
International Journal of Automation and Computing X(X), X X, X-X

DOI: XXX

Solving Markov Decision Processes with Downside Risk
Adjustment

Abhijit Gosavi* Anish Parulekar**
*219 Engineering Management Building, Dept. of Engineering Management and Systems Engineering

Missouri University of Science and Technology, Rolla, MO 65409, USA

** Axis Bank, Mumbai, India

Abstract: Markov decision processes (MDPs) and their variants are widely studied in the theory of controls for stochastic discrete-
event systems driven by Markov chains. Much of the literature focusses on the risk-neutral criterion in which the expected rewards,
either average or discounted, are maximized. There exists some literature on MDPs that takes risks into account. Much of this
addresses the exponential utility (EU) function and mechanisms to penalize different forms of variance of the rewards. EU functions
have some numerical deficiencies, while variance measures variability both above and below the mean rewards; the variability above
mean rewards is usually beneficial and should not be penalized/avoided. As such, risk metrics that account for pre-specified targets
(thresholds) for rewards have been considered in the literature, where the goal is to penalize the risks of revenues falling below those
targets. Existing work on MDPs that takes targets into account seeks to minimize risks of this nature. Minimizing risks can lead
to poor solutions where the risk is zero or near zero, but the average rewards are also rather low. In this paper, hence, we study a
risk-averse criterion, in particular the so-called downside risk, which equals the probability of the revenues falling below a given target,
where, in contrast to minimizing such risks, we only reduce this risk at the cost of slightly lowered average rewards. A solution where
the risk is low and the average reward is quite high, although not at its maximum attainable value, is very attractive in practice. To
be more specific, in our formulation, the objective function is the expected value of the rewards minus a scalar times the downside
risk. In this setting, we analyze the infinite horizon MDP, the finite horizon MDP, and the infinite horizon semi-MDP (SMDP). We
develop dynamic programming and reinforcement learning algorithms for the finite and infinite horizon. The algorithms are tested in
numerical studies and show encouraging performance.

Keywords: downside risk; Markov decision processes; reinforcement learning; dynamic programming; targets; thresholds

1 Introduction

Markov decision processes (MDPs) have been studied
widely in the literature for classical objective functions,
such as discounted reward over an infinite/finite horizon,
average reward over an infinite horizon, and total reward
over a finite time horizon. MDPs can be solved via dy-
namic programming (DP) when the underlying transition
probability model is available. When the transition prob-
ability models are not available, either because the under-
lying transition dynamics are too complex or because the
state-action space is too large, MDPs can be solved within
simulators via a methodology called reinforcement learning
(RL) [1, 2]. Recently, RL methods have been used in a va-
riety of problems ranging from predicting aircraft taxi-out
times [3] through supply chain management [4] to helicopter
control [5].

The classical objectives, unfortunately, are unable to cap-
ture risk considerations. In other words, classical objective
functions disregard the issue of reducing variability in the
returns (rewards/revenues), although variability is often un-
desirable. In this paper, we are interested in reducing vari-
ability below a given (known) target, or threshold, for the
revenues. The specific form of variability that we are inter-
ested in is called downside risk, i.e., the probability of the
revenues falling below the target specified, or equivalently,
the probability of the costs exceeding the target specified
(in case of costs, this is often called the expected short-

Manuscript received date; revised date

fall). Further, in this paper, we will use a risk-adjusted
(also called risk-penalized in the literature) objective func-
tion of the following format that is maximized :

E[X]− θRisk[X], (1)

where θ is a positive risk-averseness coefficient, X denotes
the rewards or returns, while E[.] and Risk[.] denote the ex-
pectation and risk operators respectively. The risk operator
could be variance, semi-variance, downside risk etc. The
format used in Equation (1) will be called the risk-adjusted
format because it equals the expected rewards minus a pos-
itive scalar, θ, times the risk. Before delving into details of
how the above format can be employed within MDPs, we
present a simple motivating example from risk economics.
Consider the situation in which you have two choices:

• Scenario 1: Make $800 with a probability of 0.9 and
$100 with a probability of 0.1.

• Scenario 2: Make $800 with a probability of 0.8 and
$450 with a probability of 0.2.

Note that both scenarios result in the same expected re-
turns of $730. A decision-maker who likes to take risks
will select Scenario 1 because the chances of obtaining the
highest reward are higher with it. However, a risk-averse
person is likely to choose Scenario 2 because it “seems” less
risky. For instance, with Scenario 2, in the worst case, one
makes $450, which is higher than $100 that one makes with
Scenario 1 in the worst case. So how does one distinguish

2 International Journal of Automation and Computing X(X), X X

between the two if one is risk-averse? In the setting of arti-
ficial intelligence that we study in this paper, it is necessary
to come up with an approach that will crunch numbers and
automatically select the risk-averse solution for the agent.
One approach to computing risk is to set a reasonable tar-
get, and then compute the downside risk, i.e., the probabil-
ity of revenues falling below that target. Let us assume that
the target is set to $100, the lowest amount achievable from
either scenarios. Then, the downside risk for Scenario 1 is
0.1 and that for 2 is 0. Hence, using the objective function
format in Equation (1) will lead to a higher score for Sce-
nario 2, and the decision-maker will hence choose Scenario
2. In this paper, we will consider an objective function of
this nature for solving MDPs. The motivation is to derive
solutions that have slightly lowered average revenues but
significantly lower risks.

A body of literature exists on curtailing risks in the re-
wards (or costs) in MDPs of which we now present a brief
review. A major chunk of this is devoted to using the ex-
ponential utility (EU) function [6, 7, 8], which, when used in
the MDP context, leads to the so-called risk-sensitive objec-
tive function. On the other hand, Filar et al. [9] develop the
variance-adjusted (VA) framework. See also [10] for what is
possibly the first definition of variance within MDPs. How-
ever, we do not find any Bellman equation in these works.
A so-called policy-gradient algorithm based on a VA-based
Bellman equation can be found in Sato and Kobayashi [11].
The algorithm in Gosavi [12] uses one-step variance as a
risk measure for the infinite horizon and proposes a policy
iteration algorithm for dynamic programming, while the al-
gorithms in [13, 14] are for long-run variance.

Outside the EU function and variance, other metrics have
been studied in conjunction with MDPs. Mihatsch and Ne-
uneier [15] introduce a scaling parameter that transforms
the reward function in MDPs. Geibel [16] introduces the
notion of “risky states” that should be avoided, while Heger
[17] studies what is called worst-case risk. A subset of risk-
related notions have also stoked an interest in management
problems [18, 19].

In this paper, our goal is to consider a threshold/target
for revenues/rewards/returns and ensure that the probabil-
ity of the revenues falling below the threshold is reduced
(this is the same as reducing the probability of costs rising
above a given threshold). There is some literature on MDPs
that considers targets: First, there is work aimed at mini-
mizing the probability that the total discounted reward falls
below a target [20, 21, 22], as opposed to considering a risk-
adjusted objective function in an un-discounted setting that
we consider here. Second, a so-called semi-variance from a
target has also been used as a risk measure within a risk-
adjusted objective function [23]; semi-variance measures the
square of the absolute deviation below the target.

