3. HARDWARE-SOFTWARE DEBUGGER INTERFACE

3.1. INTRODUCTION

Students use the VHDL model of the 8051 microcontroller to co-simulate
hardware and software in the Mentor Graphics’ QSPro environment. Understanding what
is going on inside the 8051 model during debugging is difficult and can made easier with
tools developed using Tcl/Tk procedures built into QSPro.

This chapter discusses a hardware-software debugger GUI that displays the
internal signals of the 8051 model and provides students the facility to step through their
8051 program one instruction cycle or clock cycle at a time while simultaneously
simulating their hardware. Breakpoints can be set in the user’s machine code to analyze
intermediate results. The debugger interface also allows internal and external memory of

the 8051 model to be viewed easily.

3.2. GUI DESIGN CONSIDERATIONS

Several factors were taken into consideration when designing the GUI debugger.
The most important factor was that the debugger should be tied directly to the VHDL
model of the 8051 microcontroller. This was needed to ensure that the debuggers’ output
reflects the actual operation of the 8051 microcontroller within the hardware simulation.
Another important issue was that the development of the debugger should not affect the
working of the 8051 VHDL model. Any changes made to the VHDL model to ensure
compatibility with the debugger should not change the actual working of the 8051

microcontroller. Another factor that was important to take into consideration from a

product point of view was the portability of the software. A debugger that worked on
UMRSs’ software environment should be able to work on any VHDL-compatible
platforms to be valuable to the academic world in general.

The Tool Command Language (Tcl) along with Tool Kit (Tk) is the best choice
for designing the GUI debugger [19]. Tcl, pronounced ‘tickle,” is a high-level scripting
language unlike C or C++ which can save considerable development time, as less code is
needed for creating applications like GUIs, network simulator, text editors, real-time
applications, and cross-platform applications, especially when interacting with existing
software. Tcl is most useful when its rather small command set is extended. Tk,
pronounced ‘tee-kay,” is one such extension. Tk extends the basic Tcl language with
commands to create and manipulate graphical user interfaces. In other words, Tk is an
interface tool kit for Tcl. Tcl/Tk is platform independent and runs on flavors of Linux,
UNIX, Windows and Macintosh systems using a Tcl/Tk interpreter. Tcl/Tk is an
application language that can be embedded into existing applications and is very popular
among hardware engineers.

Modelsim, the VHDL simulator used at UMR, comes with a built-in Tcl/Tk
interpreter. Using the Modelsim ‘when’ command, VHDL signals can be copied into Tcl
variables. Thus a Tcl/Tk program running inside Modelsim has access to all signals
inside the VHDL model of the 8051 microcontroller. Whenever a signal changes value,
the corresponding Tcl variable is automatically updated. A Tcl/Tk program can be
written in an entirely event-driven manner, where a procedure is automatically run every

time a Tcl variable changes. This is achieved with a command called “trace”.

3.3. DESCRIPTION OF THE GUI DEBUGGER

The interface is comprised of one main window and many sub windows that can
be invoked from the menu buttons on the menu bar. The main window displays the
contents of frequently referenced registers like r0-r7, the accumulator, program counter,
stack pointer, and data pointer. It also shows the current state of the machine cycle, the
currently executing instruction, and others. The assembly-level program and associated
machine code is also listed on the main interface. The menu includes menu buttons to
view information associated with timers, I/O ports, serial ports, interrupts and memory.
The user can click on the menu buttons to invoke sub windows that display the
information. The buttons on the bottom of the interface incorporate processes like ‘next
instruction,” ‘next clock,” ‘go to breakpoint,” ‘stop,” ‘restart’ and ‘quit’. The main
interface is shown in Figure 3.1 on page 15.

A detailed description of the individual components of the GUI debugger is given
in the following sub sections.

