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Abstract

While risk-sensitive (RS) approaches for designing plans of total productive maintenance are critical in manufacturing systems, there is
little in the literature by way of theoretical modeling. Developing such plans often requires the solution of a discrete-time stochastic control-
optimization problem. Renewal theory and Markov decision processes (MDPs) are commonly employed tools for solving the underlying
problem. The literature on preventive maintenance, for the most part, focuses on minimizing the expected net cost, and disregards issues
related to minimizing risks. RS maintenance managers employ safety factors to modify the risk-neutral solution in an attempt to heuristically
accommodate elements of risk in their decision making. In this paper, our efforts are directed toward developing a formal theory for developing
RS preventive-maintenance plans. We employ the Markowitz paradigm in which one seeks to optimize a function of the expected cost and its
variance. In particular, we present (i) a result for an RS approach in the setting of renewal processes and (ii) a result for solving an RS MDP.
We also provide computational results to demonstrate the efficacy of these results. Finally, the theory developed here is of sufficiently general
nature that can be applied to problems in other relevant domains.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Total productive maintenance (TPM) is a management initia-
tive that has been widely embraced in the industry. A positive
strategic outcome of such implementations is the reduced oc-
currence of unexpected machine breakdowns that disrupt pro-
duction and lead to losses which can exceed millions of dollars
annually. Additionally, frequent machine breakdowns indirectly
can lead to a host of other problems, e.g., difficulties in meeting
customer deadlines, which makes the transition from make-to-
stock to make-to-order difficult (Suri, 1998) and magnifies the
need to keep extra safety stocks, increasing inventory-holding
costs (Askin & Goldberg, 2002). An important tool of a TPM
program is the stochastic model used to determine the opti-
mal time for preventive maintenance (PM) (Askin & Goldberg,
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2002). PM can help reduce the frequency of unexpected repairs
when the failure rate is of an increasing nature (Das & Sarkar,
1999; Lewis, 1994).

Renewal processes (Kao, 1997; Ross, 1992) and Markov
decision processes (MDPs) (Bertsekas, 1995; Puterman, 1994)
are frequently used as the underlying stochastic models in a
TPM program. A critical drawback of a traditional approach
in TPM is to use the expected value of the long-run cost as
the objective function. Such an approach overlooks the risk
associated with the occasional high cost that can occur in sys-
tem optimized with respect to the expected cost. As a result,
risk-sensitive (RS) managers, whom we interacted with in a
local automobile industry, modify the predicted optimal (with
respect to the expected cost) time for maintenance, �∗, by using
a factor of safety, �, where � > 1, such that the time for PM is
then: �∗/�. While this certainly results in a more conservative
time for maintenance, it is a heuristic approach. What managers
really need is a more sophisticated approach that would help
them (i) quantify their risk sensitivity on a scale from 0 to 1
and (ii) determine the optimal maintenance time using a model
that incorporates this factor. This clearly motivates the need for
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embedding the well-known Markowitz criterion (Markowitz,
1952) within the stochastic model. Another significant demand
of managers from the model is the ability to quantify risks
in terms of dollars (or Euros) and hours—units that they are
comfortable with. In particular, senior managers involved in
developing long-term plans for an enterprise are familiar with
the idea of using variance per unit time as a measure of risk in
strategic decision making (see Ruefli, Collins, & Lacugna, 1999
for an extensive survey). Since TPM has a significant strategic
impact on the organization, the units of risk in these calculations
should ideally match those used in strategic management. One
of the goals of this research is to develop models that can be
conveniently used by managers.

A general cost function (objective function) using the
Markowitz criterion is

g(�) = �C + ��2 with � > 0, (1)

where �C and �2 denote the long-run mean and the long-run
variance, respectively, of the net cost per unit time incurred from
following a preventive maintenance plan that prescribes � as the
time for PM. An alternative formulation in terms of rewards,
in which the objective function is maximized, is gR(�) = �R −
��2, with � > 0, where �R and �2 denote the long-run mean
and variance of the net reward per unit time, respectively. Since
�R = −�C, both formulations are equivalent.

Risk-neutral (RN) statistical models for PM use � = 0. Typ-
ically, � is selected by experimentation by the manager and is
a function of the variability in the system. A very large value
for � is undesirable, since that could produce a solution with a
very low variability but also with a very high cost. This is be-
cause a very large value for � amplifies the importance of the
variance and diminishes that of the mean. A very low value for
�, on the other hand, is indicative of a manager who is neu-
tral to risks. Clearly, the smaller the value of �, the closer the
model gets to becoming RN.

The time for PM, it must be understood, is the time since
the last repair or PM. A common assumption is that the unit or
the line is as good as new when it is repaired or preventively
maintained. A typically made second assumption is that when
the machine is not working, it is assumed not to age. We will
stick to these two assumptions here. The main focus of this
paper is to develop a theory when � > 0. The work of Chen
and Jin (2003) also employs the Markowitz criterion, but their
approach is quite different than ours; this will be clarified via
our discussions below.

