
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS
https://doi.org/10.1080/23302674.2019.1707906 PREPRINT COPY

Total productive maintenance of make-to-stock production-inventory systems
via artificial-intelligence-based iSMART

Angelo Encaperaa, Abhijit Gosavi b and Susan L. Murray b

aGarmin International, Kansas City, MO, USA; bDepartment of Psychological Science, Missouri University of Science and Technology, Rolla, MO,
USA

ABSTRACT
Total Productive Maintenance (TPM) is a critical activity that significantly reduces lead times and
uncertainty inMake-To-Stock (MTS) production systems, thereby increasing the efficiency and profit
margins of the associated firm. TPM problems can be set up as semi-Markov decision processes
(SMDPs) and solved optimally using classical dynamic programming (DP) on small-scale problems.
However, on large industrial-scale problems, DP breaks down, and one must then resort to an arti-
ficial intelligence (AI) technique called reinforcement learning (RL). This work presents a new AI
algorithm for solving SMDPs, called iSMART, an acronym for imaging Semi-Markov Average Reward
Technique. iSMART requires a significantly lower modelling and computational effort than classical
DP, where estimating the transition probabilities can itself be very time-consuming and mathe-
matically challenging for large-scale problems. Further, unlike previous RL algorithms for SMDPs,
iSMART does not need exploration decay. This means iSMART eliminates an additional parameter
that requires significant tuning in the traditional RL-based solution approach. Modern AI based in
deep learning seeks to reduce dependence on tuning parameters. iSMART is designed in this spirit
for solving TPM problems in MTS production systems, where it is shown to deliver optimal solutions
on small-scale problems and near-optimal ones on large-scale problems.

ARTICLE HISTORY
Received 3 April 2019
Accepted 16 December 2019

KEYWORDS
Total productive
maintenance; make-to-stock
systems; reinforcement
learning; constant
exploration

1. Introduction

Total Production Maintenance (TPM) originated from
the fields of reliability andmaintenance (Jardine &Tsang,
2005; Lewis, 1994). These closely related fields have
together created many innovative engineering practices
resulting in savings worth millions of dollars in industry
by reducing downtime, lead times, and work-in-process
inventory and increasing profits (Ahmed, Hj. Hassan,
& Taha, 2005; Ireland & Dale, 2001; Manzini, Regat-
tieri, Pham, & Ferrari, 2009; McCall, 1965; McKone
and Weiss, 1998). TPM takes a systematic look at
production systems in order to incorporate sched-
uled maintenance into standard industry practices. In
Make-To-Stock (MTS) production-inventory (PI) sys-
tems, machines tend to be utilised more heavily than
in Make-To-Order (MTO) systems, as unlike in MTO
systems where machines are utilised only after an order
is placed, products are produced on more continuous
schedules in MTS systems. Therefore, unlike in MTO
systems which have natural breaks in production, one
has to set aside time for preventive maintenance in MTS
systems.

CONTACT Abhijit Gosavi gosavia@mst.edu Department of Engineering Management and Systems Engineering, Missouri University of Science and
Technology, Rolla, MO 65409, USA

In any system, a lack of maintenance causes machines
to fail in catastrophic ways, which typically disrupts pro-
duction patterns and leads to failures in meeting cus-
tomer demand. These events often significantly increase
operating costs. When performed in a systematic man-
ner, TPM can reduce the frequency of such disruptions
and deliver significant cost savings. Further, as the fre-
quency ofmachine stoppages due to failures isminimised
by TPM, the mean product lead time and the associ-
ated variance are reduced, which in turn improves the
organisation’s cost and schedule performance and raises
profits. Reduction of mean lead times by TPM leads to a
direct reduction in work-in-process inventory (Askin &
Goldberg, 2001); reduction in lead time variability (vari-
ance) is a golden objective of supply chain management
(Christensen, Germain, & Birou, 2007). TPM is therefore
a key industry practice used in production systems due to
its favourable impact on profits. See Ahuja and Khamba
(2008) for a broad review of some of the recent relevant
literature on TPM.