There are numerical advantages to using downside risk
over other risk metrics. The EU function has a number of
drawbacks that have been discussed in [24]. In particular,
the most important disadvantage of the EU function is that
the associated RL algorithm can break down numerically in
problems where there is large variability in rewards in dif-
ferent states. Variance, as stated above, is another popular
risk metric, but unfortunately, it computes variability both
above and below the mean. Usually, variability above the

mean rewards is useful, and should not be penalized, which
is precisely what a so-called variance-penalized objective
leads to. Hence, using a specific target for the rewards, as
done within downside risk, is more appropriate for measur-
ing risk than the average reward. Finally, as stated above,
semi-variance-adjusted average rewards, which do account
for targets, have been considered in the literature [23], but
it needs to be noted that the numerical value of the target-
semi-variance can at times become very large — causing
computational issues in RL algorithms. The downside risk,
on the other hand, is a probability, and hence its value never
becomes too large — thereby offering a numerical advan-
tage over target semi-variance.

Contributions of this paper: This paper seeks to
present, to the best of our knowledge, for the first time,
the downside risk criterion in a risk-adjusted format for the
MDP, SMDP, and the finite horizon MDP. The paper also
provides the underlying theory and algorithms, via DP and
RL, for solving these problems. Finally, numerical results
are presented to reinforce the usefulness of the framework
proposed. The framework holds key advantages over other
risk metrics, which were discussed above.

The rest of this paper is organized as follows. We first
consider the infinite time horizon in Section 2 within which
we cover the MDP and the SMDP. Section 3 provides the
theory for the finite time horizon problem. Numerical re-
sults are provided in Section 4, while conclusions drawn
from this research are presented in the final section.

2 Infinite Time Horizon

We first consider the case of the infinite time horizon
for the SMDP, whose algorithms often have straightforward
extensions to MDPs, since the latter are a special case of
the former. See [25, 26] for the necessary background on
the theory underlying MDPs/SMDPs. We will first present
some preliminaries, then the underlying theory, relevant to
downside risk, for MDPs and finally the same for SMDPs
and the finite horizon.

2.1 Preliminaries

We will be using the following notation. S will denote
the set of states in the MDP/SMDP, while A(i) will de-
note the set of actions in state i. Let r(i, a, j) denote the
reward earned in going from state i to state j under ac-
tion a. Also, let p(i, a, j) and t(i, a, j) denote the proba-
bility and time respectively — associated with the same
transition. We will use µ to denote a policy for which
µ(i) will denote the (deterministic) action to be chosen in
state i. Also, Pµ and Rµ will denote the transition prob-
ability and transition reward matrices, respectively, associ-
ated with policy µ. Also, note that we will use the follow-
ing notation for the expected immediate reward and time:
r̄(i, a) =

∑
j∈S p(i, a, j)r(i, a, j) will denote the expected

immediate reward in state i when action a is chosen in it,
while t̄(i, a) =

∑
j∈S p(i, a, j)t(i, a, j) will denote the ex-

pected immediate transition time out of state i when action
a is chosen in it. Further, we will use τ to denote the target,
which will be in terms of dollars for MDPs and dollars per
unit time for SMDPs. We now make an important assump-

A. Gosavi et al. /International Journal of Automation and Computing 3

tion about the nature of MDPs/SMDPs that we will study
here.

Assumption 1 The Markov chain underlying every policy
µ in the infinite horizon MDP/SMDP is regular, i.e., the
transition probability matrix can be raised to a sufficiently
large finite-valued power such that each element in the ma-
trix is non-zero.

We now define the average reward and the downside risk.

Definition 1 For a given deterministic, stationary policy
µ, the average reward in an infinite horizon SMDP is de-
fined as:

ρµ =

∑
i∈S Πµ(i)

∑
j∈S p(i, µ(i), j)r(i, µ(i), j)∑

i∈S Πµ(i)
∑

j∈S p(i, µ(i), j)t(i, µ(i), j)
, (2)

where Πµ(i) denotes the steady-state probability (invariant
probability) for state i ∈ S of the Markov chain underlying
policy µ.

Definition 2 For a given deterministic, stationary policy
µ, the downside risk in an SMDP is defined as: DRµ =∑

i∈S

Πµ(i)
∑
j∈S

p(i, µ(i), j)I(r(i, µ(i), j) < τt(i, µ(i), j)) (3)

where I(.) denotes the indicator function (which equals 1 if
the condition inside the brackets is true and 0 otherwise).

We can obtain the counterparts of MDPs for both of the
above definitions by identically setting the time t(., ., .) ≡ 1
in each.

We can now define our objective function for a given
policy µ using the format in Equation (1) as follows:

ϕµ ≡ ρµ − θDRµ, (4)

where in the above ρµ denotes the average reward of the
policy and DRµ denotes the downside risk of using policy
µ. The above expression in Equation (4) will be referred
to as the downside-risk-adjusted (DRA) score. It is impor-
tant to note here that the positive scalar θ is proportional
to the risk-averseness of the decision-maker; the greater the
degree of risk-averseness, the higher should be this value.
In other words, a decision-maker who has no averseness to
the downside risk should use a value of 0 for θ, while the
decision-maker with a high degree of risk-averseness should
use a larger value. In general, however, very large values of
θ can cause the above DRA score to be too biased to the
downside risk. Thus, this is a parameter that must be set
at a suitable value after taking into account the tolerance
level of the decision-maker towards downside risk. It also
needs to be highlighted that a high value of θ will produce
low downside risk, but this will occur at the cost of reducing
the average reward, ρµ. Therefore in practice, the actual
value of θ has to be determined depending on not only the
risk tolerance level of the decision-maker but also on the
experimental set up and how it influences the average re-
ward and the risk. We discuss examples in the context of
numerical results later in the paper.

We now present the theory for SMDPs.

Bellman equations: To develop policy and value itera-
tions of DP for the objective function at hand, we present
the Bellman equations for the SMDP from which these algo-
rithms will follow. We will now define the following function
that will be used occasionally in the remainder of the paper
to make our presentation compact:

wτ (i, a, j) = r(i, a, j)− θI(r(i, a, j) < τt(i, a, j)) (5)

for all i ∈ S, j ∈ S, and a ∈ A(i). Further, we define
w̄τ (i, a) =

∑
j∈S p(i, a, j)wτ (i, a, j) for all i, j in S and every

a ∈ A(i). When this function is used in the context of
MDPs, t(i, a, j) = 1 for all i ∈ S, j ∈ S, and a ∈ A(i).

