at regular intervals.
Key to successful implementation of the hardware-software
co-design process is co-simulation on an accurate hardware-
software model. The goal of this process is to make final
implementation in hardware an anti-climactic event, free
from unwanted surprises.

The recent interest of industry in hardware-software co-
design is highlighted by the explosive growth of articles
published in this area. A search of Compendex shows no
articles on this subject prior to 1993, but shows more than
300 since. Integrated Systems Design Magazine, a
publication on industry concerns and applications, has
printed more than 43 articles on co-design in the past 2
years.

While use of hardware-software co-design is growing in
industry, few institutions offer courses that introduce it at the
undergraduate level. Those that do offer it at the senior or
graduate-level, often as an elective [4,5,6]. As hardware-

software co-design will soon be fundamental to digital
systems design, we believe it should be introduced to
students early in the electrical engineering, computer
engineering, and computer science curriculum. Early
introduction not only ensures that all students are exposed to
these important concepts, but also allows simplified
integration of these concepts in upper level courses like
VHDL modeling, VLSI design, microprocessor and
microcomputer design, and others.

The following paper documents laboratories we are
developing to introduce hardware-software co-design in a
junior-level course in microcontrollers and digital systems
design.

Course Design

Laboratories are being developed around a new course at
University of Missouri-Rolla which teaches digital systems
design from the perspective of microcontrollers and
embedded systems. This junior-level class is a “gateway” to
upper-level courses in computer engineering, as it is a
requirement for many senior and graduate level classes. It is
required for students in computer engineering, but also
attracts a healthy mix of students from electrical engineering
and computer science, as well as some students from other
disciplines. Students come into the course with a basic
knowledge of digital logic, use of industrial strength design
automation tools, and use of FPGAs for rapid prototyping of
digital designs. Most, but not all, have had a course in C++
programming. Few have any real knowledge of assembly
programming or of computer architecture. Laboratories are
being developed as an adjunct to the lecture course, but are
only required for computer engineering students (though
they are not required to take the lab and lecture
simultaneously). We chose this course because it is taken
early in the curriculum, it attracts students from a broad
range of disciplines, and because an embedded systems
course offers the opportunity to experiment with unique
hardware interfaces and to showcase exciting, down-to-
earth, applications that actively engage the student and
increase their level of interest.

The laboratories are built around the 8051
microcontroller. The 8051 was chosen because of its wide-
spread popularity, its simple architecture, and the likelihood
that it will remain an important processor for years to come.
There are more than 20 independent vendors of 8051-based
components and more than 12 current textbooks on this
controller. The fundamentals learned on this controller
should transfer easily to other processors or to more
sophisticated architectures.

Laboratories are being designed to teach fundamentals
of microcontrollers, digital systems, and hardware-software
co-design through hands-on development of simple
embedded systems [7]. Students follow each project from
conception to implementation. They design hardware and
software from a given set of specifications, they co-simulate

their hardware and software design to test for proper
operation, and they implement their design in hardware to
verify their final result. Key to this process is extensive
system-level simulation before implementation. We believe
hardware implementation is important not only because of
the satisfaction a student gets from building something
“real”, but because there are many problems which arise in
the lab which do not appear during simulation, such as
power considerations, ground bounce, and so on.

While laboratories are still under development, concepts
we hope to convey include:
 Microcontrollers:

• Programming microcontrollers in assembly language
• Programming microcontrollers in a high-level

language (C)
• Analog and digital I/O
• Signals and timing necessary to read and write

external devices
• Memory usage and addressing modes
• Interrupts, timers, and counters
• Inter-device communication
• Real-time operating systems

 Hardware-Software Co-Design:
• Hardware-software co-development
• Hardware-software co-simulation
• Partitioning tasks between hardware and software
• Re-use of complex blocks (IP)
• Implementation of digital logic in an FPGA
• Use of laboratory tools and equipment to test

computer hardware
Of course, being a lab, students also learn how to deal with
problems which arise when dealing with “real” hardware
and learn to work within teams to reach a common objective.