TPM plans for the production line in its entirety tend to be
distinct from those for individual units that operate indepen-
dently of the line. Most factories are full of such units, e.g.,
fork-lift trucks, electrical pumps, etc. We will develop separate
models for the individual-unit scenario and the production-line
scenario. For the case of the individual unit, we will present a
renewal-theory model and for the case of the production line,
we will present a more involved model based on MDPs. The
analysis will involve presentation of some key results that could
be applied to a large number of other management-science
problems involving control theory. Thereafter, we will present
results from computational experiments with both models. The

remainder of this paper is organized as follows. Section 2
presents the renewal-theory model, and Section 3 presents the
Markov decision model. Section 4 describes empirical work
done using these two models, and Section 5 concludes the
paper.

2. A renewal-theory model

A commonly used model in most TPM programs employs
renewal theory and goes by the name “age-replacement”. In
the setting of renewal processes, every failure or a maintenance
triggers a so-called renewal event. A classical result in renewal
theory, called the renewal reward theorem, provides an expres-
sion for the expected reward per unit time in a renewal process.
An extension of this concept to the variance in the rewards of
the renewal process can be found in Chen and Jin (2003). How-
ever, we present a different result that leads to a significantly
different mechanism for measuring variance. Our result was
influenced by the need of managers in a local industry for mea-
suring risk in practical units that could be explained to senior
management; the unit of risk (variance) in our result is hence
dollar2/hour or Euro2/hour, which is the same as that for vari-
ance in rewards per unit time. As mentioned above, strategic
managers are known to use variance to measure risk (Ruefli
et al., 1999).

Consider a counting process, {N(t), t �0}, and let Tn de-
note the time between the (n − 1)th and the nth event in
this process with n�1. If {T1, T2, . . .} denotes a sequence of
non-negative random variables that are independent and iden-
tically distributed, then the counting process is called a re-
newal process. When there is a reward associated with each
renewal, we have a renewal reward process. Let Rn denote
the reward associated with the nth renewal or nth cycle. We
will let R(t) =∑N(t)

n=1 Rn denote the sum of the individual re-

wards earned by time t and R2(t) = ∑N(t)
n=1 (Rn)

2 denote the
sum of the square of the individual rewards earned by time t.
Further, let

E[R] ≡ E[Rn], E[R2] ≡ E[(Rn)
2] and E[T ] ≡ E[Tn],

where E denotes the expectation operator. The long-run vari-
ance in the rewards in Chen and Jin (2003) (see Lemma 1 of
their paper) is limt→∞ R2(t)/t −[limt→∞ R(t)/t]2, which re-
quires a subtraction of two quantities of which the first has
the unit dollar2 per hour and the second dollar2 per hour2.
We present the following definition for the long-run variance,
which measures a time average of the total variance in in-
finitely many renewals: �2 = limt→∞V (t)/t, where V (t) =∑N(t)

n=1 (Rn−E[R])2. Thus �2 represents the sum of the squared
deviations of the cycle rewards from their means, along an in-
finite number of renewals, divided by the total duration of the
renewals. Hence, it can be interpreted as the average variance
per unit time measured over the long run. What is key is that
the above definition produces a consistent unit of dollar2 per
hour for the variance. We now prove the following result to
measure the variance in this style.
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Theorem 1. If |E[R]| < ∞, E[T ] < ∞, E[R2] < ∞, then with
probability 1 (w.p.1)

�2 ≡ lim
t→∞

V (t)

t
= E[R2] − (E[R])2

E[T ] . (2)

Proof.

�2≡ lim
t→∞

V (t)

t
= lim

t→∞

(
V (t)

N(t)

)(
N(t)

t

)

= lim
t→∞

(∑N(t)
n=1 (Rn−E[R])2

N(t)

)(
N(t)

t

)

= E[R2] − (E[R])2

E[T ] w.p.1. (3)

In the above, equality (3) follows from (i) the fact that

∑N(t)
n=1 (Rn − E[R])2

N(t)
=
∑N(t)

n=1 R2
n

N(t)
− 2

∑N(t)
n=1 RnE[R]

N(t)

+
∑N(t)

n=1 (E[R])2

N(t)

= E[R2] − (E[R])2 w.p.1 as t → ∞,

(ii) the elementary renewal theorem (see e.g., Ross, 1997,
Proposition 7.1, p. 407), which implies that w.p.1 limt→∞
N(t)/t = 1/E[T ]. �

The renewal reward theorem (see e.g., Ross, 1997, Proposi-
tion 7.3, p. 417) for the expected reward per unit time, which
we will need in our analysis, is stated next.

Theorem 2. If |E[R]| < ∞, E[T ] < ∞, then w.p.1

�R ≡ lim
t→∞

R(t)

t
= E[R]

E[T ] .

Hence if C denotes the cost in one cycle, �C = E[C]/E[T ].
We now develop an expression for the Markowitz function

defined in Eq. (1). Let F(.) denote the cdf and f (.) the pdf.
Further, let cr denote the cost of one repair and cm the cost of
one PM. Then, if � denotes the age for PM, the expected cost
in a renewal cycle will be

E[C] = cm(1 − F(�)) + crF(�). (4)

Similarly, the expected value of the square of the costs in a
renewal cycle will be

E�[R2] = E�[C2] = c2
m(1 − F(�)) + c2

r F(�). (5)

And finally, the expected length of the renewal cycle:

E[T ] =
∫ �

0
(x + tr)f (x) dx + (� + tm)[1 − F(�)], (6)

where tr denotes the expected time for one repair and tm denotes
the expected time for PM. Then we have the following result:

Proposition 3. If |E[R]| < ∞, E[T ] < ∞, |E[R2]| < ∞, then
w.p.1

g(�) = cm(1 − F(�)) + crF(�)∫ �
0 (x + tr)f (x) dx + (� + tm)[1 − F(�)]

+�
c2

m(1−F(�))+c2
r F(�)−[cm(1−F(�))+crF(�)]2∫ �

0 (x+tr)f (x) dx+(�+tm)[1−F(�)] .