Theorem 1 (i) (Bellman equation for a given policy) If a

scalar ϕ ∈ ℜ and an |S|-dimensional finite vector h⃗ satisfy
for all i ∈ S:

ϕt̄(i, µ(i)) + h(i) =∑
j∈S

p(i, µ(i), j) [wτ (i, µ(i), j) + h(j)] ,

then ϕ is the DRA score associated with the policy µ.
(ii) (Bellman optimality equation) Assume that a scalar ϕ∗

and an |S|-dimensional finite vector J(i) satisfy for all i ∈ S

J(i) =

max
a∈A(i)

[∑
j∈S

p(i, a, j)[wτ (i, a, j)− ϕ∗t(i, a, j) + J(j)]

]
. (6)

Any policy that attains the max in the right-hand side of
the above will be an optimal policy, i.e., it will generate the
maximum value for the DRA score.

These results are extensions of the classical results for the
risk-neutral case [26], and hence we skip the proofs. The
proofs can be easily obtained by replacing r(., ., .) in the
proof for the classical risk-neutral case by the function
w(., ., .),

2.2 Dynamic Programming

For the infinite time horizon, we present the so-called
policy iteration algorithm which works for SMDPs as well
as MDPs.
Step 1. Set k, the number of iterations, to 1. Select any
arbitrary policy and denote it by µ̂k, while µ̂∗ will denote
the optimal policy.
Step 2. (Policy Evaluation) Solve the following linear
system of equations:

hk(i) =

|S|∑
j=1

p(i, µk(i), j)
[
wτ (i, µk(i), j)− ϕkt(i, µk(i), j) + hk(j)

]
.

In the above, the unknowns are the hk terms as well as
ϕk. Any one of the hk terms should be set to 0 in order to
obtain a solution.
Step 3. (Policy Improvement) Choose a new policy
µ̂k+1 so that for all i ∈ S

µk+1(i) ∈

4 International Journal of Automation and Computing X(X), X X

argmax
a∈A(i)

 |S|∑
j=1

p(i, a, j)(wτ (i, a, j)− ϕkt(i, a, j) + hk(j))

 .

The action selection should be performed in a manner such
that when possible, one should set µ̂k+1 = µ̂k; this is done
to avoid cycling.
Step 4. If the new policy is identical to the old one, i.e.,
if µk+1(i) = µk(i) for each i ∈ S, then set µ∗(i) = µk(i)
for every i ∈ S and stop. Otherwise, increase k by 1, and
return to Step 2.

The convergence of the algorithm follows directly from
that of the classical risk-neutral algorithm, via replacement
of r(., ., .) by w(., ., .), and hence is not presented in detail.
A relative value iteration algorithm using the DRA function
follows directly from the Bellman equations proposed above
for the MDP. Its convergence will also follow along lines of
the same for the classical risk-neutral case [25]; details of
the algorithm are provided in Appendix A1 for the sake of
completeness.

2.3 Reinforcement Learning

In this section, we develop an RL algorithm for infinite
horizon SMDPs. In RL, the goal is to solve the prob-
lem either in a simulator or in the actual system via trial
and error, typically under the assumption that the transi-
tion probabilities needed in DP are not available. In other
words, the algorithm must update its values after each tran-
sition in the system (or simulator). RL algorithms, hence,
have the potential to solve complex problems whose transi-
tion probabilities are hard to find.

We develop an algorithm along the lines of [27, 23], where
the objective function is estimated simultaneously with the
updating of the value function. Our proposed algorithm will
work for MDPs by setting t(., ., .) ≡ 1 everywhere. Instead
of solving the Bellman equation defined in Equation (6),
our algorithm will seek to solve the following equation: For
all i ∈ S and any scalar η ∈ (0, 1):

J(i) =

max
a∈A(i)

[∑
j∈S

p(i, a, j)[wτ (i, a, j)− ϕt(i, a, j) + ηJ(j)]

]
. (7)

In the above, η is an artificially introduced positive scalar,
which is close to 1, e.g., θ = 0.99. The motivation for intro-
ducing it is that while it helps the underlying Bellman equa-
tion (i.e., Equation (7)) to approximate the actual Bellman
equation, it also leads to a unique solution for the underly-
ing Bellman equation and generates a convergent algorithm.
In the literature, such a scalar has been also used in pol-
icy gradient algorithms to force a unique solution [28]. It
is essentially a tuning parameter whose value must be cho-
sen carefully. We discuss this in more detail below in the
discussion that follows the RL algorithm.

We now make the following assumption under which solv-
ing the above equation will yield the same solution as solv-
ing the actual Bellman equation. We will comment on the
verifiability of this assumption later in the section where we
present numerical results.

Assumption 2 There exists a value for η̄ in the interval
(0, 1) such that for all η ∈ (η̄, 1), the unique solution, J ,

of Equation (7) with ϕ set to equal ϕ∗ produces a policy d
defined as follows for all i ∈ S

d(i) ∈ argmax
a∈S

[
w̄τ (i, a)− ϕ∗t̄(i, a) + η

∑
j

p(i, a, j)J(j)

]

whose DRA score equals ϕ∗.

Note that under the assumption above, when η lies in (0, η̄),
the unique solution of Equation (7) with ϕ = ϕ∗ will be the
same as the solution of the Bellman optimality equation.
We now define a so-called Q-factor that is used in algo-
rithms of the Q-Learning type. For all (i, a):

Q(i, a) =
∑
j∈S

p(i, a, j) [wτ (i, a, j)− ϕt(i, a, j) + ηJ(j)] ,

(8)
where J(.) denotes the unique solution of Equation (7).
Equations (7) and (8) imply that for every i ∈ S, J(i) =
maxa∈A(i) Q(i, a), which from (8) implies that Q(i, a) =∑

j∈S

p(i, a, j)

[
wτ (i, a, j)− ϕt(i, a, j) + η max

b∈A(j)
Q(j, b)

]
.

(9)
This motivates the following RL algorithm (along the lines
of the semi-variance algorithm [23]):

Qk+1(i, a)← (1− αk)Qk(i, a)+

αk

[
wτ (i, a, j)− ϕkt(i, a, j) + η max

b∈A(j)
Qk(j, b)

]
,

where ϕk is updated simultaneously to its optimal value.

Algorithm Steps: In the algorithm below, we will use
what is called an ϵ-greedy selection in the literature [1]. In
an ϵ-greedy strategy, actions are selected in a manner such
that all actions have the same probability of getting selected
in the first iteration, but the probability of selecting the
non-greedy action is gradually reduced with every iteration.