The key to TPM is statistically determining themain-
tenance interval, i.e. the time interval between successive

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23302674.2019.1707906&domain=pdf&date_stamp=2019-12-24
http://orcid.org/0000-0002-9703-4076
http://orcid.org/0000-0003-0985-3854
mailto:gosavia@mst.edu

2 A. ENCAPERA ET AL.

maintenance operations. In general, regular preventative
maintenance activities result in lowering the frequency of
costly repairs due to equipment failure. However, these
planned maintenance operations do cause some down-
time of their own and clearly cost money, albeit less than
that resulting from unplanned emergency repairs. An
excessive amount of preventative maintenance increases
costs and reduces the advantages of avoiding repairs. A
PI system seeks to make profits from selling products to
customers. The goal of TPM in a PI system is hence to
optimise the frequency of the maintenance interval, in
order tomaximise the profits or net revenues, i.e. the total
revenues obtained from selling the finished products to
the customers minus the sum of the costs of maintenance
and the costs of repairs. As a system ages and since fail-
ure rates increase with time, preventative maintenance
becomes an activity of critical importance from the per-
spective of productivity and profitability (Lewis, 1994).

The most accurate method for solving theoretical
TPM problems is the Markov Decision Process (MDP),
which is a special case of its more powerful variant,
the semi-MDP (SMDP). Because of the large volume
of state spaces in large-scale industrial MDPs/SMDPs
and the intractability of constructing the associated tran-
sition probabilities, classical solution methods, called
dynamic programming (Bellman, 1957; Howard, 1960),
break down on real-world applications of TPM. In recent
times, methods based on artificial intelligence (AI) have
proven to be very powerful in solving numerous prob-
lems from manufacturing, especially via a reduction
of the dimensionality of the problem (Wuest, Weimer,
Irgens, & Thoben, 2016). Reinforcement Learning (RL),
which is a branch of AI, significantly reduces the dimen-
sionality of the underlyingMDP/SMDP by bypassing the
construction of the transition probabilities of the associ-
ated MDPs/SMDPs. For instance, an MDP with N states
and K actions in each state would need to store for each
action, amatrix of the size:N XN. For this problem,KN2

valueswould be needed in the computer for dynamic pro-
gramming. This number starts exceeding a million when
N = 1000, which is common of large-scale TPM prob-
lems.AnRLmethod suchQ-Learning, on the other hand,
would require only KN values for the same problem,
thereby bringing about a significant reduction (of a factor
ofN) in the dimensionality of the solution approach. E.g.
in a problem with 1000 states and two actions, dynamic
programmingwould require 2million values to be stored,
while Q-Learning would need only 2000. As such, RL
methods have simplified the solution of many indus-
trial problems (Bertsekas &Tsitsiklis, 1996; Gosavi, 2015;
Sutton & Barto, 1998).

In this paper, a new RL algorithm called iSMART
(short for imaging-Semi-Markov Average Reward

Technique) is developed to solve the SMDP underlying
a large-scale TPM problem. A special feature of the new
algorithm is that unlike many RL algorithms, it does
not need a reduction of the so-called exploration rate.
A truly robust RL algorithm should ideally work under
constant exploration, where one does not have to adjust
the exploration as the algorithmmakes progress. The new
algorithm is designed to meet this goal for SMDPs that
seek to minimise average costs. The algorithm is first
tested on small SMDPs, where the optimal solutions can
be derived via dynamic programming. Thereafter, it is
tested on medium-scale and large-scale TPM problems
in MTS PI systems, where its numerical performance is
very encouraging and the storage data required to solve
the problem is greatly reduced.

The remainder of this paper is organised as follows.
Section 2 provides a background for the advantages of
iSMART and for applying RL to solve TPM problems.
Section 3 defines the maintenance problem studied here,
along with a discussion on the relevant literature on
TPM andMTS systems. Section 4 motivates the need for
the new algorithm and presents its step-by-step details.
Section 5 is devoted to numerical results obtained from
using the new algorithm and its benchmark on the TPM
problem. Section 6 concludes this paper with a summary
of the work done and a discussion on potential future
research.

2. Background

Algorithms of classical RL, also called shallowRL, require
tuning of many parameters, such as (a) learning rates,
(b) features of state representation, and (c) exploration
rates, in order to deliver good performance. Tuning
of parameters means determining their optimal values
and/or adjusting their values as the algorithm progresses
– via time-consuming trials and errors. The field of deep
learning seeks to develop algorithms that can work auto-
matically without any tuning/adjustment of these critical
parameters, saving significant computational time and
also delivering robust behaviour. See the recent insight-
ful review in Bertsekas (2019) for a good discussion on a
subset of themain issues on the interface of deep learning
and reinforcement learning. Constant learning rates that
make learning-rate-decaying schedules redundant have
been proposed in Beck and Srikant (2012). The recent
work of Silver et al. (2016) seeks to use multiple neural
networks for automatic feature representation, within the
Alpha-Zero programme that attains super-human per-
formance in playing chess, as opposed to hand-tuned (or
hand-crafted) features used in shallow RL. Their auto-
matic approach makes it unnecessary to handcraft fea-
tures for the function approximation. Finally, constant