Tools

While the focus of advanced design processes like hardware-
software co-design is applications like systems on a chip,
building systems on a chip is not feasible for most laboratory
settings. A good alternative is a board incorporating a
microprocessor-FPGA combination. Software is designed
for the microprocessor and digital hardware is designed and
downloaded to the FPGA.

For our labs, we have chosen the XS40 board from Xess
corporation [8], which combines an 8051-family
microcontroller with a 9000-gate Xilinx FPGA. The board
also sports a 7-segment LED, a VGA monitor interface, and
a parallel port connector for communication with a host
computer. It comes with a generous supply of wire-wrap
pin-probe points, which allow students to readily access bus
signals with logic-analyzer probes or to attach additional
hardware. The pins are configured such that the XS40 may
be plugged directly into a breadboard if desired.

Students develop their software in C or assembly
language using Keil Software’s software development tools

[9], though C is used in most labs. Before implementing
their software with hardware, students thoroughly simulate
their software using Keil’s software simulation tool. This
tool is good for discovering high-level problems with the
code, but not for simulating the hardware-software interface.
After simulation, their code is compiled to an Intel-format
hex file.

Students develop custom digital hardware to be
implemented in the FPGA using Mentor Graphics’ Design
Architect. Mentor Graphics is a good choice for hardware
design and simulation in an academic lab because their
powerful industry-grade software is available quite
inexpensively to institutions of higher-education [10].
Hardware is simulated (independent of software) using
Mentor Graphics’ QuickSim.

Once hardware and software have individually been
simulated successfully, students may co-simulate their
hardware-software design. Key to this step is a VHDL
behavioral model of the 8051 we developed for this purpose.
We felt a bus-functional model was too abstract and
inconvenient for the typical junior-level student and that a
synthesizable model was too complex and would simulate
too slowly. Features supported by our clock-cycle-accurate
model at the time of this publication include:

• Entire 255-instruction 8051 command-set
• 4-port digital I/O
• 4Kb of internal program memory
• 256 bytes of internal (byte) memory
• Up to 64Kb of external code or data memory, with

accompanying (timing accurate) control signals
• Critical SFRs (e.g. ACC, PSW, DPTR, etc)
• External interrupts
• Bit-addressable memory

An essential feature of our model is a VHDL “wrapper” for
the internal ROM which loads and interprets an Intel hex-
format file upon simulation.

Using the model of the 8051, students co-simulate their
design using Mentor Graphics’ QuickHDL Pro. QuickHDL
Pro allows simulation of a mixture of schematic and HDL
models. Through this simulation, students verify proper
operation of their hardware with their software. Complete
access to signals allows students to quickly identify the
source of any problems. These problems are rectified by
going back to the software-development or schematic-
capture tools. Once the student is comfortable with their
design, they may compile their hardware to a bit-file, ready
for download and verification on an FPGA.

The final step, hardware verification, is performed using
the XS40 board. The hardware configuration file is
downloaded to the FPGA and the compiled software is
downloaded to the on-board SRAM. After so much
simulation one would expect few surprises during
implementation of their design. The design should almost
certainly work. However, surprises do still occur. More on
that point later.

Experiments

Experiments were developed to meet the goals listed in the
“Course Design” section of this paper. While lab
development is still underway, some of our current labs
include:

• Programming the 8051 using Keil uVision-51. An
introductory lab. Students write a simple assembly
program using Keil uVision-51 to read and write ports
of the 8051. They debug their code using Keil
dScope-51 and create an assembled Intel hex-format
file of their program. Emphasis is placed on basics of
assembly language programming and on use of the
Keil software development toolchain.

• Hardware-software co-simulation with the 8051-
simulation model, QuickSim, and the XS40
prototyping board. Students use QuickHDL Pro
from Mentor Graphics to simulate hardware signals
generated by the program they developed in the last
lab. After simulation, their software is implemented
on the XS40 board. Students verify that signals from
the 8051 are the same when simulated as when
measured. An emphasis is placed on use of design
automation tools, on co-simulation, and on use of the
XS40 board

• External memory addressing -- logic
implementation with an FPGA and programming
in C. Students design hardware and software to write
numeric messages to the 7-segment display on the
XS40 board. A subroutine is written in C which
takes a numeric digit and writes the appropriate codes
to external memory to show that number on the 7-
segment display. Students design an address decoder
and address latch to place the 7-segment display at a
particular location in the 8051's external memory
space. Results are verified, in part, by downloading
their design to the XS40 and measuring outputs of the
8051 while slowly stepping the system clock.