Initialization: Set k, the number of iterations, to 0. Set for
all (i, a), where i ∈ S and a ∈ A(i), Qk(i, a) ← 0. Set ϕk,
the estimate of the DRA score in kth iteration to 0. Also,
set the scalars, TW k, which measures the total accumulated
value of the risk-adjusted immediate reward (wτ (., ., .)) un-
der greedy actions, to 0 and TT k, which measures the total
time spent in greedy actions, to a small positive value, e.g.,
0.01. Set η to a value close to 1, e.g., 0.99. Let αk and βk be
step-sizes that are decayed according to standard RL rules.
Set kmax, the number of iterations for which the algorithm
is run, to a large enough integer. Initiate system simulation
at any arbitrary state.

Repeat the following steps in a sequence until k = kmax:

• Let the current state be i. An action u will be considered
greedy if u = argmaxb∈A(i) Q

k(i, b). Select action a using
an ϵ-greedy strategy. In case there is a tie in finding the
greedy action, the tie is broken randomly.
• Simulate action a. Let the next state be j. Update Q(i, a)
as follows:

Qk+1(i, a)← (1− αk)Qk(i, a)+

A. Gosavi et al. /International Journal of Automation and Computing 5

αk[wτ (i, a, j)− ϕkt(i, a, j) + η max
b∈A(j)

Qk(j, b)].

• If a is greedy, update ϕ, TW and TT using the following:

ϕk+1 ← (1− βk)ϕk + βk TW
k

TT k
;

TW k+1 ← TW k + wτ (i, a, j);TT
k+1 ← TT k + t(i, a, j).

• Increment k by 1. If k < kmax, set i← j.

Termination: For each i ∈ S, select d(i) ∈
argmaxb∈A(i) Q

k(i, b). The policy returned is d. Stop.

In the above, the step sizes, αk and βk, are decayed ac-
cording to a rule such as A/(B + k), where A and B are
suitable positive scalars. In general, every step size in RL
will be assumed to satisfy the following condition:

Assumption 3

∞∑
k=1

αk =∞;

∞∑
k=1

(αk)2 <∞.

Setting the value for η: The value of η must be set as
close to 1 as is possible. Our experiments suggested that a
value of 0.99 is often sufficient in practice to obtain the op-
timal solution. However, on large-scale problems, where the
optimal is unknown and one typically benchmarks against
heuristics, one may have to use trial and error to gener-
ate behavior superior to that of the heuristics. As a rule
of thumb, one can start from θ = 0.99 and use increasing
values until the desired behavior is obtained. Of course, as
stated above, the value should always be less than 1.

The proof of convergence of this algorithm is a straight-
forward extension of an existing result; hence, we provide
the result in Appendix A2.

3 Finite Time Horizon

We now present an analysis of the finite horizon case. In
the finite horizon problem, our goal will be to maximize the
expected sum of the risk-adjusted rewards earned over the
finite time horizon. It turns out that under certain assump-
tions, the finite horizon problem can be studied as a special
case of the stochastic shortest-path problem (SSP) [2]. In
this section, we first present some preliminaries regarding
the finite horizon MDP, then a forward DP algorithm, and
finally an RL algorithm.

3.1 Preliminaries

We begin with some assumptions that we make about the
finite horizon MDP, and then present some notation that
we will need, before defining the objective function.

Assumption 4 Every policy possible in the problem is
proper, i.e., under every policy the system inevitably reaches
a terminal state, which is unique, with a positive probability
after a finite number of transitions.

Assumption 5 The starting state of the system is known
and fixed.

Assumption 6 The terminal (ending) state of the system
is unique and absorbing, and it generates no rewards.

In the finite horizon problem, the state of the infinite
horizon MDP is replaced by a state-stage pair. Thus, (i, s)
will denote the pair of state i and stage s. If µ denotes a pol-
icy, µ(i, s) will denote the action selected in the state-stage
pair (i, s). Also, r(i, s, a, j, s+1) will denote the immediate
reward earned in going from state-stage pair (i, s) to state-
stage pair (j, s + 1); similarly, p(i, s, a, j, s + 1) will denote
the transition probability under the same transition. Our
risk-adjusted immediate reward can then be defined as:

w(i, s, a, j, s+ 1) = r(i, s, a, j, s+ 1)− θ×

I(r(i, s, a, j, s+ 1) < τ), (10)

where I(.) is the indicator function as defined above. This
allows us to define the expected value of the risk-adjusted
immediate reward as follows:

w̄(i, s, a) =
∑
j∈S

p(i, s, a, j, s+ 1)w(i, s, a, j, s+ 1). (11)

Using the above definitions, and noting that N will denote
the finite number of stages in this setting, we now define
the following function:

Definition 3 The long-run expected value of the total risk-
adjusted reward earned by a policy µ starting at state i in
stage 1 over N stages is:

ϕµ(i, 1) ≡ Eµ

[
N∑

s=1

w̄(xs, s, µ(xs, s))|x1 = i

]
,

where xs denotes the state occupied by the system in the sth
stage.

The starting state in the finite horizon MDP will be unique
via Assumption 4. And our objective function will be
ϕµ(1, 1) where the initial state will be numbered 1. We
note that J(i, s) will be used to denote the element of the
value function for state i in stage s of the finite horizon
MDP. The associated Bellman optimality equation, which
follows from the same for the risk-neutral case (see [25]) is
provided below.

Theorem 2 Under Assumptions 4-6 for a finite horizon
MDP, there exists a unique solution for the following equa-
tion: For every i ∈ S and s = 1, 2, . . . , N ,

J∗(i, s) =

max
a∈A(i,s)

∑
j∈S

p(i, s, a, j, s+ 1) [w(i, s, a, j, s+ 1) + J∗(j, s+ 1)]

 .

(12)

3.2 DP Algorithm

We are now ready to present the DP algorithm, based on
value iteration, that solves the Bellman equation presented
above, and follows from it.

Step 1. Select an ϵ > 0. Set k = 0. Set arbitrary values,
e.g., 0, to J0(i, t) for all i ∈ S and t = 1, 2, . . . , N + 1. Set
s = 1. Let i∗ be the starting state.
Step 2. Perform the following update for all i ∈ S, except
when s = 1 in which case perform it only for i∗.

Jk+1(i, s) =

6 International Journal of Automation and Computing X(X), X X

max
a∈A(i,s)

∑
j∈S

p(i, s, a, j, s+ 1)
[
w(i, s, a, j, s+ 1) + Jk(j, s+ 1)

] .

Step 3. Increment s by 1. If s = N + 1 go to Step 4. Else,
return to Step 2.
Step 4. Check if ||J⃗k+1 − J⃗k||∞ < ϵ. If true, go to Step 5.
If this is not true, set s = 1, increase k by 1, and return to
Step 2.
Step 5. The optimal action in each state-stage pair, (i, s),
is determined as follows:

argmax
a∈A(i,s)

∑
j∈S

p(i, s, a, j, s+ 1)
[
w(i, s, a, j, s+ 1) + Jk(j, s+ 1)

] .

Assumption 6 requires that the terminal state in stage
(N + 1) be reward-free. This is ensured by the fact that
J(i,N + 1) is never updated for any i, and thus always
remains at zero. The proof of convergence of the algorithm
is provided in Appendix A3.