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 3

exploration rates have been mathematically analysed in
Rokhlin (2018) for standard Q-Learning. But other than
this work, to the best of the authors’ knowledge, con-
stant exploration rates have not been studied extensively
in the literature. It is well-known, however, that inap-
propriate tuning of exploration parameters can lead to
very disappointing behaviour in many RL algorithms,
including in approximate policy iteration (Bertsekas &
Tsitsiklis, 1996). Therefore, the new algorithm seeks to
make advances in this direction – in particular, in the
domain of average cost SMDPs.

RL algorithms have been used for solving problems
in manufacturing, supply chains, and robotics (Aissani,
Beldjilali, & Trentesaux, 2009; Chaharsooghi, Heydari, &
Zegordi, 2008; Kober, Bagnell, & Peters, 2013; Mortazavi,
Khamseh, & Azimi, 2015). The work in Das, Gosavi,
Mahadevan, and Marchalleck (1999) was one of the
first pieces of research that sought to solve TPM prob-
lems in PI systems via shallow RL and developed an
algorithm called SMART (Semi-Markov Average Reward
Technique), which has led to a family of algorithms over
the years: λ-SMART (Gosavi, Bandla, & Das, 2002), R-
SMART (Gosavi, 2004), and R-MART (Zhu & Ukkusuri,
2014) to name a few. All the algorithms in the SMART
family require reduction (or decaying) of its so-called
exploration parameter (or rate) appropriately. Decaying
means reducing the value of the exploration rate as the
learning progresses. iSMART is a new algorithm in the
SMART family, and as stated above, a prominent feature
of iSMART is that it does not require any decay of the
exploration parameter, but instead works under constant
exploration.

The new algorithm thus removes the exploration rate
parameter from the training process, thereby saving
computational time and the effort of trials and errors
needed to determine optimal exploration rates. Further,
the new algorithm is developed keeping in mind prob-
lems in which state transitions are of a cyclical nature
and the system transitions through one or more unique
states repeatedly. In TPM problems, the system regu-
larly cycles through the failed state where production
comes to a halt and as such is characterised by the cycli-
cal nature. Finally, it should be noted that unlike the
model-based approach in Das and Sarkar (1999), which
requires first setting up the transition-probability model
and then using a non-linear optimisation procedure,
the RL approach requires only a simulator and delivers
results in a shorter computer time. The reason for the
elongated times in themodel-based approach is that eval-
uating the transitional probabilities first requires setting
up expressions with multiple integrals, which can take
a long time (offline), and then needs computing of the
transition probabilities via numerical integration, which

is also a time-consuming process within the computer.
An additional advantage of the RL approach is that it is
not restricted to the distributions used in model-based
approaches and can be used for any given distribution
for the inputs.Model-based approaches are often severely
restricted in use to the distributions employed in creating
the model and break down when the distributions found
in the real-world system do not match those used in the
model. In the real world, the PI system studied here is
known to have a variety of distributions for its inputs,
and hence thismakes the algorithm especially suitable for
studying PI systems. The next section delves into details
of the PI system and the underlying stochastic model for
the TPM problem.

3. Problem definition

The literature offers two models for determining the
maintenance-interval: renewal theory (Ross, 2014) and
MDPs/SMDPs (Bertsekas, 2014). Determining the opti-
mal maintenance interval in the MTS production-
inventory (PI) system requires using the age of the
machine as well as the inventory level in the warehouse.
Renewal-theoretic models can account for the age but
disregard the inventory level; the latter is critical when
one considers PI systems, as shutting down the machine
for maintenance is not appropriate when the inventory
is running low. MDP/SMDP models, on the other hand,
are more detailed and can capture the state of the sys-
tem in terms of its age as well as the finished product
inventory in the warehouse, thereby developing a model
that can adjust its maintenance policy according to not
only the age, but also the level of the inventory. One of
the earliest applications of the MDP to solve the pre-
ventive maintenance problem can be found in Marcellus
and Dada (1991). Van der Duyn Schouten and Vanneste
(1995) and Das and Sarkar (1999) study TPM in the
context of production-inventory systems. The model in
Das and Sarkar (1999) is more versatile in the sense
that it employs the very flexible gamma distribution for
production, repair, and inter-failure times. The gamma
distribution carries the critical property of increasing
failure rates for their time between failures which is typ-
ical of most systems as equipment ages. Finally, their
model uses the exponential distribution for inter-arrival
times of demand. This leads to a Poisson rate of arrival,
which can be well-approximated by the normal distri-
bution demand patterns that are known to exist widely
in production systems (Askin & Goldberg, 2001). As
such, we employ the generally applicable model of Das
and Sarkar (1999) for testing our new algorithm. How-
ever, our algorithm will be simulation-based and will
hence be capable of using any given distribution for the

4 A. ENCAPERA ET AL.

input parameters. In other words, our algorithm is flexi-
ble enough for usage with other MDP/SMDP models for
studying TPM in PI systems.