Proof. The proof follows from Theorems 1 and 2, and Eqs. (1),
(4)–(6). �

When a closed form expression is not available for g(�), the
latter can be numerically optimized to obtain �. We present such
computational experiments in Section 4.

A reviewer of this paper pointed out that in case R is con-
stant but T is a random variable, the above mechanism for mea-
suring risk will not work, because then we have that the vari-
ance (E[R2]−E2[R])/E[T ]=0. Note that the model in Chen
and Jin (2003) will result in the following expression for vari-
ance E[R2]/E[T ] − (E[R]/E[T ])2, which will also equal 0
for E[T ] = 1; but if this expression is used for E[T ] < 1, the
variance will be negative, since E[R2] = E2[R] for a constant
R. Hence it is stated in Chen and Jin (2003) that their model
applies only when E[T ] > 1. In a scenario where the renewal
reward in a cycle is a constant but the time is not, one could use
downside risk (Fishburn, 1977; Gan, Sethi, & Yan, 2005; Roy,
1952; Tesler, 1955) or perhaps the more classical utility func-
tions (Von Neumann & Morgenstern, 1953). This also implies
that variance is perhaps not a perfect measure for risk. Limita-
tions of variance were pointed out by (Markowitz, 1952). The
analysis of downside risk or classical utility functions is, how-
ever, beyond the scope of this paper.

3. A model based on Markov decision processes

Consider a system of machines, e.g., forging machines, paint-
ing machines and rolls, in a production line. Typically, such
systems are failure prone with an increasing failure rate. Let X
denote the time to failure of the system. We will make the fol-
lowing assumptions, which are based on the system we studied:
(i) when the line fails, it is usually repaired by the next day. (ii)
The line is shut down for PM, usually, for the duration of the
entire day. At the beginning of each day, the manager has two
options: (i) continue with production and (ii) do PM. If the sys-
tem state space on the nth day is defined by Bn, the number of
days elapsed since the last repair or PM, i.e., the age of the line,
then {Bn|n=1, 2, . . .} is a Markov chain under any action. The
age of the line will be assumed to be 0 after a repair or a PM.
Formally, the chain satisfies the following Markov property un-
der any action: Pr[Bn+1 =j |Bn, Bn−1, . . . , B0]=Pr[Bn+1|Bn].

We now introduce some notation. Let S denote the set of
states, A(i) the finite set of actions permitted in state i, and �(i)

the action chosen in state i when policy �̂ is pursued, where⋃
i∈S A(i)=A. Further let r(., ., .) : S×A×S → R denote the
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one-step immediate reward and p(., ., .) : S × A × S → [0, 1]
denote the associated transition probability. Then the expected
immediate reward earned in state i when action a is chosen in it
is r̄(i, a)=∑|S|

j=1p(i, a, j)r(i, a, j). Also, p(i, a, j)=Pa(i, j),

where a ∈ {c(continue), m(maintain)}.

Definition 4. The long-run average (expected) reward of a pol-
icy �̂ starting at state i is

��̂(i) ≡ lim
k→∞

E�̂[∑k
s=1r̄(xs, �(xs))|x1 = i]

k
,

where xs is the state occupied before the sth transition and E�̂
denotes the expectation induced by �̂.

The above definition holds for an MDP in which the time
spent in each transition is either assumed to be 1 or it is irrele-
vant to the model. Hence, the average reward has a unit of dol-
lars per (state) transition. For a semi-Markov decision problem
(SMDP), we need to modify the definition (see Appendix).

In general, we will use the notation �z to denote a col-
umn vector whose ith element is z(i). Also, P�̂ will denote
the transition probability matrix associated with the policy
�̂. Let �r�̂ denote the column vector whose ith element is
r̄(i, �(i)). Then, from the definition above it follows that
���̂ = (limk→∞(1/k)

∑k−1
m=0P

m
�̂ ) �r�̂. Let ��̂ denote the steady-

state probability of being in state i of the Markov chain of
policy �̂. We know that limk→∞ 1

k

∑k−1
m=0P

m
�̂ exists for irre-

ducible and recurrent Markov chains, and in fact, it follows that
��̂(j)=∑i∈S��̂(i)r̄(i, �(i)) for any j ∈ S, i.e., ��̂(j) is con-
stant for every j ∈ S. A policy’s variance in an MDP is defined
in a seminal work (Filar, Kallenberg, & Lee, 1989) as follows.

Definition 5. The long-run variance of the reward of
a policy �̂ starting at state i in an MDP is �2

�̂(i) ≡
limk→∞ E�̂[∑k

s=1[r̄(xs, �(xs)) − ��̂(xs)]2|x1 = i]/k.

