
Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

_______________General Description

The 1-Wire pseudo-random number generator
allows a microcontroller or microprocessor system
to generate random numbers using the Dallas 1-
Wire multi-drop bus. The device produces a
random number using a linear feedback shift
register that is clocked such that a number would
be difficult to predict based on past readings. It
contains a 64 bit unique serial number and
implements all ROM codes of the DS1820
temperature sensor, including “SEARCH ROM.”

The random number generator uses a flexible
architecture that allows for easy addition of new
commands or increasing the linear feedback shift
register size. It can be implemented using only 55
XC4005XL CLBs, thus giving the possibility of
synthesizing multiple devices onto one FPGA.

______________________Applications

Dallas 1-Wire Testbed

Embedded Games

Simple Cryptography Demonstration

________________Functional Diagram

_________________________Features
� �

64 bit unique serial number

� �
Implements all ROM codes of DS1820
temperature sensor

� �
Returns 64 random bits using arbitrarily
sized linear feedback shift register

� �
Allows multiple devices to operate on 1-wire
bus

� �
Easily expandable/scalable

_______________Contact Information

University of Missouri-Rolla
Department of Electrical and Computer Engr.
1870 Miner Circle
Rolla, MO 65409-1060

http://www.ece.umr.edu/courses/ee214

________________Acknowledgements

Most of the timing diagrams shown here were
taken from the book of iButton standards which
can be found at:

http://www.ibutton.com/ibuttons/standard.pdf

________________Pin Configurations

__1

Rev 1: 1/10/2002-jjp

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

_______________Detailed Description

Device Operation

The Xilinx XC4005XL Pseudo-Random Number
Generator uses a 6MHz clock to drive a linear
feedback shift register to produce a sequence of
pseudo-random numbers. Numbers in the
sequence can be read using the Dallas 1-Wire
protocol over the dq pin.

___________Microprocessor Interface

1-Wire Protocol

The device is controlled via the Dallas 1-Wire
interface. A detailed description of the protocol is
given at:

 http://www.ibutton.com/ibuttons/standard.pdf

A brief description of the waveforms necessary to
control the device will be given here.

Bus Configuration

All devices on the 1-Wire bus are connected by a
single wire, dq. They are configured in a wired
AND network with an external pull up resistor. Any
device may pull the bus low, or multiple devices
may do so. One device on the bus is denoted the
master and all other devices are slaves. All
communication on the bus is initiated by the
master.

Reset and Presence Pulse

Before any sequence of commands may begin the
master must send a reset pulse to all connected
devices. To do this the master holds the bus low

for a minimum of 480us and a maximum of 960us.
This will reset all connected devices into a known
state and cause them to send a presence pulse.

This presence pulse is sent after waiting
approximately 30us after the rising edge of the
reset pulse. All connected devices then pull the dq
line low for a nominal 120us.

Writing

When writing a bit onto the bus the master pulls
the bus low a minimum of 1us to signal the start of
a bit. To write a '0' it must hold the bus low for at
least 60us, while to write a '1' it would let the bus
go high immediately after the 1us was over. A
nominal device will sample the bus 30us after the
falling edge, so there is a wide timing tolerance.

Reading

Reading from the bus is similar to writing. The
master initiates a read cycle by pulling the bus low
for a minimum of 1us, then releases it. The master
should then sample the bus approximately 30us
later. A slave that is writing a '0' will hold the bus
low while a slave that is writing a '1' will let the bus
go high.

Timing Diagrams

Timing diagrams for the reset pulse, presence
pulse, write slot, and read slot can be found in
Figures 1-4.

__2

__Pin Descriptions

PIN Name FUNCTION

dq_in 1-Wire input pin, should be connected so as to always copy the external dq
line.

dq_out 1-Wire output pin, should be connected so that whenever this output is high,
the external dq line is pulled low.

sysrst Active high reset. During simulation this should be pulsed at the beginning of
simulation, when actually in hardware it can be tied low with no problems.

clk_6MHz 6MHz externally applied clock. All 1-Wire timing is derived from this clock.

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

__3

Figure 1: Reset Timing

Figure 3: Write '1' Timing

Figure 2: Write '0' Timing

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

Command Sequence

After sending a reset pulse and receiving a
presence pulse the devices will expect to receive
an 8 bit command. The master should send this
command by writing the 8 bits LSB first. All data
sent over the 1-Wire bus is sent LSB first. A list of
possible commands is shown below:

Name Val Description

READ ROM 0x33 Read the 64 bit unique
device identifier.