In general, MDPs are problems of sequential decision-
making in discrete-event systems that are controlled by
the so-called Markov chains, which can capture the state
of the system as it changes dynamically. Using a con-
troller/manager to specify the action selected in a given
state of the system, one can optimise system performance
via consideration of a quantifiable metric, namely, max-
imising the net revenues (rewards) obtained over an infi-
nite time horizon, where the net revenues contain the
profits from selling the finished product and the costs
incurred in repair (replacing a belt or a broken bear-
ing) and maintenance (e.g. an oil change). Maximising
the net revenues is mathematically equivalent to min-
imising the net costs. Semi-MDPs (SMDPs) are more
generalised versions of MDPs, which take time into con-
sideration, meaning the time of transition between states
does not have to be constant, which is the case for the
PI system considered here. In SMDPs, the time of tran-
sitions is a random variable, which allows for added
flexibility in capturing the behaviour of real-world sys-
tems, and is explicitly a part of the objective function. In
this paper, the problem of identifying the optimal main-
tenance interval in an MTS PI system is set up as one
that maximises the average reward (net revenues) in an
SMDP. The details of the system are now presented in
detail.

Consider theMTS PI system as shown in Figure 1. The
PI system produces a batch of finished products with the
goal of meeting the external demand, which is typical of
many real-world systems. The production system in the
figure could represent a single machine/workstation or
an assembly line made of numerous workstations. The
production system is defined by its age, while the ware-
house or inventory buffer is characterised by its inventory
level. More details on these aspects will be presented
below, but it should be noted that the simulation model
should be detailed enough to capture the system’s age and
the inventory buffer level, so the RL algorithm can be
employed in conjunction with the simulation model to
deliver useful optimisation results.

In these types of production systems, when a manager
decides that maintenance needs to occur, instead of trig-
gering a new production cycle, the system is shut down to
carry out the maintenance activity. If a production cycle
is initiated and the system does not fail during the pro-
duction activity, a batch of finished products is delivered
to the warehouse in MTS systems. On the other hand,
the system can break down during the production cycle,
i.e. a so-called failure occurs. At that point, the produc-
tion process is halted and a repair is performed. When a

Figure 1. The production-inventory system under MTS.

machine is down for maintenance or repair, it does not
produce any parts. The machine production cycle ends
after each batch of the product has been manufactured.
With every consecutive completed production cycle that
has occurred without any maintenance or repairs, the
probability of system failure generally increases, which
is known as increasing failure rate. With increasing fail-
ure rates, maintenance is known to save money (Lewis,
1994). In this work, the number of consecutive produc-
tion cycles completed without maintenance or repairs is
used to mathematically represent the age of the machine,
while the number of finished products in the warehouse
is used to mathematically denote the level of inventory.
Together, the age of the machine and the inventory level
in the warehouse will define the state of the system. More
formally, the state of the PI system in our model will be
defined, following Das and Sarkar (1999), by the 2-tuple:
(ϕ, c), where ϕ denotes the number of consecutive pro-
duction cycles completed since the last repair or main-
tenance (or age), and c denotes the number of units of
finished products in the warehouse (or inventory level).
In what follows, the nature of the transitions of the sys-
tem and how the revenues and costs are captured in the
simulation model are described.