See Appendix for the SMDP’s definition. A variance-
penalized MDP, in which Markov chains of all policies are
positive recurrent and irreducible, then seeks to maximize
��̂(i)−��2

�̂(i) over all �̂ for every i ∈ S. It is not hard to show
that

� = ��̂(i) − ��2
�̂(i) ∀i ∈ S. (7)

3.1. A quadratic-programming model

Filar et al. (1989) presented a quadratic program (QP) for
solving the variance-penalized MDP.

Maximize
∑
i∈S

∑
a∈A(i)

[r̄(i, a) − �r̄2(i, a)]x(i, a)

+ �

⎡
⎣∑

i∈S

∑
a∈A(i)

r̄(i, a)x(i, a)

⎤
⎦

2

with ��0

such that∑
a∈A(j)

x(j, a) −
∑
i∈S

∑
a∈A(i)

p(i, a, j)x(i, a) = 0 ∀j ∈ S, (8)

∑
i∈S

∑
a∈A(i)

x(i, a) = 1 and x(i, a)�0 ∀(i, a) ∈ (S, A(i)).

(9)

A key result in Filar et al. (1989) shows that the optimal
policy, when Markov chains of all policies are positive recurrent
and irreducible, is deterministic and stationary. Unfortunately,
the QP given above is not easily solvable. See Filar et al. (1989,
Remark 2.1, p. 152) about the openness of this problem from
the solution perspective. We now discuss some computational
approaches for solving the underlying variance-penalized MDP.

3.2. Computational approaches

One approach to avoid the QP is to exhaustively enumer-
ate all the policies. However, for large-scale problems, this ap-
proach is infeasible. We present an approach based on lineariz-
ing the quadratic objective function by using a surrogate form
for variance. Optimization could then be performed via linear
programming. Our analysis of the resultant LP will also prove
the existence of a deterministic policy for the surrogate objec-
tive function that we propose. More importantly, linearization
paves the way for a computationally attractive approach based
on dynamic programming (DP).

3.2.1. A linear-programming approximation
To define our surrogate form for a policy’s variance, we

need four functions v(, ., ., ), v̄(, ., ), w(., ., .), and w̄(, ., ). Let
v(., ., .) : S × A × S → R denote the (one-step) immediate
variance, which would be defined as follows for (i, j) ∈ S and
a ∈ A(i): v(i, a, j)=[r(i, a, j)− r̄(i, a)]2. Also, for any i ∈ S

and a ∈ A(i), we define v̄(i, a)=∑|S|
j=1p(i, a, j)v(i, a, j) and

for ��0, w(i, a, j) = r(i, a, j) − �v(i, a, j) and

w̄(i, a) = r̄(i, a) − �v̄(i, a). (10)

We now define one-step (or jump) variance.

Definition 6. The long-run one-step variance in the immediate
rewards of a policy �̂ starting at state i is

�2
�̂(i) ≡ lim

k→∞
E�̂[∑k

s=1v̄(xs, �(xs))|x1 = i]
k

. (11)

Let �v�̂ denote the column vector whose ith element is

v̄(i, �(i)). Then, from the definition above it follows that ��2
�̂ =

(limk→∞ (1/k)
∑k−1

m=0P
m
�̂ ) �v�̂. Since limk→∞ (1/k)

∑k−1
m=0P

m
�̂

exists for irreducible and recurrent Markov chains, like
in the case of average reward, it follows that �2

�̂(j) =∑
i∈S��̂(i)v̄(i, �(i)) for any j ∈ S, and that �2 for a given

policy is independent of the starting state. Our objective
function, also called Markowitz score, for a policy �̂ in the
approximate-variance-penalized MDP, in which all policies
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have irreducible and positive recurrent Markov chains, is

	�̂ ≡ ��̂ − ��2
�̂ =

∑
i∈S

��̂w̄(i, �(i)). (12)

Consider the following LP: maximize∑
i∈S

∑
a∈A(i)

r̄(i, a)x(i, a) − �
∑
i∈S

∑
a∈A(i)

v̄(i, a)x(i, a), ��0

subject to (8) and (9). We now have the following result.

Proposition 7. (a) Consider an MDP for which Markov chains
of all policies are positive recurrent and irreducible. A vector
whose (i, a)th element is x(i, a) will satisfy (8) and (9) if and
only if there exists a stationary policy such that x(i, a) is equal
to the limiting (steady-state) probability of being in state i and
selecting action a when that stationary policy is used.

(b) An optimal solution to the LP corresponds to an optimal
solution of the approximate-variance-penalized MDP.

Proof. Part (a) follows directly from Theorem 8.8.2 Puterman
(1994, p. 392). Now Part (a) implies that x(i, a) is the limiting
probability of selecting action a in state i under a stationary
stochastic policy, and hence the objective function of the LP
gives the objective function (12) associated with the same pol-
icy. Hence finding the optimal solution of the LP is equivalent
to maximization of the objective function (12), thereby estab-
lishing Part (b). �

3.2.2. A dynamic programming approximation
In this section, we first analyze the existence of a DP so-

lution for the problem posed above and then present a policy
iteration (PI) algorithm for solving it. Finally, we analyze the
convergence of the proposed algorithm.

The LP presented above shows that the approximate-
variance-penalized MDP has a linear structure and suggests
that DP is a possible route for solution. DP is computation-
ally more efficient than an LP in solving MDPs (see Madani,
2000; Puterman, 1994, p. 223). For a DP-based solution, it is
necessary to derive an optimality equation similar to the Bell-
man optimality equation for average reward, RN MDPs. The
existence of such an equation is established via the following
result.

