
Boundedness of Iterates in Q-Learning

Abhijit Gosavi

Department of Industrial Engineering

The State University of New York at Buffalo

317 Bell Hall Box 602050, Buffalo, NY 14260-2050

Telephone: (716) 645-2357, Email:agosavi@buffalo.edu

Abstract

Reinforcement Learning (RL) is a simulation-based counterpart of stochastic dy-

namic programming. In recent years, it has been used in solving complex Markov

decision problems (MDPs). Watkins’ Q-Learning is by far the most popular RL al-

gorithm used for solving discounted-reward MDPs. The boundedness of the iterates

in Q-Learning plays a critical role in its convergence analysis and in making the al-

gorithm stable, which makes it extremely attractive in numerical solutions. Previous

results show boundedness asymptotically in an almost sure sense. We present a new

result that shows boundedness in an absolute sense under some weaker conditions for

the step size. Also, our proof is based on some simple induction arguments.
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1 Introduction

The Markov decision problem (MDP) [3] is a well-known problem in stochastic optimization

for which Dynamic Programming (DP) can be used for solution purposes. In complex systems

with several governing random variables, oftentimes it is difficult to obtain the values of the

so-called transition probabilities required by DP. Reinforcement Learning (RL) [5, 1] is a

simulation-based version of DP that can avoid the computation of the transition probabilities.

A great deal of interest in recent times in RL has stemmed from its ability to generate near-

optimal solutions. Empirical work has now been backed by rigorous theoretical analysis of

its convergence (see Borkar and Meyn [2] and Tsitsiklis [6]) placing the method on solid

ground.

A prominent algorithm in RL is the Q-Learning algorithm invented by Watkins [7]. The

algorithm can be viewed as a stochastic-approximation counterpart of regular value iteration

for discounted reward [3]. An attractive feature of this algorithm is its stability which is

partly due to the fact that the iterates remain bounded. Also, the convergence analysis in

Tsitsiklis [6] and Borkar and Meyn [2] requires proving boundedness of the iterates first.

Two remarks are in order about these papers: (i) they prove boundedness in an almost sure

sense, (ii) their proofs hold in an asymptotic sense in the number of iterations, k, and (iii)

their proofs are quite sophisticated. We prove boundedness in an absolute sense; our result

is independent of how the step size is decayed, and holds for any value of k. Also, our proof

is relatively simple requiring only mathematical induction.

We have organized the remainder of this paper as follows. In Section 2, we describe the

algorithm along with some notation needed thereafter. In Section 3, we prove our result.

Section 4 concludes the paper.
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2 Q-Learning

We first provide some background description and some notation that we will need. In an

MDP, the goal is to find the optimal action in each state visited to maximize the value of

a performance metric, e.g, long-run discounted reward. A policy defines the action in every

state visited. Let A(i) denote the set of actions allowed and let S denote the set of states.

We will assume that both S and A(i) for every i ∈ S are finite. Let r(i, a, j) denote the

immediate reward earned in going from state i to state j, when action a is selected in state

i, and let λ denote the discounting factor (which could be 1/(1 + R) where R denotes the

rate of interest). Then with i as the starting state, for the policy π, the total discounted

reward — generally referred to as discounted reward — is defined as:

ρπi ≡ E

[ ∞∑
t=0

(λ)tr (Z(t), π(Z(t)), Z(t+ 1)) |Z(0) = i

]
,

where Z(t) denotes the state of the system at time t, and π(j) denotes the action selected in

state j if policy π is pursued. If the Markov chain associated with the policy π is irreducible

and aperiodic, the discounted reward, ρπi , is independent of the starting state i.

In Q-Learning, which can be implemented in simulators or in real time [5], the algorithm

iterates are the so-called Q-factors. Q(i, a) will denote the Q-factor for state i ∈ S and

a ∈ A(i). The updating in Q-Learning is asynchronous. One iteration of the algorithm is

associated with each state transition in the simulator. In one transition, only one Q-factor

is updated. Let Qk(i, a) denote the Q-factor for state i and action a in the kth iteration of

the algorithm. When the system transitions from state i to state j and u denotes the action

chosen in state i, then the Q-factor for state i and action u is updated as follows:

Qk+1(i, u) = (1− α(k))Qk(i, u) + α(k)

[
r(i, u, j) + λ max

b∈A(j)
Qk(j, b)

]

where α(k), which denotes a step size in the kth iteration, must satisfy some standard

stochastic-approximation conditions [4], and all other Q-factors are kept unchanged. The-

oretically, the algorithm is allowed to run for infinitely many iterations until the Q-factors
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converge. In the remainder of the paper, we will require that α(k) ≤ 1 for all k. Also, we

will drop k from the notation, and simply refer to the step size as α.