After every successful production cycle, a decision
must be made to either produce a product (i.e. initiate
a production cycle) or maintain the machine. Thus, there
are two actions that can be taken: either (1) produce or
(2) maintain. The revenue/cost structure of the above-
described transitions in the simulator can be defined as
follows. Let Cm and Cr denote the cost of one mainte-
nance and cost of one repair (in dollars), respectively;

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 5

the revenues earned from selling one unit of the product
(batch) will be denoted by P (dollars). The production
action can only be chosen when the inventory buffer
is below the upper limit (U). The production action
can only be chosen when the inventory buffer is below
the upper limit (U). The machine can either progress
from (ϕ = m) to (ϕ = m + 1) by selecting the action
of production and successfully completing the produc-
tion cycle, or it can transition from (ϕ = m) to (ϕ = 0)
if the machine fails during the production cycle. When
the machine fails it incurs a cost of Cr (dollars). When
the maintenance action is chosen, the machine goes from
(ϕ = m) to state (ϕ = 0) and a cost of Cm (dollars) is
incurred. In other words, the age of the machine is reset to
0 after a failure (which is followed by a repair) or a main-
tenance, while the age increases by 1 after every successful
production cycle is completed. Upper and lower limits are
assumed on the finished product inventory buffer; this
implies that when the inventory buffer reaches its upper
limit (U), production is stopped, the system is said to
go on ‘vacation’, and the production is not started again
until the buffer reaches its lower limit (L) due to customer
demand. As a result, c, the inventory level can never
exceed U . Backordering is not allowed in the model of
Das and Sarkar (1999), and hence the lowest value of
c will be 0. When no backordering is allowed, any
demand that arrives when the inventory level equals
zero is assumed to be lost.

 When a production cycle is successful, the inven-
tory level goes from (c = s) to (c = s + 1) if no demand
arrives during the production cycle; during this transi-
tion, no profits are earned. If z demand arrivals occur
during a successful production cycle, the inventory level
goes from (c = s) to (c = max(s + 1 − z, 0)); if the pro-
duction cycle is unsuccessful and ends up in a failure, the
inventory level goes from (c = s) to (c = max(s − z, 0)).
The expressions above can be explained as follows. Con-
sider the case of the successful production first. With
a successful production, the inventory level goes from
s to (s + 1) at the end of the production cycle, but the
z demands that arrive during the production process
deplete the inventory, and hence the final inventory level
equals (s + 1 − z) if backordering is allowed; but since
backordering is not permitted in this model, the lowest
value of the inventory should equal zero and therefore
the expression for the final value of the inventory level
is max (s + 1 − z, 0). The case of the unsuccessful pro-
duction can be explained similarly with the ending state
as max(s − z, 0). Every time a demand arrives and the
inventory level is positive, the system earns a profit of P
(dollars).

 The stochastic model will be assumed to have the
following inputs: the production times (time to take to

Figure 2. A schematic for the inputs and the outputs of the simu-
lationmodel of the production-inventory systemwhen combined
with the RL algorithm.

produce one batch of the finished product), the repair
times, the maintenance times, the time between demand
arrivals (TBD), and the time between failures (TBF).
Within a simulator, state transitions and the time between
state transitions are generated on the basis of the inputs
named above via random number generation (Law &
Kelton, 2000). As stated above, the production time, the
time between failures, and the repair time for this model
will be assumed to belong to the very flexible gamma
distribution. Production times in industry are known to
carry the gamma distribution (Benjaafar, Kim, & Vish-
wanadham, 2004), while repair times tend to be variable
as all repairs are not the same and include the timeneeded
for investigation, which introduces additional variabil-
ity into the duration of the repair times. The gamma
distribution is very customisable and allows the user to
alter both the shape and scale (magnitude) in such a way
that it can fit a variety of probability distribution func-
tions. The TBDwill be assumed to follow the exponential
distribution. The maintenance time will be assumed to
follow the uniform distribution, as it is less variable due
to its planned nature. Note that these are the assumptions
made in Das and Sarkar (1999), although the simulation
model can work with any given distribution. The simu-
lation model, in combination with the RL algorithm, will
deliver the optimal maintenance policy and the expected
revenues or reward delivered by the optimal mainte-
nance policy; Figure 2 depicts the inputs with known
distributions and outputs from the simulation-based RL
model.

4. The new algorithm: iSMART

This section is devoted to describing the iSMART
algorithm in detail. Key notation that will be needed for
the algorithm is now presented:

6 A. ENCAPERA ET AL.

• i, j, l: Indices for states in the system
• a: Index for an action
• A(i): Set of actions allowed in state i
• |A(i)|: Cardinality of A(i), i.e. the number of actions

permitted in state i
• S: Set of states in the system
• N: The number of states in the system
• k: Iteration number in the RL algorithm
• Q(i, a): Q-factor for state-action pair (i, a)
• R(i, a): R-factor for state-action pair (i, a)
• T(i, a): T-factor for state-action pair (i, a)
• q(i, a): The probability of selecting action a in state i

in the exploration scheme
• p(i, a, j): The probability of going from state i to state j

under the influence of action a
• r(i, a, j): The constant immediate reward obtained in

going from state i to state j under the influence of
action a

• t(i, a, j): The average time consumed in going from
state i to state j under the influence of action a

• α, β : Step sizes or learning rates
• d: The policy, which is an n-tuple that specifies the

action to be chosen in each state; thus d(l) will denote
the action specified by policy d in state l.