3.3.1. Timers: Information about the 8051 timers, timer 0 and timer 1, can be
obtained from windows brought up from the interface menu bar. The sub window, shown
in Figure 3.2 on page 16, displays the contents of TCON (timer control register), TMOD
(timer mode register), timer low-byte, and timer high-byte in hexadecimal format. The
mode of operation of the timer, the timer overflow flag, timer run-control bit and GATE
bit are also displayed. The value of these variables is automatically updated upon any

change.

. {90 50 00 } MOV DPTR, #0x5000
. {74 30 } MOV A, #0x30

: . {FO}MOV¥ @DPTR, A

. { A3} INC DPTR

. { 74 BD } MOV A, #0xBD

- { A3} INC DPTR
[74 791 MOV A, #0x79
. {FO}MOVX @DPTR, A
© [A3 }INC DPTR
. {74 33 } MOV A, #0x33
- {FO} MOVX @DPTR, &
- { A3} INC DPTR
. {74 5B } MOV A, #0x5B
- {FO}MOVX @DPTR, A
- [A3]INC DPTR
: [74 5F } MOV A&, #0x5F
- {FO}MOVX @DPTR, A
- { A3 } INC DPTR
: {74 00 } MOV A, #0x00
- {FO} MOVX @DPTR, &
. { A3 }INC DPTR
- {90 50 00 } MOV DPTR, #0x5000
acc: BDh - [74 07 } MOV R2, #0x07
. {ED}MOVX A, @DPTR
© { A9 83 } MOV R1, 083
. { AB 82 } MOV RO, 0xB2
: {90 AA 55} MOV DPTR, #0xAASS
. {FO}MOVX @DPTR, &
- {00} NOP
psw: O0h . { 89 83 } MOV 0x83, R1
- [BB B2 } MOV 0x82, RO
dph: a0h - { A3 }INC DPTR
. { DA EF } DJNZ Rz, OxEF
dpl: 01h - { B0 EB } 5JMP OxE8

b: 00h

sp: 00h

ir MOVR @OFTR, A

pc: 0003h

states: 9

])
L [ne]
0 3]
© W w
B
o on

: 0]
4 1
— o
= o
—_—

| | |]]

Figure 3.1. The 8051 Hardware-Software Debugger Interface

3.3.2. 1/O Ports: The values of pins connected to I/O ports of the 8051
microcontroller can be displayed with the ‘IO ports’ menu button. A new sub window is
created for each of the four ports. The windows display the 8-bit port value in binary

format. Figure 3.3 shows the contents of port 0. Port values get updated automatically

upon any change.

Mode 0: 13-bit Timar Mode
TCOM: O0x00 THADD: 0=00

Mode 0: 13- bit Timer Mode
TCOM: Ox00 THAOD: 000

THO: Ox=00 TH1: Ox00 TL1: Ox=00

TFO: D TRO: 0O GATE: 0 TF1: 0O TR1: D GATE: 0

Figure 3.2. Interface windows showing the current state of the Timers

o |11 ofr]r]o]s]

Figure 3.3 Interface window showing contents of Port 0

3.3.3. Serial Port: The ‘Serial Port” menu button can be used to display
information about the 8051 microcontroller serial port. Figure 3.4 shows the serial port
sub window. The values of SCON (serial port control register) and SBUF (serial port
buffer) are displayed in hexadecimal format. The mode of operation of the serial port is
also shown depending on the SCON register. The baud rate is calculated and displayed
based on the mode of the serial port. The baud rate calculation assumes a 12 MHz clock.
In mode 0 and mode 2, the baud rate is fixed. For mode 1 and mode 3, baud rate is

calculated using the formula shown below.

SMOD

8 clock _ frequency
32 12x(256 —timer reload value)

baud rate =

serial_port

Mode 0: 8-bit Shift register
SCOM: 0<00 SBUF: 0<00

TI: O m REM: O sSMOD: 0
TBE: 0| RE&: 0| Baud Rate: 1000 kbps

—

Figure 3.4. Interface window showing information about the Serial Port

The values of TI (transmit interrupt flag), RI (receive interrupt flag), REN
(receive enable), SMOD (serial port mode bit), TB8 (transmit bit 8) and RB8 (receive bit
8) are also displayed. Any change in each of these variables is automatically updated.