• Hardware-software partitioning. Students write a
program in C which writes numbers to the 7-segment
display. Unlike the last lab, hardware is developed
such that a number written to an external address is
properly encoded and displayed, replacing the code-
conversion subroutine of the last exercise. For
example, if the number “9” is written to location
0x7FFF (the display address) then the 7-segment
display will display a “9”. Students continue to
simulate with Keil and QuickHDL Pro before
implementing and testing their design on the XS40
board.

• VGA character display. Students design hardware
and software to display characters on a VGA monitor
using the XS40 board. Students are given previously
designed hardware “IP” for a VGA timing generator,
a frame buffer, a character ROM, a character

synchronizer, and a row-column generator. Students
use these modules to create a VGA character display
unit implemented in the FPGA. Students write a
program in C which interacts with their hardware to
scroll a message across the VGA display. Interaction
between hardware and software is verified in Mentor-
Graphics before implementation.

Labs under development include:
• Serial Communication and Message Encoding with a

Pseudorandom Noise Sequence;
• Digital Thermometer Implemented with a Dallas-

Semiconductor 1-wire Device;
• Communication using Quadrature-Phase Pulse-

Width-Modulation;
• Real-Time Control of an Embedded System.

Each of these labs requires development and testing of both
hardware and software. In many labs, students are given
pre-designed hardware or software building blocks which
they incorporate in their design. Hardware-blocks are often
designed by students in an upper level VHDL course. These
students tend to work harder and do a better job with their
VHDL design because they know their design will be
implemented by others. These students are given an
exposure to design for re-use and an added appreciation for
their work.

Toward the end of the semester, students taking our lab
complete a self-directed team-based design project. They
choose a device they would like to build, they specify its
characteristics, they plan their design, they build it, simulate
it, and finally implement it in hardware. Their progress is
tracked through regular contact with the lab instructor and
through an on-going project web page. When complete,
they give an oral presentation to the class and demonstrate
their final product. Some projects built by the students
include:

• Remote control and display for a PC-based MP3
player

• “Simon” game
• Four function calculator
• Digital LCD alarm clock
• Automated pet feeder
• Virtual pet
• Electronic piano
• Autonomous robot
• “Pong” game implemented with an 8051 and a VGA

display
Many projects use the XS40 board, but many students also
design their own circuit board around a discrete 8051-family
microcontroller. Students especially appreciate a project
they can take home with them at the end of the semester and
show off to their friends.

Preliminary Results

Complete assessment of these laboratories is still underway,
but preliminary results are promising. Since offering this
class, there has been a significant increase in the number of
students using microcontrollers in their senior design
project. This increase indicates the student’s enjoy the
material and also that they are walking away from the course
with some applicable knowledge. An exit survey of students
from the lab supports this contention. The overall consensus
is that they enjoyed the lab, particularly the opportunity to
make something “real”. The lab also appears to improve
performance in the lecture course. While data are
preliminary, a study of test scores over 1 semester show that
students who chose to take the lab scored an average of 13
points higher (approximately 1.3 letter grades) on tests in the
lecture than students who chose not to take the lab. One
semester’s worth of scores is not enough to make a
definitive statement of performance, but it is encouraging.

An advantage of implementing designs in hardware is
that students often encounter problems that would not appear
in simulation. One problem encountered by our students
occurred when they attempted to locate an external device at
address 0x7FFF. Rapid switching of the address lines from
all 1’s to mostly 0’s created a sufficient ground bounce to
cause a fluctuation in the address-latch enable line and a
very confusing error to the students. Without simulation,
they would have spent significant effort fruitlessly searching
their code for a cause. Because they simulated first, they
were confident that their code and the basic structure of their
hardware was correct and could immediately look
elsewhere. We should note that Xess has corrected the
ground bounce problem in the second version of the XS40
when they added separate power and ground planes.