• 〈d(1), d(2), . . . , d(N)〉: The policy d defined in terms
of its actions for each state from 1 through N

• Ld(i): The steady-state probability of state i under
policy d

• ρ: The average reward;ρ*will denote the optimal aver-
age reward and ρ(d) will denote the average reward
when policy d is pursued.

The algorithm iSMART is a Q-Learning-type algorithm
for average reward SMDPs in which, in addition to
the classical Q-factors, the average reward is estimated
via supplementary state-action values called R- and T-
factors. These R- and T-factors essentially seek to serve
as the image of the greedy policy contained in the Q-
factors; the notion of greediness in Q-factors will be
explained below. Thus, the key idea here is that Q-factors
will denote the state-action values based on the tradi-
tional Bellman equation update, while the R-factors and
T-factors will estimate the state-action values for the one-
step transition (immediate) reward and the same for one-
step transition time, respectively, for the so-called greedy
policy contained in the Q-factors.

Very importantly, unlike R-SMART, the algorithmwill
work under fixed exploration. In other words, the prob-
ability of selecting any given action will not be changed
during the course of the algorithm. Thus, for instance,
if there are K actions, each action could be chosen with
a uniform probability of 1/K. Each action could alter-
natively be chosen with some other constant probability

such that the sum of the probabilities of all actions equals
one. It is important to point out that the decaying of
the exploration is typically performed via a rule, whose
parameters have to be tuned.

We now describe how reducing of exploration is typ-
ically done in RL. In what follows, q(i, a) denotes the
probability of selecting action a in state i and k denotes
the number of iterations in the algorithm, where k ≥ 1.
The following rules, shown via Equations (1) and (2), are
commonly used in the literature to reduce exploration:

q(i, a) = ABk−1 (1)

where for instance A = 0.5 in case there are two actions
and B = 0.9999;

q(i, a) = A/(B+ k− 1) (2)

where for instance A = 5, 000 and B = 10, 000. Appro-
priate values ofA andBdependon the application at hand
and have to be determined via trial and error; in other
words, they need tuning. If the latter is not done properly,
algorithms such as R-SMART fail to converge to optimal
solutions even on small-scale problems. Thus, an impor-
tant advantage of this new algorithm is its ability to work
with fixed exploration and deliver convergent behaviour.

As stated before, like any other Q-learning algorithm,
iSMART is based on value iteration. This allows the Bell-
man optimality equation to be the underlying foundation
for determining the optimal solution using Q-learning
algorithms. In other words, the solutions generated by
iSMART are expected to reach those of the Bellman opti-
mality equation, which is known to generate the optimal
solution (Bertsekas, 2014). The optimal solution (or pol-
icy) delivers the optimal average reward, ρ*. Clearly, the
goal is hence to determine the policy that produces the
optimal average reward. The average reward of the pol-
icy d is the net revenue per unit time when that policy is
pursued and is technically defined as follows (Bertsekas,
2014):

ρ(d) =
∑N

i=1 Ld(i)
∑N

j=1 p(i, d(i), j)r(i, d(i), j)∑N
i=1 Ld(i)

∑N
j=1 p(i, d(i), j)t(i, d(i), j)

. (3)

Thus, the goal in solving the SMDP is to identify the opti-
mal policy, d*, whose average reward acquires the highest
possible value, ρ∗, i.e.

ρ ∗ defMaxd ρ(d). (4)

As stated above, to determine the optimal solution, the
Q-factor version of the Bellman optimality equation for

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 7

average reward SMDPs is needed, which is as follows:

Q(i, a) =
N∑
j=1

p(i, a, j)
[
r(i, a, j)− ρ ∗ t(i, a, j)

+ maxb∈A(j)Q(j, b)
]

(5)

for all i ∈ S and a ∈ A(i).
Using the above equation, a Q-learning update can be

derived as follows:

Qk+1(i, a)← [1− αk]Qk(i, a)

+ αk
[
r(i, a, j)− ρ ∗ t(i, a, j)+maxb∈A(j)Qk(j, b)