Proposition 8. If a scalar 	 and an |S|-dimensional finite vec-
tor �h satisfy for all i ∈ S

	 + h(i)
∑
j∈S

p(i, �(i), j)[w(i, �(i), j) + h(j)], (13)

then 	 is the Markowitz score associated with the policy �̂.
Furthermore if a scalar 	∗ and an |S|-dimensional finite vector
J (i) satisfy for all i ∈ S

	∗ + J (i) = max
u∈A(i)

⎡
⎣∑

j∈S

p(i, u, j)[w(i, u, j) + J (j)]
⎤
⎦ , (14)

then 	∗ is the Markowitz score associated with the policy �̂∗
that attains the max in the RHS of Eq. (14). The policy �̂∗ is

the optimal policy, i.e., generates the maximum value for the
Markowitz score.

The proof will require a definition and a couple of lemmas.

Definition 9. If �h denotes a vector whose ith component is
denoted by h(i), then we define the transformation L�̂ as

L�̂h(i) =
∑
j∈S

p(i, �(i), j)[w(i, �(i), j) + h(j)] ∀i ∈ S,

and the transformation L as

Lh(i) = max
a∈A(i)

⎡
⎣∑

j∈S

p(i, a, j)[w(i, a, j) + h(j)]
⎤
⎦ ∀i ∈ S.

Lemma 10. Given a vector �h of dimension |S|,

Lk
�̂h(i) = E�̂

[
h(xk+1) +

k∑
s=1

[w̄(xs, �(xs))]|x1 = i

]
,

for all values of i ∈ S.

The proof is presented in the Appendix. The following proves
the monotonicity of some transformations.

Lemma 11. The transformation L�̂ is monotonic, i.e., given

two vectors, �J and �J ′, which satisfy the relation J (i)�J ′(i)
for every i ∈ S the following is true for any positive integral
k: Lk

�̂J (i)�Lk
�̂J ′(i) for every i ∈ S.

The proof is presented in the Appendix. We can now prove
Proposition 8.

Proof. Eq. (13) can be written in vector form as

	�e + �h = L�̂�h, (15)

where �e is an |S|-dimensional (column) vector whose every
element equals 1. We will first prove that for i = 1, 2, . . . , |S|,
Lk

�̂h(i) = k	 + h(i). (16)

The above can be written in the vector form as

Lk
�̂
�h = k	�e + �h. (17)

We will use an induction argument for the proof. From
Eq. (15), the above is true when k = 1. Let us assume that the
above is true when k = m. Then we have that

Lm
�̂

�h = m	�e + �h.

Using the transformation L�̂ on both sides of this equation, we
have

L�̂

(
Lm

�̂
�h
)

= L�̂(m	�e + �h)

= m	�e + L�̂�h
= m	�e + 	�e + �h (using Eq. (15))

= (m + 1)	�e + �h.

Thus Eq. (17) is established using induction on k.
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Using Lemma 10, we have for all i,

Lk
�̂h(i)E�̂

[
h(xk+1) +

k∑
s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]
,

where h(xk+1) is a finite quantity.
Using the above and Eq. (16), we have that

E�̂

[
h(xk+1) +

k∑
s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]
= k	 + h(i).

Therefore,

E�̂[h(xk+1)]
k

+ 1

k
E�̂

[
k∑

s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]

= 	 + h(i)

k
.

Taking limits as k → ∞, since limk→∞ D/k = 0 for finite D,
we have

lim
k→∞

1

k
E�̂

[
k∑

s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]
= 	.

The definition of Markowitz score implies that the latter for
the policy �̂ is indeed 	, and the first part of the proposition
is thus established. It follows directly from the above and Eq.
(14) that 	∗ is the Markowitz score associated with the policy
�̂∗ that attains the max in the RHS of Eq. (14).

We will now show that any policy that deviates from �̂∗ will
produce a Markowitz score lower than or equal to 	∗. This will
establish that the policy �̂∗ generates the maximum Markowitz
score and is therefore an optimal policy. Thus, all we need to
show is that a policy �̂ which does not necessarily attain the
max in Eq. (14) produces a Markowitz score less than or equal
to 	∗.

Eq. (14) can be written in vector form as

	∗�e + �J = L( �J ). (18)

We will first prove that

Lk
�̂

�J �k	∗�e + �J . (19)

As before, we use an induction argument. Now from Eq.
(18), L( �J )=	∗�e + �J . But we know that L�̂( �J )�L( �J ), which
follows from the fact that any given policy may not attain the
max in Eq. (14). Thus L�̂ �J �	∗�e + �J . This proves that Eq.
(19) holds when k = 1. Assuming that it holds when k =m, we
have that Lm

�̂
�J �m	∗�e + �J .

Using the fact that L�̂ is monotonic from Lemma 11 it fol-
lows that

L�̂(Lm
�̂ ) �J �L�̂(m	∗�e + �J )

= m	∗�e + L�̂ �J
�m	∗�e + 	∗�e + �J (using Eq. (18))

= (m + 1)	∗�e + �J .

This establishes Eq. (19).