3.3.4. Interrupts: The user can use the ‘Interrupts’ menu button to obtain
information about the 8051 interrupts. The 8-bits of IE (interrupt enable register) and IP
(interrupt parity register) are displayed as shown in Figure 3.5. Each bit of the registers is
labeled for readability. The contents of these variables are automatically updated upon

any change.

interrupt

o lo o ol fole o

Figure 3.5. Interface window showing information about Interrupts

3.3.5. Memory: The VHDL model of the 8051 microcontroller has internal code
and data memory and external memory. Contents of memory can be easily accessed from
the ‘Memory’ menu button. The user can select any one of these memories from the
drop-down menu and view its contents by specifying a range of memory locations in

integer format. A detailed description of how to access each of these memories follows.

3.3.5.1. Internal code memory: The interface for accessing the internal code
memory of the microcontroller is shown in Figure 3.6. The user can specify a range of

memory to view its contents.

internal_code_memory

Figure 3.6. Interface window for Internal Code Memory

The ‘Show Memory’ button brings up the memory window as shown in Figure

3.7. The ‘Hide Memory’ button hides the memory window.

Figure 3.7. Interface window showing part of Internal Code Memory

3.3.5.2. Internal data memory: The internal data memory space of the 8051
contains 256 bytes of on on-chip RAM and an additional 128 bytes for special function
registers (SFR). The SFRs are only accessible through direct addressing whereas the
upper 128 bytes of RAM are accessible only through indirect addressing. The interface
for accessing internal data memory, shown in Figure 3.8, provides user the option of
selecting direct or indirectly accessible memories. The user can also specify a range of

memory addresses.

internal_data_memory

Figure 3.8. Interface window for Internal Data Memory

The memory spaces from 00H to 1FH (the register banks) and all SFRs are
labeled for readability. Figure 3.9 and Figure 3.10 show the windows showing contents of
internal data memory. The memory windows do not update immediately. An ‘Update’
button has been provided to refresh the window’s contents whenever necessary. The
window is not continuously updating to reduce simulation time. The interface also
includes a ‘Close’ button, which can be used to close the window. When activated, the
‘Close’ button destroys the memory window and resets an internal flag to track the

destruction of the window.

3.3.5.3. External memory: The external memory of the VHDL 8051

microcontroller can be accessed from the interface shown in Figure 3.11.

w1 T
FO-B0y00 |4
R1-E0yED [l

RE-E0:07

G- B0

a{F = B0y

PRG-I

RG-S

PR =

FRO-E7 ke

=1 =B

S ERE = 1)

DERD - B H M

BTiRE - B HH

57 (F SO0

5-B1MM
(=13 g :

DE(RG=-E1) =
OE(RT - B1]- X
18{RO- B2} Y
11 (R - BN

12{RE-BEnKH
1HRE-BEHH
1a{Rd = B2 A
15{RE=DEMN
TERE-BEHK
1HEF-DERRK
1THR0-BEEM
1R - BEEH R
1A (RE = D3y
1B{RI- B3
(RS - BINMHH
1DRS - BINM
1E(RG - B3] MM
1F(RT = B3] =K
B0

Figure 3.9. Direct Addressable Memory Figure 3.10. Indirect Addressable Memory

external_memory =]

233

P oS R e
*

f=ess40_schematic_gsim/sramfram/mem

Figure 3.11. Interface window for External Memory

Most simulations of the 8051 microcontroller used in the lab include external
memory. External memory is represented using a VHDL module. The user can add
instances of this module to create external code and data memories. In the interface for
accessing external memory, the user can provide a path to these memory modules and a
range to view its contents. The path is required because the GUI may not know how
many memory elements are instantiated at any one time or exactly how they have been
instantiated. The user can view up to five different external memories at a time by
providing the appropriate path in the interface or can view five different location ranges
of the same memory. Since the memory windows do not refresh their contents
automatically, an ‘Update’ button is provided. Figure 3.12 shows the external memory

window.