A discouraging result is that students would often
abandon the simulation-heavy design process stressed in the
lab when they implement their own project. They would
immediately jump from code and hardware creation to
hardware implementation, the classic “burn-and-try”
approach (If it compiles, it must work, right?). In the future,
we would like to adjust our labs to better emphasize the time
and effort which can be saved through proper simulation.

Our laboratories have also resulted in beneficial side-
effects unrelated to student learning. An example is the fate
of the Simon-game project mentioned earlier. This project
was taken up by students in a later semester who polished
and formalized the design, producing a compact printed
circuit board that could be manufactured en mass. It is now
used in a pre-college outreach program, where students
solder the necessary components on the printed circuit board
and walk home with a small game they helped build. The
hope is to get these students excited about electronics and
computers so they might consider a career in electrical or
computer engineering.

Conclusions

Hardware-software co-design is quickly becoming a critical
skill to industries which develop computer-based products.
Introduction to these skills at an early level allows higher
level courses to seamlessly incorporate these concepts in
their curriculum, without significant overlap, and also
ensures exposure to a maximum number of students. Our
8051 processor model was key to successful implementation
of our labs. Students enjoyed the labs and appear to do
better in the lecture as a result of taking them. The labs
improve their understanding of hardware-software co-design
and of embedded systems, which has had a beneficial ripple-
effect on upper level courses. Future adjustments are
needed, however, to truly convey the importance of
simulation over the simpler “burn and try” approach. While
our data is preliminary, results indicate that these labs are
successfully achieving their goals and can be an important
part of the electrical engineering, computer engineering, or
computer science curriculum.

Acknowledgements

The authors wish to thank Dr. Frank Vahid of University of
California – Riverside for supplying a rough model of the
8051 which we built upon to create the model now used in
our labs. Mike Mayer, who has now graduated, deserves our
thanks for his effort updating this model to its current level.
We would also like to thank Dr. Jim Frenzel of University of
Idaho for his continuing feedback and suggestions for lab
improvement. This work was supported in part by the
National Science Foundation’s Course, Curriculum and

Laboratory Improvement program under grant no. DUE-
9952540.

References

1. Sangiovanni-Vincentelli, A., Rowson, J., “What You

Need to Know About Hardware/Software Co-Design,”
Computer Design, August 1998, pp. 63-9.

2. Ernst, R., “Codesign of Embedded Systems: Status and
Trends,” IEEE Design & Test of Computers, Apr-Jun
1998, Vol. 15, pp. 45-54.

3. De Micheli, G., Gupta, R.K., “Hardware/Software Co-
Design,” Proceedings of the IEEE, 1997, Vol. 85, No. 3,
pp. 349-65.

4. Hamblen, J.O., Henry, L.O., Yalamanchili, S., Dao, B.,
“An Undergraduate Computer Engineering Rapid
Systems Prototyping Design Laboratory,” IEEE
Transactions on Education, 1999, Vol. 42, No. 1, pp. 8-
14.

5. Carnegie-Mellon University, “Advanced Digital Design
Project,” http://www.ece.cmu.edu/~ee545.

6. University of California-Berkeley, “EE291a – System
Design,” http://amber.berkeley.edu:5037/cgi-
bin/soc/search_gencat.pl.

7. Pottinger, H.J., Beetner, D.G., “Hardware-Software Co-
Verification in an Undergraduate Laboratory,” 1999
IEEE Computer Society International Conference on
Microelectronic Systems Education, 1999, pp. 41-2.

8. Xess Corporation, http://www.xess.com.
9. Keil Software, http://www.keil.com.
10. Mentor Graphics higher education program,

http://www.mentor.com/partners/hep/index.html.

http://www.ece.cmu.edu/~ee545.
http://amber.berkeley.edu:5037/cgi-bin/soc/search_gencat.pl.
http://amber.berkeley.edu:5037/cgi-bin/soc/search_gencat.pl.
http://www.xess.com./
http://www.keil.com./
http://www.mentor.com/partners/hep/index.html.