The following bears similarity to the proof of the first part of
this proposition. Using Lemma 10 and Eq. (19), we have that
for all i ∈ S,

E�̂

[
J (xk+1) +

k∑
s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]
�k	∗ + J (i).

From the same logic used for the first part of the proposition,
dividing by k and taking the limit with k → ∞, we have that

lim
k→∞

1

k
E�̂

[
k∑

s=1

[w̄(xs, �(xs))]
∣∣∣∣∣ x1 = i

]
�	∗.

In words, this means that the Markowitz score of the policy �̂
is less than or equal to 	∗, which implies that the policy that
attains the max in the RHS of Eq. (14) is indeed the optimal
policy. �

Steps in the proposed PI algorithm
Step 1: Set k, the iteration number, to 0. Select an arbitrary

policy. Let us denote the policy selected in the kth iteration by
�̂k . Let �̂∗ denote the optimal policy.

Step 2 (Policy evaluation): Solve the following linear system
of equations:

hk(i) = w̄(i, �k(i)) − 	k +
|S|∑
j=1

p(i, �k(i), j)hk(j).

The system of linear equations can be solved by setting one
element of �hk to a fixed value, e.g., 0. The unknowns in this
system are all the other elements of this vector and 	k .

Step 3 (Policy improvement): Choose a new policy �̂k+1 such
that

�k+1(i) ∈ arg max
a∈A(i)

⎡
⎣w̄(i, a) +

|S|∑
j=1

p(i, a, j)hk(j)

⎤
⎦ .

If possible one should set �̂k+1 = �̂k .
Step 4: If the new policy is identical to the old one, that is,

if �k+1(i)=�k(i) for each i then stop and set �∗(i)=�k(i) for
every i. Otherwise, increment k by 1 and go back to the second
step.

We now establish the algorithm’s finite convergence.

Proposition 12. The policy �̂∗ generated by the algorithm
above is an optimal policy if all policies have positive recurrent
and irreducible Markov chains.

Next, we present a lemma (see Appendix for proof) needed
to prove Proposition 12.

Lemma 13. Let ��̂(i) denote the limiting probability of the
ith state in a Markov chain of the policy �̂. If �̂ has a positive
recurrent and irreducible Markov chain,

∑
i∈S

��̂(i)

⎡
⎣∑

j∈S

p(i, �(i), j)h(j) − h(i)

⎤
⎦= 0,

where h(i) is a finite-valued scalar for all i ∈ S.
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We present below the proof of Proposition 12.

Proof. We will need to prove that the sequence of Markowitz
scores produced by the PI algorithm proposed above is an in-
creasing one, i.e., if 	k denotes the Markowitz score (deter-
mined using the policy evaluation step) in the kth iteration of
the PI algorithm, then 	k+1 �	k.

If this is true, the sequence of Markowitz scores is an in-
creasing sequence until a policy repeats. Since the number of
states and actions is finite, there is a finite number of policies,
and the convergence criterion �̂k+1 = �̂k must be satisfied at
some finite value of k. When the policy repeats, we have that
�̂k+1 = �̂k which means from the policy improvement and the
policy evaluation steps that the policy �̂k satisfies the Bellman
optimality equation. From Proposition 8, this implies that �̂k is
the optimal policy.

We now prove 	k+1 �	k . From Proposition 8, we know that
the term 	 in the Bellman equation for a policy �̂ equals the
Markowitz score associated with the policy. Hence we can write
an expression for the Markowitz score in the (k +1)th iteration
of the algorithm as

	k+1 =
∑
i∈S

��̂k+1
(i)w̄(i, �k+1(i)) (from Eq. (12))

= 	k +
∑
i∈S

��̂k+1
(i)[w̄(i, �k+1(i)) − 	k]

= 	k +
∑
i∈S

��̂k+1
(i)[w̄(i, �k+1(i)) − 	k]

+
∑
i∈S

��̂k+1
(i)

⎡
⎣∑

j∈S

p(i, �k+1(i), j)hk(j) − hk(i)

⎤
⎦

(using Lemma 13)

= 	k +
∑
i∈S

��̂k+1
(i)

⎡
⎣w̄(i, �k+1(i)) − 	k

+
∑
j∈S

p(i, �k+1(i), j)hk(j) − hk(i)

⎤
⎦ . (20)

The policy improvement step implies that �k+1 is chosen in
a way such that for each i ∈ S

r̄(i, �k+1(i)) − �v̄(i, �k+1(i)) +
∑
j∈S

p(i, �k+1(i), j)hk(j)

� r̄(i, �k(i)) − �v̄(i, �k(i)) +
∑
j∈S

p(i, �k(i), j)hk(j),

which implies that for each i ∈ S

w̄(i, �k+1(i)) +
∑
j∈S

p(i, �k+1(i), j)hk(j)

�w̄(i, �k(i)) +
∑
j∈S

p(i, �k(i), j)hk(j),

from which it follows that for each i ∈ S

w̄(i, �k+1(i)) +
∑
j∈S

p(i, �k+1(i), j)hk(j) − 	k − hk(i)

�w̄(i, �k(i)) +
∑
j∈S

p(i, �k(i), j)hk(j) − 	k − hk(i).