Figure 3.12. Interface window showing part of External Memory

3.3.6. Main Interface of the Debugger: The main interface of the debugger GUI
displays the contents of registers frequently used in debugging like r0-r7 of bank 0, the
accumulator, B register, stack pointer, program status word, low and high data pointer,
and program counter in hexadecimal format. Whenever any of these registers changes it
value, the box containing the register value is highlighted in blue to reflect the change.

The main window also displays the assembly-level program being executed by
the 8051 microcontroller along with the machine code in the code-list box. The assembly-
level program is re-constructed from the hex file provided to the VHDL 8051
microcontroller. Each instruction is preceded by its address in memory. The instruction to
be executed next is highlighted in the code-list box. Users can set breakpoint in the
program by selecting any instruction and hitting ‘Go To Breakpoint’ button to execute till
that point and analyze intermediate results.

The interface also displays the total time in seconds and total number of machine
cycles executed since the start of execution. It also shows the current state (slpl, s1p2
...) of the machine cycle being executed. The next instruction to be executed is displayed
in instruction register box based on the value of program counter. The main interface is
shown in the Figure 3.1 on page 15.

3.3.7. Buttons: The buttons: ‘Next Instruction,” ‘Next Clock,” ‘Go To
Breakpoint,” ‘Stop,” ‘Restart’ and ‘Quit’ are provided at the bottom of the interface.
These buttons call Tcl procedures to perform each task. The user can step one instruction
at a time with the ‘Next Instruction’ button. The ‘Next Clock’ button can be used to step
through the program one clock cycle at a time. The user can also select a breakpoint in

the code-list box by highlighting an instruction and can execute till that point with the

‘Go To Breakpoint’ button. The ‘Stop’ button can be used to stop execution at any point.
The ‘Restart’ button restarts the simulation from the beginning by issuing a ‘restart’
command to ModelSim; it also resets contents of memory windows, internal variables
and flags used in the Tcl/Tk code. The ‘Quit’ button is used to exit the ModelSim

environment.

3.4. TESTING OF THE INTERFACE

The hardware-software interface debugger was first tested by invoking it on
different assembly-level programs. Test programs were written to change the values of
internal registers like THO, SCON, IE, TMOD, SBUF and values of memory in the
VHDL model. For brevity, these programs are not included in the appendix. The test
programs were simulated instruction-by-instruction or clock-by-clock or by setting
breakpoints using the buttons provided. The interface was checked for its correct
operation by visually looking at the values of the registers and memory and comparing it
with the signal values in the VHDL model. The interface reflected the true operation of
the micro-controller. Changes in VHDL signals were correctly reflected on the interface.

In addition to functional testing, field-testing of the interface was done with
approximately 40 undergraduate students in the 2002 Fall Semester Computer
Engineering 214 class at UMR. A lab exercise was modified to use the hardware-
software debugger interface and a survey was conducted to evaluate its effectiveness in
the laboratory.

In one of the CpE214 laboratories students write an assembly-level program to

partition the 8051°s external memory into data and code segments. The data segment

holds a message that is displayed on a seven-segment display which is mapped to some
external memory location. The program is responsible for initializing the message table
created in the data segment, for retrieving a character from the table, and then writing the
character to the seven-segment display with some short delay between consecutive
characters. Before the 8051 hardware debugging GUI, students debugged the software
portion of their hardware-software design using Keil pVision 2. Their hardware and
software were debugged together in QSPro, but they had few tools to control the
simulation and observe what was happening in the 8051. With the use of the hardware-
software debugger interface, students were able to carefully debug their software portion
along with their hardware (the 8031 microcontroller, the seven-segment display, external
memory). They used the interface to view the internal signals of the 8051 and particular
locations in memory (data segment and code segment). By simulating their program
instruction-by-instruction or clock-by-clock or by setting breakpoint they had more
control over the debug process.