READ RAND 0x43 Read a 64 bit random
number.

SKIP ROM 0xCC When used with a single
device bus, selects the only
device.

MATCH ROM 0x55 Selects a device for future
commands based on it's
device identifier.

SEARCH ROM 0xF0 Enumerate the device
identifiers of all devices on
the bus.

Depending upon the command sent, the master
should proceed to either send another command,
read/write a 64 bit value from the device, or use
the SEARCH ROM device enumeration algorithm.

Command Descriptions

READ ROM 0x33

After sending this command the master should
read 64 bits from the device. The writing slave will
shift out it's device identifier one bit at a time
starting with the LSB. The device will be prepared
to receive another command after the completion
of a READ ROM.

READ RAND 0x43

After sending this command the master should
read 64 bits from the device. The writing slave will
shift out a random number starting with the LSB.
After this command the random number generator
will be deselected and will not respond to any bus
activity until another reset pulse is sent.

SKIP ROM 0xCC

This command is intended to be used to select a
device if it is the only one on a bus. Other families
of 1-Wire devices need to be selected before their
functionalities are available. This function is
redundant and is only included with the random
number generator for compatibility with legacy
drivers.

MATCH ROM 0x55

After sending this command the master should
write a 64 bit device ID LSB first. If a slave's ID
matches this one, it will be selected and available

__4

Figure 4: Read Timing

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

for further commands. All non matching devices
will become deselected and ignore all bus activity
until a reset pulse.

SEARCH ROM 0xF0

After sending this command the master should
proceed with the following algorithm for
determining the device IDs of all connected
devices.

For each bit of the 64 device ID bits the master
should:

1. Read one bit, during which all devices will write
out that ROM bit.

2. Read another bit, during which all devices will
write out the inverse of that ROM bit.

3. If the bus was pulled low during both reads the
master now knows that at least two devices
exist on the bus with that bit position differing.

4. The master must choose which set of devices
to select by writing a '0' or '1'. This must still be
done even if only one device responded.

This routine is repeated for every one of the 64
ROM bits. After once through the 64 bits, one
device ID has been discovered. The routine would
then be repeated with different choices made at
critical points until all device IDs have been
discovered.

Sample Access

Figure 5 shows a sample command cycle in which
the READ ROM command is executed. The reset
pulse is presumed to have been held for at least
480us.

___________Applications Information

dq Interfacing

To accommodate the Xilinx XC4000 series of
FPGAs, which have no internal tri-state buffers, a
separate dq_in and dq_out are provided. If only a
single 1-Wire device is placed on the FPGA then
dq_out can be wired to the enable of a tri-state
buffer with it's input tied to ground. The tri-state
buffer should drive an iopad. dq_in can then be
wired directly to the output of this iopad.

If multiple devices are to be placed in the same
FPGA a similar scheme can be used, except the
dq_out lines of all devices should be OR'ed
together before going to the enable of the tri-state
buffer. See Figures 6 and 7 for examples.

__5

Figure 5: Sample READ ROM timing sequence

Figure 6: Sample Application 1

Figure 7: Multiple Device Bus

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

Sample Application

Shown in Listing 1 is sample 8051 code to drive
the 1-Wire Pseudo-Random Number Generator as
part of the XS40 prototyping board. It assumes
that the dq line has been properly wired to pin 4 of
Port 1 and that the seven segment display has
been mapped into memory location 0xAA55.

_________________Porting Concerns

The Pseudo-Random number generator was
designed to run in a Xilinx XC4005XL FPGA. It is
implemented completely in VHDL with a Mentor
Graphics symbol on top. To move it to another
device the VHDL code must be resynthesized for
the new architecture. This can be done with the
following procedure:

1. Modify src/syn.scr to contain the correct
architecture

2. Run the build_owprn script

If multiple random number generators are desired
on a single FPGA, separate EDIF netlists will have
to be made for each device and associated with
different top level symbols. Then it is possible to
change the device ID listed in src/owprn.vhd,
re-synthesize, and move the resulting EDIF file to
an alternate name. The following procedure could
be used:

1. Move the original EDIF file, hdl/owprn.edf
to a new name, for example “mv
hdl/owprn.edf hdl/owprn_orig.edf”

2. Modify the file src/owprn.vhd to contain a
different device ID

3. Re-synthesize the design using the
build_owprn script

4. Instantiate a new top-level one wire symbol,
and modify it's file property to point to the
new EDIF file. In this case
../../hdl/owprn_orig.edf

When creating a .BIT file for this design, ngdbuild
must be passed the -sd option with the directory
the synthesized netlists. If using the included
xmake script this is done already.