But the policy evaluation stage of the PI algorithm implies that
the RHS of the above inequality equals 0. Thus for each i ∈ S,

0�w̄(i, �k+1(i)) +
∑
j∈S

p(i, �k+1(i), j)hk(j) − 	k − hk(i).

From the above it follows that

0�
∑
i∈S

��̂k+1

⎡
⎣w̄(i, �k+1(i)) +

∑
j∈S

p(i, �k+1(i), j)hk(j)

−	k − hk(i)

⎤
⎦ .

The above and (20) imply 	k+1 �	k . �

4. Computational experiments

The renewal-theory model: We now describe experiments
with our renewal-theory model. We chose the gamma distri-
bution to model the time to failure since it has an increasing
failure rate (Lewis, 1994), making PM useful. The input pa-
rameters and output results are described in Tables 1 and 2,
respectively. Our results show the (i) the optimized time for
maintenance, � (both under RS and RN conditions), (ii) the
optimized objective function value of (1) and the objective
function value associated with the RN strategy and (iii) the
improvement obtained from pursuing RS strategies, which is
defined as Imp = (g(�RN) − g(�RS))/g(�RN) × 100, where g(.)

is as defined in Eq. (1).
Experiments indicate that values exceeding 0.4 for � pro-

duced policies that had very high costs, although their variance
was also smaller. It can be noted that the RS solution invariably
recommends a shorter PM interval suggesting that the use of
a safety factor (�), discussed previously, is not practical since
it is not unique. Fig. 1 plots for Case 4, g(t) versus t when
�=0 (RN) and when � is non-zero, show how the optimal point
changes. The computer programs were written in MATLAB.

The MDP model: Under the action of continuing production,
the one-step transition probability of going from state i to state
j will be denoted by Pc(i, j), and the same for the action of
PM will be denoted by Pm(i, j). Then, if d denotes the number
of days since the last repair or maintenance, it follows that

Pc(d, d + 1) = 1 − Pc(d, 0) for d = 0, 1, 2, ∞, (21)

and all other values of Pc(i, j) will equal 0. The above (21)
follows from the fact that the transition from d to 0 occurs
because the line must have failed before the next production was
completed. Also, Pm(d, 0) = 1 for all values of d and Pm(., .)

will equal 0 otherwise. This follows from the fact that when
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Table 1
Input data for experiments with the risk-sensitive renewal-theory model

Case cr cm tr tm � Gamma(n, 
)

1 5 2 50 12.5 0.2 (8, 0.08)

2 10 1 25 5 0.3 (10, 0.09)

3 5 2 50 12.5 0.3 (7, 0.06)

4 10 1 25 5 0.2 (5, 0.05)

5 5 2 50 12.5 0.3 (12, 0.15)

6 10 1 25 5 0.2 (10, 0.10)

7 5 2 50 12.5 0.3 (11, 0.12)

8 10 1 25 5 0.2 (6, 0.07)

Table 2
Results from experiments with the risk-sensitive renewal-theory model

Case �RS �RN g(�RS) g(�RN) Imp (%)

1 58.75 77.24 0.0623 0.0673 7.43
2 49.81 61.35 0.0941 0.1046 10.04
3 65.17 90.76 0.0715 0.0792 9.72
4 26.73 36.32 0.0560 0.0632 11.39
5 144.86 172.97 0.0331 0.0352 5.96
6 45.83 55.22 0.0831 0.0901 7.77
7 54.58 69.21 0.0768 0.0837 8.98
8 32.55 43.38 0.1207 0.1346 10.33

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3
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Time for Maintenance: t
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re
: g

(t
)

Risk-neutral
Risk-sensitive

Fig. 1. A plot of the risk-sensitive and the risk-neutral objective functions
for Case 4. It clearly shows how the optimal point is different in the two
scenarios.

the decision of maintenance is made, the system transitions to
state 0 with certainty.

By definition, the underlying Markov chains are infinite-
dimensional, which can be approximated via a truncation pro-
cedure based on an augmented north-west-corner procedure
matrix (Freedman, 1983; Senata, 1967). See Zhao, Braun, and
Li (1999) for usage in MDPs. On the basis of the data gath-
ered, we found that Pc(i, 0) ≈ 1 for some i = N∗ and hence
|S| ≈ N∗ +1. Hence, the transition probability matrix of every
chain in this problem is assumed to be truncated to its north

Table 3
Input data and results with the risk-sensitive MDP model

Case � cm cr � 	PI
RS 	∗

RS OG

1 0.90 2 3 0.1 −0.7292 −0.7292 0
2 0.92 2 5 0.2 −1.0870 −1.0870 0
3 0.95 3 4 0.1 −0.8465 −0.8312 1.84
4 0.95 3 4 0.2 −1.0603 −1.032 2.74
5 0.93 2 4 0.1 −0.7987 −0.7980 0.087
6 0.89 3 6 0.2 −1.7723 −1.7723 0
7 0.88 8 10 0.1 −4.02 −3.88 3.6
8 0.96 2 4 0.2 −3.61 −3.21 12.46

For the data we obtained, N∗ = 30 was a reasonable value.

west corner in which there are (N∗ + 1) rows and (N∗ + 1)

columns. We experimented with different values for � and the
set of transition probabilities. If cm denotes the cost of main-
tenance and cr that of repair, then it follows that for all d,
r(d, maintain, 0)=−cm and r(d, produce, 0)=−cr. The input
data and the results are described in Table 3. The set of tran-
sition probabilities in our experiments was generated using the
following law: p(d, produce, d+1)=�d for d=0, 1, . . . , |S|−2
and p(|S| − 1, produce, 0) = 1. We used a number of different
values for � in our experiments. Although our transition prob-
abilities were generated in this style for experimentation, our
DP model is general.