]
(6)

in a transition from state i to state j under the influ-
ence of action a, where Qk(i, a) denotes the value of the
Q-factor for (i, a), i.e. Q(i, a), in the kth iteration, and
αk denotes the value of the step size or learning rate in
the kth iteration. However, it should be noted that the
above equation is difficult to use in practice because ρ*
is not known at the start. Due to this, iSMART not only
updates Q-factors, but also needs to update the values
of ρ. The update of ρ will be performed using the so-
called ‘mirror image’ discussed above. The mirror image
will constitute of the R- and T- factors that will essen-
tially pursue the greedy action stored in the Q-factors.
The idea of the greedy action in Q-factors can be illus-
trated as follows. Suppose for state 2, we have the fol-
lowing current values of the Q-factors: Q(2, 1) = 95.9
and Q(2, 2) = 109.8. Since we are maximising the objec-
tive function (average reward), the action 2 will be the
greedy action for state 2 at this time, because for this set of
values:max{Q(2, 1),Q(2, 2)} = Q(2, 2). As the algorithm
progresses, the greedy actions change, converging to the
optimal actions in the limit.

The central idea underlying iSMART is that the mir-
ror image leads to the solution of the Bellman optimality
equation. To be more specific, if (i∗, a∗) represents a
distinguished state-action pair frequently visited in the
system, then R(i∗, a∗)/T(i∗, a∗), which is derived from
the mirror image, should ideally converge to ρ∗ in the
limit, as the number of algorithm iterations converges to
infinity. This allows the algorithm to generate Q-factors
that solve Equation (5), which is the Bellman optimality
equation guaranteed to deliver the optimal solution. As
an example on how this distinguished state-action pair
is selected, consider this: assume that state 1 is visited
frequently in the system and action 1 is chosen regu-
larly in that state, then one could set (i∗, a∗) = (1, 1).
Clearly, identifying this state-action pair requires some
knowledge of the system dynamics. In the step-by-step
description of the algorithm that follows, the inputs to the

algorithm are initialised in Step 1 and the outputs are gen-
erated in the final step: Step 7. The algorithm runs within
a discrete-event simulator of the PI system and cycles
through the sequence of iterative steps: Steps 2 through 6.

Steps in iSMART:
A step-by-step explanation of the seven steps in iSMART
algorithm will now be presented.
Step 1 (Inputs): Set the number of iterations, k, to 1.
Set ρk = 0, where ρk is an estimate of the optimal aver-

age reward in the kth iteration. Set Qk(i, a), Rk(i, a), and
Tk(i, a) to 0 for all i ∈ S and all a ∈ A(i). Set kmax to a
large number that will allow the algorithm to successfully
explore all states and actions. Set (i∗, a∗) to any state-
action pair in S × A (preferably a state-action pair that
is visited frequently.)
Step 2: Start the simulation at an arbitrary state i. Select
an action with a probability of |

1
A(i)| . Note that this prob-

ability is the exploration rate that was discussed before.
This probability is never changed during the course of the
algorithm, but may have to be set to a value other than
|
1

A(i)| , depending on the nature of the problem. This will
be discussed in more detail later in the work.
Step 3: Simulate action a. Let the next state be denoted by
j. Let r(i, a, j) denote the immediate reward from state i
to state j under action a. Also let t(i, a, j) denote the time
spent under the same state-action transition.
Step 4: Update the Q-factors as shown below. The term α
denotes the step size or learning rate for the Q-factors.

Qk+1(i, a) ← [1 − αk]Qk(i, a)

+ αk
[
r(i, a, j) − ρkt(i, a, j) + maxb∈A(j)Qk(j, b)

]
(7)

Step 5: If a ∈ arg maxc∈A(i)Qk(i, c) (i.e. the action
selection in Step 3 was in fact a greedy one), update
Rk(i, a), Tk(i, a), and ρk+1 as follows:

Rk+1(i, a) ← [1 − βk]Rk(i, a)

+ βk
[
r(i, a, j) − Rk(i∗, a∗) + maxb∈A(j)Rk(j, b)

]
;

 (8)

Tk+1(i, a) ← [1 − βk]Tk(i, a)

+ βk
[
t(i, a, j) − Tk(i∗, a∗) + maxb∈A(j)Tk(j, b)

]
;

(9)

ρk+1 = Rk+1(i∗, a∗)/Tk+1(i∗, a∗). (10)

gosavia
Highlight

8 A. ENCAPERA ET AL.

Step 6: If k < kmax, set i← j and k ← k+ 1 and return
to Step 2. Otherwise, continue to Step 7.
Step 7 (Outputs): For each l ∈ S, compute d ∗ (l) ∈
arg maxb∈A(l)Qk(l, b). The policy returned by the algorithm
is d*, where the action in state l is given by d(l).