3.3 RL Algorithm

The result for the value function used in DP, i.e., The-
orem 2, can be extended to Q-values. To that end, we
first define the Q-factor in terms of J∗(., .), which was de-
fined above via Theorem 2, as follows: For every i ∈ S,
s = 1, 2, . . . , N , and a ∈ A(i, s), Q∗(i, a, s) =∑

j∈S

p(i, s, a, j, s+ 1) [w(i, s, a, j, s+ 1) + J∗(j, s+ 1)] ,

which implies that for every i ∈ S and s = 1, 2, . . . , N ,

J∗(i, s) = max
b∈A(j,s)

Q∗(j, b, s).

Then, using the above, Theorem 2 can be written in terms
of the Q-values as follows:

Theorem 3 Under Assumptions 4-6 for a finite horizon
MDP, there exists a unique solution for the following equa-
tion: For every i ∈ S, s = 1, 2, . . . , N , and a ∈ A(i, s)

Q∗(i, a, s) =

∑
j∈S

p(i, s, a, j, s+1)

[
w(i, s, a, j, s+ 1) + max

b∈A(j,s+1)
Q∗(j, b, s+ 1)

]
.

(13)

The above suggests an RL algorithm that can be used
for the finite horizon problem when Assumptions 4–6 hold.
We now present details of the algorithm.

Initialization For all (i, u), where i ∈ S, s = 1, 2, . . . , N +1,
and u ∈ A(i, s), set Q(i, s, u) = 0. Set k, the number of
state changes, to 0. Set kmax, which denotes the number of
iterations for which the algorithm is run, to a sufficiently
large number. Start system simulation at the starting state,
i∗, and set s = 1.
Loop until k = kmax:
Step 1. Let the current state be denoted by i and the cur-
rent stage be denoted by s. Select action a with a proba-
bility of 1/|A(i, s)|.
Step 2. Simulate action a. Let the next state be j in stage
(s+1). Let r(i, s, a, j, s+1) be the immediate reward earned
in the transition under the influence of action a.

Step 3. Update Q(i, s, a) as follows:

Qk+1(i, s, a)← (1− αk)Qk(i, s, a) + αk×[
wτ (i, s, a, j, s+ 1) + max

b∈A(j,s+1)
Qk(j, s+ 1, b)

]
, (14)

Step 4. Increase k by 1. Set s ← s + 1. If s = N + 1, set
i = i∗, s = 1, and return to Step 2. Else if s ̸= N + 1, set
i← j and return to Step 2.
Termination For each i ∈ S and s = 1, 2, . . . , N , se-
lect d(i, s) ∈ argmaxb∈A(i,s) Q(i, s, b). The policy (solution)
generated by the algorithm is d. Stop.

We must note that the algorithm will loop between Steps
1 and 4 and will exit when k = kmax regardless of the value
of s. Further, like in the case of the DP algorithm, as per
Assumption 6, we must enforce the terminal state in stage
(N + 1) to be reward-free. This is ensured by the fact that
Q(i,N + 1, a) is never updated for any (i, a) pair and thus
always remains at zero. Once again, the convergence of
the algorithm follows in a straightforward manner from the
same for Q-Learning for the SSP, and is hence relegated to
the Appendix A4.

4 Numerical Results

In this section, we illustrate the use of our algorithms on
instances of downside-risk-adjusted problems. We present
results on three problem classes: First, we describe the use
of the policy iteration algorithm on a preventive mainte-
nance MDP where the transition probabilities are available.
Thereafter, we present an analysis of the RL algorithm on
an SMDP where the transition probabilities are not easy to
estimate. We conclude with a numerical analysis with a fi-
nite horizon MDP via an RL algorithm. We used the MAT-
LAB software in all our experiments, and we note that no
experiment took more than 5 seconds on an Intel Pentium
Processor with a speed of 2.66 GHz on a 64-bit operating
system.

4.1 Infinite Horizon MDP

We consider a problem of preventive maintenance from
[29]. A failure-prone production line is considered. When
the line fails, it is has to be repaired, which takes the whole
day. At times, the line is maintained in a preventive man-
ner, which takes the entire day. The model developed is
similar to that in [12] for which data was obtained from a
firm in New York. The underlying problem here is one of
determining which action to perform at the start of each
day: a production or a maintenance. As the line ages,
its probability of failure increases. A preventive mainte-
nance costs less than a repair, which must be performed in
case of failure. The underlying dynamics of this line will
be modeled as a Markov chain, and the decision-making
problem can be set up as a MDP which has two actions
{produce, maintain}. We now present some notation.

• Cr: cost of a repair

• Cm: cost of a maintenance

• z: parameter that will define the failure probabilities

A. Gosavi et al. /International Journal of Automation and Computing 7

• days: number of days since last repair or maintenance

We will assume that when the system is repaired or
maintained, it is as good as new. As stated above, we
use the model in [12] for the failure dynamics, where
the state of the MDP is defined by days and transi-
tion probability law under the production action is de-
fined as follows: p(days, produce, days + 1) = zdays and
p(days, produce, 0) = 1 − zdays for days = 0, 1, . . . , D,
where D is the maximum value for the variable days;
all other transition probabilities for the action will equal
0. In practice, a suitable positive integer will be chosen
for the value of D such that at D, p(D, produce, 0) u
1; hence, we will assume that p(D, produce, 0) = 1 and
p(D, produce,D) = 0. For the maintenance action, the
transition probability law will be as follows: for days =
0, 1, . . . , D, p(days,maintain, 0) = 1 and other values of the
transition probability will equal 0. Since, the transition to
state 0 implies a failure, under action produce, and a main-
tenance, under action maintain, we have the following for
the transition reward matrix: r(days, produce, 0) = −Cr

and r(days,maintain, 0) = −Cm for days = 0, 1, . . . , D; all
other values of r(., ., .) equal 0. We now present an illustra-
tive example:
Example A: We use the following values in this experi-
ment: Cm = 3, Cr = 10, z = 0.99, θ = 10, τ = −5, and
D = 20. Using the policy iteration algorithm presented
above, we obtain the following solution after 6 iterations:
Action produce is optimal in states days = 0, 1, . . . , 5 and
from days = 6 onwards, action maintain is optimal. We
compared this to the risk-neutral situation where θ = 0,
for which the optimal solution is: action produce in states
days = 0, 1, . . . , 7 and from days = 8 onwards, action
maintain. It is clear thus that the risk-averse solution rec-
ommends maintenance at an earlier age (6 days) in compar-
ison to the age recommended by the risk-neutral solution
(8 days). A plot of the behavior of the algorithm, which
shows the value of ϕ in each iteration of the algorithm, is
presented in Fig. 1.