__6

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

__7

Listing 1: Sample 8051 Source

#include<reg51.h>
/* ROM COMANDS */
#define READ_ROM 0x33
#define READ_RAND 0x43
#define MATCH_ROM 0x55
#define SKIP_ROM 0xCC
#define SEARCH_ROM 0xF0

void displayArray(unsigned int length, char *d);
char command(char comm, char second);
void c_write(char out);
char c_read(void);
char reset();
void msec(int Delay);

/* global variables */
sbit IO = P1^3;
sbit RESET = P1^2;

char ROM[8];
char SCRATCHPAD[8];

xdata char seven_seg _at_ 0xAA55;

char seven_seg_table[16]= {
 0x7e, 0x30, 0x6d, 0x79,
 0x33, 0x5b, 0x5f, 0x70,
 0x7f, 0x7b, 0x77, 0x1f,
 0x4e, 0x3d, 0x4f, 0x47
 };

#define DELAY_VAL 500

void main(void){
 char i = 0;

 RESET=1; // make sure the device is not in reset

 while(1){
 /* read ROM and random number, then display */
 i = command(READ_ROM, i);
 displayArray(8,ROM);

 i = command (READ_RAND, i);
 displayArray(8,SCRATCHPAD);
 msec(100);
 }
}

// wait a specified amount of time
void msec(int Delay)
{
 int i, j;
 for(j=0; j<Delay; j++)
 {
 for (i=0; i<500; i++);
 }
}

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

__8

// display an array of numbers on the seven segment display
void displayArray(unsigned int length, char *d)
{
 char t,i;

 for (i=0;i<length;i++) {
 // write out high nibble to seven segment display
 seven_seg=0; msec(DELAY_VAL/2);
 t=d[i]>>4; t=t&0x0F;
 seven_seg=seven_seg_table[t]; msec(DELAY_VAL);

 // write low nibble to seven segment display
 seven_seg=0; msec(DELAY_VAL/2);
 t=(d[i]&0x0F);
 seven_seg=seven_seg_table[t]; msec(DELAY_VAL);
 }
}

// process a command on the 1-Wire bus
char command(char comm, char second){
 char retvalue=0;//OK
 char i;

 switch(comm){
 case READ_ROM:
 while(reset());
 c_write(READ_ROM);
 for(i=7; i >= 0; i--) ROM[i] = c_read();
 break;
 case READ_RAND:
 c_write(READ_RAND);
 for (i=7; i >= 0; i--) SCRATCHPAD[i]=c_read();
 break;
 }
 return retvalue;
}

// write one byte to the 1-Wire bus
void c_write(char out){
 char i,j;

 for (j=0; j<=7;j++){
 IO = 0; //set low
 if(out & 0x01){ /* write '1' */
 IO=0; i=1; while(i--); // start write slot
 IO=1; i=12; while(i--); // wait for end of slot
 }
 else {
 I=0; i=12; while(i--); // start write slot and write 0
 IO=1; i=1; while(i--); // wait for end of slot
 }
 out = out >> 1;
 }
}

Listing 1: Sample 8051 Source (continued)

Xilinx XC4005XL 1-Wire Pseudo-
Random Number Generator

__9

// read in one byte from the 1-Wire bus
char c_read(void){
 char i,j;
 char t = 0;

 for(i=0; i<=7; i++) {
 IO = 0; j=1; while(j--); // set output 0 for instant
 IO = 1; j=3; while(j--); // set to input for approx 10us
 t>>=1; // shift in next bit

 if(IO == 1) t |= 0x80;
 else t &= 0x7f;
 j=12; while(j--); // 60us delay
 }
 return t;
}

// send a reset pulse and wait for a presence pulse
char reset(){
 unsigned char i;
 unsigned char status;

 IO=0; i=255; while(i--); // hold reset pulse
 IO=1; i=20; while(i--); // wait for presence

 /* read presence pulse */
 if (IO) status = 1;
 else status = 0;

 i=255; while(i--); // wait for idle
 return status;
}

Listing 1: Sample 8051 Source (continued)