A special-purpose Tcl/Tk interface for the seven-segment VHDL model was
developed specifically for the laboratory so students could view what was being written
to the seven-segment display. The interface is shown in Figure 3.13. Whenever a
character is written to the seven-segment display it is highlighted in blue on the interface.
Students do not have to trace the inputs to the seven-segment model to verify the function
of their program.

In the second part of the experiment, students were asked to modify their program
such that the data and code segments overlap. After modification students verified their

design with Keil development tools. A disadvantage to simulating software without

hardware is that the software simulator has no idea what the hardware configuration is
and may give incorrect results. For most students, when the design was debugged with
the hardware-software debugger interface in the QSPro environment, it did not work. The

debugger interface made it much easier for students to figure out the problem.

Figure 3.13. Interface window showing Seven-Segment display

Feedback from the two instructors who taught the laboratory course indicates that
the design was debugged more smoothly using the interface than in previous semesters
(when the interface was not available), due to the students’ access to the internal registers
and to internal and external memory of the 8051 microcontroller. Students were able to
complete the laboratory quickly as the debugging time was reduced with the use of the
interface. The laboratory includes a special problem that occurs when the students
implement their design in hardware that did not occur when they simulated their design.
Many more students were able to figure out the source of this problem without the
instructor’s help than in past semesters because of their better understanding and

confidence in their design enabled by the debugger interface.

Preliminary survey results of students are encouraging. Survey results are
presented in Table 3.1 with a brief summary of the questions asked and the response
received. FEach question had four multiple choice answers. The value in brackets
represents the number of people selecting a particular choice. The survey itself is attached

in Appendix A. Around nineteen people participated in the survey.

Table 3.1. Survey Statistics

Response
Question A B C D
Q.1. Helpfulness of GUlin | Very Helpful (5) | Somewhat No need
debugging their design helpful helpful (3) for a GUI
(10) (1)
Q.2. Helpfulness of GUI in Very Helpful(4) Somewhat No need
debugging more complex helpful helpful (3) for a GUI
designs (11) (D)
Q.3. Difficulty in debugging | Very Difficult (9) | Somewhat No need
design without GUI difficult difficult (8) for a GUI
(D (@)
Q.4. Time spent debugging | <I5 15-30 30-45 minutes | 1 hour
using GUI minutes (9) | minutes (6) | (2) (2)
Q.5. Helpfulness of GUI in Very Helpful (9) Somewhat No need
aiding understanding of how | helpful (3) helpful (5) for a GUI
hardware and software 2)
work together

The survey also included open-ended questions on how we might improve the
GUI debugger by adding extra features and on troubles faced by the students while using
the GUI debugger. One of the more common problems faced by students was the format
in which they enter the memory range to be displayed in the memory interface window.
Initially, the debugger was designed to takes the memory range in integer rather than

hexadecimal format. Later, the code for the memory interfaces of the debugger was

modified to take the memory range in hexadecimal format. Hexadecimal format is often
easier for students when handling memory addresses. This was achieved with the help of
built-in functions included with the Tcl language.

Another bug identified with the debugger was a warning message which pops up
after closing sub-windows without using the ‘close’ button provided. The message pops
up because the Tcl/Tk script for the window has an active ‘trace’ command for the
variables displayed in the sub-window. If the student closes the window using the ‘close’
button, the code for the GUI debugger takes care of this bug by deactivating the traces on
the variables being displayed. Additional notes have been included in the procedure of
the experiment to remind students to use the close button.

Apart from these minor bugs, the majority of students found the hardware-
software debugger interface very helpful in debugging their design. The debugger
interface also helped them to better understand how the 8051 worked and how hardware
and software work together. Students felt the time spent debugging design was
considerably reduced with the use of the debugger interface as they did not need to look
as carefully at the traces to debug their design. The instructors teaching this lab noticed a
significant improvement in students’ performance and understanding of the lab compared

to previous semesters.