4.2 Infinite Horizon SMDP

We now consider a case where the RL algorithm will be
used on an infinite horizon SMDP from [30]; the transition
probabilities for problems of this nature are not easy to
evaluate, and hence simulation-based algorithms (e.g., RL)
form a useful alternative. A production-inventory system,
i.e., a machine with a finished product buffer is considered.
The buffer stores the product until the demand from the
customer arrives. The demand has a size of 1, while the
machine increases the size of the buffer by 1 when it pro-
duces a part successfully. There is an upper limit, S, on how
much the buffer can store. The machine takes a break from
production when this upper limit is reached, and it remains
on vacation until the buffer falls to a pre-determined level,
s. The input random variables for this model are: time
for producing a part (production time), the time between
failures, the time for a repair, the time between demand
arrivals, and the time for a maintenance. The “age” of the
machine is determined by the number of units produced
since last repair or maintenance. The state-space for the
SMDP will be defined as: {b, c}, where c denotes the num-

1 2 3 4 5 6
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

number of iterations

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Figure 1 The progression of policy iteration: The objective func-
tion here is ϕ.

ber of parts produced since last repair or maintenance, and
b stands for the number of parts currently inside the buffer.
There are two actions that the decision maker can select
from: {Produce, Maintain}. The action is to be selected at
the end of a production cycle, i.e., when one unit is pro-
duced.
Example B: We use the following data-set from the liter-
ature [30]: (S, s) = (3, 2). Further, we will use the following
notation: Expo(λ) will denote an exponential distribution
with a mean of 1/λ, while Erl(shape, scale) will denote an
Erlang distribution with the shape and scale parameters
as specified within brackets and Unif(a, b) will denote the
uniform distribution with a as the minimum and b as the
maximum. In our experiment, we use: Expo(1/10) for time
between arrivals, Erl(8, 12.5) for the time between failures,
Erl(2, 100) for the time for repair, Erl(8, 1.25) for the pro-
duction time, and Unif(5, 20) for the maintenance time.
Cr = $5, Cm = $2, and profit per sale of one unit is $1.
The policy turns out to have a threshold nature, i.e., for
i = 1, 2, 3, when the buffer equals i, the production action
is chosen as long as the production count c is less than ci
and maintain action when c ≥ ci. We also use τ = −$3, a
value less than the cost of maintenance, and θ = 10.

When the RL algorithm is run for the downside-risk-
adjusted objective, it returns c1 = 3, c2 = 4, and c3 = 7;
when buffer is empty, the action is to produce regardless
of the size of the buffer. The value of the average reward,
ρ, equals 0.0263 while the probability of failure, which is
essentially the downside risk here, equals 0.0041. For the
risk-neutral case, which is obtained by setting θ = 0, the
thresholds are c1 = 5, c2 = 5, and c3 = 6; when the buffer is
empty, the action is to produce regardless of the size of the
buffer. Also, ρ = 0.0342 and the downside risk is 0.0106 for
the risk-neutral case. As is clear, when the algorithm ac-
counts for the downside risk, the latter gets lowered but the
average reward also falls, which is as expected. In all the

8 International Journal of Automation and Computing X(X), X X

experiments, we used η = 0.99 and the following rules for
the step-sizes: αk = 150/(300 + k) and βk = 10/(300 + k).
For small problems, it is possible to run the algorithm with
different values for η, but for larger problems, one must
guesstimate a value.

4.3 Finite Horizon MDP

The goal here is to numerically analyze a simple two-
stage finite horizon MDP for which an optimal policy can
be identified via inspection. The following example will also
be used as a test case for the RL algorithm and to explain
the usefulness of the downside risk criterion.
Example C: The problem has 2 stages, i.e., N = 2 and
the initial state is unique. Fig. 2 provides the data for
this example. We will have eight policies, shown in Table
I. Table II shows the expected total reward for each policy
and the total downside risk, as well as the risk-adjusted
objective function ϕ(1, 1). We provide details of the values
in the second and third rows of Table II — in order to
explain how these calculations are performed. When policy
1 is chosen, it is clear from the data in Fig. 2 that the total
expected reward (TER) for this policy will be:

TER = 0.7(10 + 4) + 0.3(2 + 5) = 11.9.

We use τ = 6 and θ = 10 in our experiments. Then, the
downside risk (DR) of any policy will be

DR = Prob(X1 < τ) + Prob(X2 < τ),

where Xs denotes the immediate reward earned in stage s
for s = 1, 2. Then, the downside risk for policy 1 will be:

DR = 0.3 + 1 = 1.3.

As a result, the objective function for this policy will be:
ϕ(1, 1) = 11.9 − θ(1.3) = 11.9 − 10(1.3) = −1.1. Next, we
consider policy 2. Here, the corresponding values will be:

TER = 0.5(6 + 4) + 0.5(7 + 5) = 11;

DR = 0 + 1 = 1; and

ϕ(1, 1) = 11− 10(1) = 1.

From Table II, by evaluating all the policies, it is clear that
policies 4 and 8 are optimal, i.e., choose action 2 in stage
1, action 2 in state 1 of stage 2, and either action in state 2
of stage 2. For the risk-neutral case, the optimal solutions,
which maximize the expected total reward, are policies 3
and 6.

We ran the RL algorithm on a simulator of this finite
horizon MDP, and obtained the optimal policy in 1000 it-
erations with the following Q-values: Q(1, 1, 1) = 6.0699,
Q(1, 1, 2) = 7.5171, Q(1, 2, 1) = 0.8796, Q(1, 2, 2) = 1.8328,
Q(2, 2, 1) = 1.1614, and Q(2, 2, 2) = 1.2941. In other
words, policy 4, which is one of the optimal policies, is
returned. For the risk-neutral case, policies 3 and 6 are op-
timal. When the algorithm is run for the risk-neutral case,
policy 3 is returned.

In the experiment above, we further use target semi-
variance as a risk metric [23], in order to examine the re-
sulting policy. The risk-adjusted reward using target semi-
variance as a risk metric can be defined as:

w(i, s, a, j, s+ 1) = r(i, s, a, j, s+ 1)− θ×

(1, 1)

(1, 2)

(2, 2)

Terminal

Legend:
Inside Circle: (i,s) = (state, stage)

On arrows: (a, p, r):

a= action, p = transition probability
r = transition reward

(1, 0.7, 10)

(2, 0.5, 6)

(1, 1, 4)

(2, 1, 5)

(2, 0.5, 7)

(1, 0.3, 2)
(1, 1, 5)

(2, 1, 5)

Figure 2 The figure shows the transition probabilities and re-
wards for the different actions in Example C in which τ = 6 and
θ = 10.