3 Boundedness

We now present a result that will show boundedness of the Q-factors in Q-Learning.

Theorem 1 In Q-Learning for discounted-reward MDPs, the iterate Qk(i, a) remains bounded

for every state-action pair (i, a) ∈ (S ×A(i)) and for all k.

Proof We first claim that for every (i, a) ∈ (S ×A(i)) and for any k in {1, 2, . . .},

|Qk(i, a)| ≤ M(1 + λ+ λ2 + · · ·+ λk), (1)

where λ is the discounting factor and M is a positive finite number defined as follows:

M ≡ max{rmax, max
(i,a)∈S,A(i))

Q0(i, a)}, (2)

where

rmax ≡ max
i,j∈S,a∈A(i)

|r(i, a, j)|. (3)

Since we start with finite values for the Q-factors, Q0(i, a) is finite for every state-action pair

(i, a) ∈ (S ×A(i)). Since the immediate rewards are finite by definition, rmax is also a finite

quantity. Then, M too is finite from its definition in (2).

Boundedness follows from the claim in (1), since then if k → ∞,

lim sup
k→∞

|Qk(i, a)| ≤ M
1

1− λ

for all (i, a) ∈ (S × A(i)). Therefore, all we need to do to prove the result is to prove our

claim in (1). We will use an induction argument.
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In the kth iteration of the asynchronous algorithm, the update for (i, a) is either according

to

Case 1:

Qk+1(i, a) = (1− α)Qk(i, a) + α

[
r(i, a, j) + λ max

b∈A(j)
Qk(j, b)

]
,

or

Case 2:

Qk+1(i, a) = Qk(i, a).

Now, if the update is carried out as in Case 1:

|Q1(i, a)| ≤ (1− α)|Q0(i, a)|+ α|r(i, a, j) + λ max
b∈A(j)

Q0(j, b)|

≤ (1− α)M + αM + αλM (from (3) and (2))

≤ (1− α)M + αM + λM (from the fact that α ≤ 1)

= M(1 + λ)

Now, if the update is carried out as in Case 2:

|Q1(i, a)| = |Q0(i, a)|

≤ M < M(1 + λ).

From the above, our claim in (1) is true for k = 1. Now assuming that the claim is true

when k = m, we have that for all (i, a) ∈ (S ×A(i)).

|Qm(i, a)| ≤ M(1 + λ+ λ2 + · · ·+ λm). (4)

Now, if the update is carried out as in Case 1:

|Qm+1(i, a)| ≤ (1− α)|Qm(i, a)|+ α|r(i, a, j) + λ max
j∈A(j)

Qm(j, b)|
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≤ (1− α)M(1 + λ+ λ2 + · · ·+ λm)

+αM + αλM(1 + λ+ λ2 + · · ·+ λm) (from 4)

= M(1 + λ+ λ2 + · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm)

+αM + αλM(1 + λ+ λ2 + · · ·+ λm)

= M(1 + λ+ λ2 + · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm)

+αM + αM(λ+ λ2 + · · ·+ λm+1)

= M(1 + λ+ λ2 + · · ·+ λm)

−αM(1 + λ+ λ2 + · · ·+ λm) + αM

+αM(λ+ λ2 + · · ·+ λm) + αMλm+1

= M(1 + λ+ λ2 + · · ·+ λm)− αM(1 + λ+ λ2 + · · ·+ λm)

+αM(1 + λ+ λ2 + · · ·+ λm) + αMλm+1

= M(1 + λ+ λ2 + · · ·+ λm) + αMλm+1

≤ M(1 + λ+ λ2 + · · ·+ λm) +Mλm+1 (since α ≤ 1)

= M(1 + λ+ λ2 + · · ·+ λm + λm+1)

Now, if the update is carried out as in Case 2:

|Qm+1(i, a)| = |Qm(i, a)|

≤ M(1 + λ+ λ2 + · · ·+ λm)

< M(1 + λ+ λ2 + · · ·+ λm + λm+1)

(5)

From the above, the claim in (1) is proved for k = m+ 1.
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4 Conclusions

Boundedness of iterates in Q-Learning (asynchronous) has been established in the literature

with probability 1 in an asymptotic sense. We showed boundedness under weaker conditions

— in particular that the result holds for any value of k (the number of iterations in the

algorithm) independent of how the step size is decayed. Also, our proof is based on a simple

induction argument. It is not clear if boundedness can be proved for average reward problems

using a similar strategy, but a possible extension is to stochastic shortest path problems.
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