In general, the transition probabilities for a system such as
ours can be estimated as follows. Let K(d) denote the number
of instances in which the system transitions from the dth day
to the next day without failure when the production action is
chosen at the start of the dth day and K̄(d) denote the number of
instances in which the machine fails during the dth day when the
production action is chosen at the start of the dth day. The values
of both K and K̄ can be obtained from actual observations
of the systems. Then, from the maximum likelihood principle,
as K(.) and K̄(.) approach infinity, p(d, produce, d + 1) ≈
K(d)/(K(d) + K̄(d)).

An unbiased evaluation of our proposed PI algorithm would
require comparing the algorithm’s performance with that of an
optimal algorithm. Hence for all the systems we considered, the
optimal solutions were determined via an exhaustive search of
the policy space using the exact objective function in (7)—not
the surrogate. Fig. 2 plots the exact objective function and the
surrogate objective function for Case 3. The graph shows that
the surrogate mimics the exact function reasonably well. Al-
though we do not plot all the cases, due to lack of space,
this is true of all of our tests. As is clear from our empirical
results, our proposed PI algorithm provides either optimal or
near-optimal solutions. For the actual objective function, we re-
mind the reader, a DP approach does not appear to be feasible,
and at best one could use a QP (Filar et al., 1989).

In Table 3 	∗
RS denotes the value of the optimized objec-

tive function in (7) and 	PI
RS denotes the value of the objec-

tive function in (7) associated with the “optimal” policy of
our PI algorithm. The optimality gap (in percent) can hence
be defined as follows: OG = (	∗

RS − 	PI
RS)/	∗

RS × 100. In our
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Fig. 2. A plot (for Case 3) of the exact risk-sensitive objective function (Filar
et al., 1989) and the surrogate objective function.

experiments, this gap ranged from 0% to 12.46%. Our PI algo-
rithm converged in no more than three iterations in each case
tested, which takes less than 1s on a UNIX SUN-Blade Ma-
chine (C program). This assures us that the DP route is worth
pursuing since a complex non-linear program has been solved
approximately in a short computational time, which via other
methods of non-linear programming could possibly require
more time.

5. Conclusions

The literature on RS PM is limited. We developed two math-
ematically sound models, based on renewal theory and MDPs,
for RS TPM. We need to point out that while our models were
developed for optimizing a combination of mean and variance,
they could be adapted easily for combining mean and the stan-
dard deviation, which have the same units. Our renewal-theory
model was motivated by an industrial need for a model that
quantifies risk in tractable units, e.g., dollar2 per hour. For the
MDP model, we developed a surrogate objective function that
closely mimicked the exact objective function, computationally.
What is interesting is that for the surrogate, we were able to
develop a computationally attractive DP approach, whose con-
vergence we were able to show. Both models developed above
are of a sufficiently general nature, and can be applied to other
problems in management science. Other problem domains for
our models that we will pursue in future work are supply chain
management and airline revenue management.
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Appendix A

Proof of Lemma 10. The proof follows from a result in
Bertsekas (1995, Vol. 2, p. 6) by replacing r by w and discount
factor by 1. �

Proof of Lemma 11. The proof follows from Lemma 1.1.1 of
Bertsekas (1995, Vol. 2, p. 7) via replacing r̄(., ) by w̄(, ). �

Proof of Lemma 13. From a result (Puterman, 1994, Theorem
A.2, p. 592), one has that for all j ∈ S,

∑
i∈S��̂(i)p(i, �(i), j)

− ��̂(j) = 0. Hence
∑

j∈S [∑i∈S��̂(i)p(i, �(i), j)h(i) −
��̂(j)h(i)] = 0, which after rearranging terms, becomes
0 =∑

i∈S��̂(i)
∑

j∈Sp(i, �(i), j)h(j) −∑
i��̂(i)h(i). �

A.1. Definitions for SMDPs

Let t (i, a, j) denote the time taken for a transition
from i to j when action a is selected in i. Also, let
t̄ (i, a) = ∑|S|

j=1p(i, a, j)t (i, a, j). Then we define three

quantities ��̂(i) ≡ limk→∞E�̂[∑k
s=1r̄(xs, �(xs))|x1 = i]/k,

�̂(i) ≡ limk→∞E�̂[∑k
s=1 t̄ (xs, �(xs))|x1 = i]/k, and ��̂(i) ≡

limk→∞E�̂[∑k
s=1r̄

2(xs, �(xs))|x1 = i]/k. Then for irreducible
and recurrent Markov chains, from Theorem 7.5 (Ross, 1992,
p. 160), the long-run average reward of a policy �̂ in an
SMDP (Definition 4) starting at state i is ��̂(i) = ��̂(i)/�̂(i)

and from Theorem 1, the corresponding long-run variance of
rewards of the policy �̂ (Definition 5), starting at state i, is
�2

�̂(i) = ��̂(i)/�̂(i) − (��̂(i))2/�̂(i).
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