(
[τ − r(i, s, a, j, s+ 1)]+

)2
, (15)

where [a]+ ≡ max(0, a). Note that the above is the coun-
terpart of target semi-variance for Equation (10); thus, the
target semi-variance computes the square of the deviation
of the immediate reward below the target, τ , i.e., the target
semi-variance is the square of the semi-deviation below the
target. Note that when the immediate reward exceeds the
target, the deviation equals 0. Using the definition above
for w(., ., ., .), one can then define w̄(., .) via Equation (11)
and the objective function for the target semi-variance in a
finite horizon MDP via Definition 3. The finite horizon RL
algorithm for the downside risk case with the new defini-
tion for w(., ., ., .) will now serve as the target semi-variance
counterpart.

We used θ = 1 in our experiment for target semi-
variance and ran the algorithm for 1000 iterations in a
simulator for the finite horizon MDP. The following Q-
values were obtained, which yielded the same policy as
obtained in the downside risk case: Q(1, 1, 1) = 19.7848,
Q(1, 1, 2) = 21.7516, Q(1, 2, 1) = 17.0010, Q(1, 2, 2) =
20.6861, Q(2, 2, 1) = 16.4804, and Q(2, 2, 2) = 17.2725.

The reason for using the value of 1 for θ in the semi-
variance case, in contrast to the value of 10 used in the
downside risk case, was that downside risk is a probability,
and as such, its value is upper bounded by 1; however, tar-
get semi-variance can acquire large values (because of the
squaring involved), and therefore a large value for θ can ex-
cessively amplify the importance of the risk. Another way
of explaining this would be to say that using an excessively
large value for the penalty factor, θ, can cause the problem
to ignore the average reward and only emphasize the risk,
which can lead to a solution whose risk is low, but whose
average reward is also low; this is unattractive from all as-
pects. Hence, the penalty factor must be tuned in order
to obtain a sensible policy in practice. Our experiments

A. Gosavi et al. /International Journal of Automation and Computing 9

suggested that for the problem we considered, using values
such as 10 for θ for the target semi-variance risk produced
unattractive policies; the appropriate values for target semi-
variance are in the range of (1, 3), whereas for the downside
risk case, θ must lie in between 7 and 12. Thus, our ex-
periments suggested that θ must be tuned to obtain useful
solutions.

Table I Definitions of the eight policies; the numbers provided
in the second through the fourth column denote actions for the
stage-state combination

Policy Stage 1 Stage 2 Stage 2

State 1 State 1 State 2

1 1 1 1

2 2 1 1

3 1 2 2

4 2 2 2

5 1 1 2

6 1 2 1

7 2 1 2

8 2 2 1

Table II The total expected reward (TER), the downside risk
(DR), and the objective function (ϕ(1, 1)

Policy TER DR ϕ(1, 1)

1 11.9 1.3 −1.1
2 11 1 1

3 12.6 1.3 −0.4
4 11.5 1 1.5

5 11.9 1.3 −1.1
6 12.6 1.3 −0.4
7 11 1 1

8 11.5 1 1.5

5 Conclusions

The intersection of risk and MDPs has been studied for
many years now. There is a significant body of literature
on the exponential utility function and MDPs. Further,
papers written on the risks of revenues falling below pre-
specified targets in MDPs have mostly addressed the issue
of minimizing the so-called threshold probability or down-
side risk, which is at one extreme of the solution spectrum.
For instance in the maintenance problem, minimizing the
risk would lead to an impractical policy in which mainte-
nance would be recommended on the first day, thus not
allowing any production. In this paper, our goal was much
more pragmatic — to develop solution techniques that ad-
dressed the issue of reducing the downside risk and at the
same time obtaining a reasonably high value for the aver-
age reward. To this end, we used a downside-risk-adjusted
objective function and developed the underlying Bellman
equations for SMDPs/MDPs on the infinite horizon, as well
as MDPs on the finite horizon under some assumptions.
Thereafter, we developed dynamic programming algorithms

and reinforcement learning algorithms. We concluded with
a numerical analysis to demonstrate the usefulness of the
downside risk penalty. Our theoretical and numerical anal-
ysis provides encouraging results.

A number of directions for future work can be envisioned.
First, the numerical tests should be extended to problems
of a larger scale. Second, the problem can be analyzed after
the key assumptions made in this analysis, on the nature of
the underlying Markov chains for the infinite horizon and
the nature of policies and uniqueness of starting states for
the finite horizon, are relaxed.

Acknowledgement

The authors would like to acknowledge the two anony-
mous reviewers and the Associate Editor for finding critical
typos in the paper and making suggestions for improve-
ment.

References

[1] R. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. The MIT Press, Cambridge, MA,
USA, 1998.

[2] D.P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, USA,
1996.

[3] P. Balakrishna, R. Ganesan, and L. Sherry. Accuracy
of reinforcement learning algorithms for predicting air-
craft taxi-out times: A case-study of Tampa bay de-
partures. Transportation Research Part C: Emerging
Technologies, 18(6):950–962, 2010.

[4] Z. Sui, A. Gosavi, and L. Lin. A reinforcement learn-
ing approach for inventory replenishment in vendor-
managed inventory systems with consignment inven-
tory. Engineering Management Journal, 22(4):44–53,
2010.

[5] P. Abbeel, A. Coates, T. Hunter, and A.Y. Ng. Au-
tonomous autorotation of an RC helicopter,. In Inter-
national Symposium on Robotics, 2008.

[6] R. Howard and J. Matheson. Risk-sensitive Markov
decision processes. Management Science, 18(7):356–
369, 1972.

[7] M. Rabin. Risk aversion and expected utility theory:
A calibration theorem. Econometrica, 68:1281–1292,
2000.

[8] P. Whittle. Risk-Sensitive Optimal Control. John Wi-
ley, NY, USA, 1990.

[9] J. Filar, L. Kallenberg, and H. Lee. Variance-penalized
Markov decision processes. Mathematics of Operations
Research, 14(1):147–161, 1989.

[10] M. Sobel. The variance of discounted Markov decision
processes. Journal of Applied Probability, 19:794–802,
1982.

10 International Journal of Automation and Computing X(X), X X

[11] M. Sato and S. Kobayashi. Average-reward reinforce-
ment learning for variance penalized Markov decision
problems. In ICML ’01: Proceedings of the Eighteenth
International Conference on Machine Learning, pages
473–480, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc.

[12] A. Gosavi. A risk-sensitive approach to total produc-
tive maintenance. Automatica, 42:1321–1330, 2006.

[13] A. Gosavi. Variance-penalized Markov decision pro-
cesses: Dynamic programming and reinforcement
learning techniques. International Journal of General
Systems, 43(6):649–669, 2014.

[14] A. Gosavi. Reinforcement learning for model building
and variance-penalized control. In 2009 Winter Simu-
lation Conference (WSC’09), Austin (TX), USA, 2009.

[15] O. Mihatsch and R. Neuneier. Risk-sensitive reinforce-
ment learning. Machine Learning, 49(2-3):267–290,
2002.

[16] P. Geibel. Reinforcement learning via bounded risk.
In ICML01, pages 162–169. Morgan Kaufman, 2001.

[17] M. Heger. Considerations of risk in reinforcement
learning. In Proceedings of 11th International Con-
ference on Machine Learning, pages 105–111. Morgan
Kaufmann, 1994.

[18] Y. Chen and J. Jin. Cost-variability-sensitive preven-
tive maintenance considering management risk. IIE
Transactions, 35(12):1091–1102, 2003.

[19] C. Barz and K. Waldmann. Risk-sensitive capacity
control in revenue management. Math. Meth. Oper.
Res., 65:565–579, 2007.

[20] K. Chung and M. Sobel. Discounted MDPs: Distri-
bution functions and exponential utlity maximization.
SIAM Journal of Control and Optimization, 25:49–62,
1987.

[21] M. Bouakiz and Y. Kebir. Target-level criterion in
Markov decision processes. Journal of Optimization
Theory and Applications, 86:1–15, 1995.

[22] C. Wu and Y. Lin. Minimizing risk models in Markov
decision processes with policies depending on target
values. Journal of Mathematical Analysis and Appli-
cations, 231:47–67, 1999.

[23] A. Gosavi. Target-sensitive control of Markov and
semi-Markov processes. International Journal of Con-
trol, Automation, and Systems, 9(5):1–11, 2011.

[24] A. Gosavi, S.K. Das, and S.L. Murray. Beyond ex-
ponential utility functions: A variance-adjusted ap-
proach for risk-averse reinforcement learning. In Adap-
tive Dynamic Programming and Reinforcement Learn-
ing (ADPRL), 2014 IEEE Symposium on, pages 1–8,
2014.

[25] D.P. Bertsekas. Dynamic Programming and Optimal
Control. Athena, Belmont, 1995.

[26] M. L. Puterman. Markov Decision Processes. Wiley
Interscience, New York, 1994.

[27] T.K. Das, A. Gosavi, S. Mahadevan, and N. Marchal-
leck. Solving semi-Markov decision problems using av-
erage reward reinforcement learning. Management Sci-
ence, 45(4):560–574, 1999.

[28] J. Baxter and P. Bartlett. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence,
15:319–350, 2001.

[29] A. Parulekar. A downside risk criterion for preventive
maintenance. Master’s thesis, University at Buffalo,
The State University of New York, 2006.

[30] T.K. Das and S. Sarkar. Optimal preventive mainte-
nance in a production inventory system. IIE Transac-
tions, 31:537–551, 1999.

Appendix

A1: Relative Value Iteration: We first present a rela-
tive value iteration algorithm for MDPs in which any state
in the system is first chosen as the distinguished state.
Step 1: Select any arbitrary state from S to be a distin-
guished state i∗. Set k = 1, and select arbitrary values for
the vector J⃗ 1. Specify a small, but positive termination
value for ϵ.
Step 2: Compute for each i ∈ S: Jk+1(i) =

max
a∈A(i)

[∑
j∈S

p(i, a, j)[wτ (i, a, j) + Jk(j)]

]
.

When calculations are complete for every state above, set
ϕk = Jk+1(i∗).
Step 3: For each i ∈ S, calculate:

Jk+1(i)← Jk+1(i)− ϕk.

Step 4: If
||J⃗ k+1 − J⃗ k||∞ < ϵ,

go to Step 5. Otherwise, increment k by 1 and return to
Step 2.
Step 5: For each i ∈ S, choose d(i) ∈

argmax
a∈A(i)

[∑
j∈S

p(i, a, j)[wτ (i, a, j) + Jk(j)]

]
.

The ϵ-optimal policy is d; ϕk is the optimal objective func-
tion’s estimate.

A2: Convergence of the RL Algorithm for infinite
horizon MDPs

Theorem 4 Assume that the iterates αk and βk satisfy

the following condition: limk→∞
βk

αk = 0. Then, under As-

sumptions 1–2 and if the step sizes, αk and βk satisfy 3, the
sequence of iterates in the RL algorithm for infinite horizon,

A. Gosavi et al. /International Journal of Automation and Computing 11

{Qk(., .)}∞k=1, converges with probability 1 to the unique so-
lution of Equation (9) and leads to an optimal solution of
the SMDP, as k →∞.

Proof The proof follows directly from Theorem 7 in [23]

by noting that the function w(., ., .) in [23] would have to be
replaced by the function w(., ., .) defined here.

A3: Convergence of the DP Algorithm for finite
horizon MDPs

Theorem 5 Under Assumptions 4–6, the sequences of it-
erates, {Jk(.)}∞k=1, generated by the finite horizon DP al-
gorithm converges to the unique solution of the Bellman
optimality equation, i.e., Equation (12), as k →∞.

Proof We only sketch the proof, because it follows directly
from that of the convergence of the SSP. Essentially, the fi-
nite horizon MDP can be treated as a special case of the
SSP under Assumptions 4–6. This can be done by treating
the state-stage pair as the state in the SSP. Proposition 2.1
(b) of [2] shows the convergence of the value iteration algo-
rithm for the SSP; when r(., ., .) in that result is replaced
by w(., ., .) defined in this paper, the result is immediate.

A4: Convergence of the RL Algorithm for finite
horizon MDPs

Theorem 6 Under Assumptions 3-6, the sequence of iter-
ates in the RL algorithm for finite horizon, {Qk(., .)}∞k=1

converges with probability 1 to the unique solution of Equa-
tion (13).

Proof Under Assumptions 3–6, the convergence is imme-
diate from Prop. 5.5 (a) in [2] after noting that the finite
horizon problem can be treated as a special case of the SSP
and replacing the function r(., ., .) by w(., ., .).

Abhijit Gosavi received his B.E. in Me-
chanical Engineering from the Jadavpur
University, India, in 1992 and his M.Tech in
Mechanical Engineering from the Indian In-
stitute of Technology, Madras, India in 1995.
He received a Ph.D. in Industrial Engineer-
ing from University of South Florida in 1999.
Currently, he is an Associate Professor in
the Department of Engineering Management
and Systems Engineering at Missouri Uni-

versity of Science and Technology.
He has published more than 60 refereed journal and conference

papers. His research interests cover simulation-based optimiza-
tion, Markov decision processes, productive maintenance, and
revenue management.

Dr. Gosavi has received research funding awards from the
National Science Foundation of the United Stated of America
and numerous other agencies. He is a member of IIE, ASEM,
and INFORMS.
Email: gosavia@mst.edu

Anish Parulekar obtained an M.S. in In-
dustrial Engineering from the Department
of Industrial and Systems Engineering at
the University of Buffalo, State University
of New York in 2006 and a B.E. in Mechan-
ical Engineering from University of Mum-
bai, India in 2004. He currently serves as
a Deputy Vice President and the Head of

Marketing Analytics in Axis Bank, Mumbai, India.
His research interests are in risk, computing, and Markov con-

trol.
Email: anish.parulekar@axisbank.com