5. Numerical results

This section provides numerical results from experi-
ments with the new algorithm. The first subsection is
devoted to results on small-scale SMDPs with four state-
action pairs, while the second subsection presents results
on the TPM problem for the MTS PI system discussed
above with several thousand state-action pairs.

5.1. Small-scale SMDP systems

The four small-scale SMDPs discussed here will have
two states and two actions allowed in each state, which
leads to 4 state-action pairs. These are thus small-scale
problems whose transition probabilities and rewards are
known explicitly, and consequently the optimal policy in
each problem is known with certainty. The larger prob-
lems that will be studied in the next section will have
significantly larger state-action spaces, and at best their
transition probabilities are estimated via numerical inte-
gration, which carries its own error. While a convincing
test of any RL algorithm is on large-scale problems, it is
typical in the literature to first test a new RL algorithm
on small-scale problems, such as mountain car or pole
balancing (see Sutton and Barto (1998) and references
therein), to establish that the algorithm is known to never
fail on small-scale problems. Thus, the first set of experi-
ments is a demonstration of the algorithm’s performance
on small-scale problems; the latter can also be viewed as
miniature versions of the large-scale versions described
later.

For the small-scale problems, some additional nota-
tion is needed: Pa, TRMa, and TTMa will denote the
transition probability matrix, transition reward matrix,
and transition timematrix for action a, respectively. Note
that Pa(i, j) = p(i, a, j), where Pa(i, j) denotes the element
in the ith row and jth column of the matrix Pa. Similarly,
TRMa(i, j) = r(i, a, j) and TTMa(i, j) = t(i, a, j). Input
data for the four small-scale systems tested are provided
next.
System 1:

P1 =
[
0.7 0.3
0.4 0.6

]
; P2 =

[
0.9 0.1
0.2 0.8

]
;

TRM1 =
[
6 −5
7 12

]
; TRM2 =

[
10 17
−14 13

]
;

TTM1 =
[
10 5
120 60

]
; TTM2 =

[
50 75
7 2

]
.

System 2:

P1 =
[
0.7 0.3
0.4 0.6

]
; P2 =

[
0.9 0.1
0.2 0.8

]
;

TRM1 =
[
6 5
7 12

]
; TRM2 =

[
10 17
14 13

]
;

TTM1 =
[
10 5
120 60

]
; TTM2 =

[
5 75
7 20

]
.

System 3:

P1 =
[
0.7 0.3
0.4 0.6

]
; P2 =

[
0.9 0.1
0.2 0.8

]

TRM1 =
[
6 −5
70 12

]
; TRM2 =

[
12 17
6 13

]
;

TTM1 =
[
10 5
120 60

]
; TTM2 =

[
50 75
7 20

]
.

System 4:

P1 =
[
0.7 0.3
0.4 0.6

]
; P2 =

[
0.9 0.1
0.2 0.8

]
;

TRM1 =
[
16 5
75 120

]
; TRM2 =

[
80 10
6 1

]
;

TTM1 =
[
10 5
120 60

]
; TTM2 =

[
50 75
7 20

]
.

Simulators for these systems and the embedded algorithm
were coded in MATLAB and run using a 2.60 GHz Intel
Core i7-6700HQ processor on a 64-bit Windows operat-
ing system. Each system was run for 10,000 time units
using a probability of 0.5 for each action, and the dis-
tinguished state-action pair was chosen to be: (i∗, a∗) =
(1, 1). The following rules were used for the learning
rates:

αk = 150/(300+ k). (11)

βk = 10/(300+ 3k) (12)

The results obtained are presented inTable 1. The optimal
policy and the optimal average reward ρ∗, were obtained
via policy iteration. We explain the results obtained for
System 3 for illustration. For state 1: Q(1, 1) = 511.08 >

Q(1, 2) = 485.85, which implies that action 1 is the opti-
mal action for state 1 according to the algorithm. Sim-
ilarly, for state 2: Q(2, 1) = 528.66 > Q(2, 2) = 520.59,

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 9

Table 1. Results on small-scale SMDPs.

iSMART Outputs
Policy Iteration

Outputs

System Q(1, 1) Q(1, 2) Q(2, 1) Q(2, 2)
R(1, 1)

T(1, 1)
ρ*

Optimal
Policy

1 104.47 70.44 −60.97 108.00 2.0700 2.1045 < 1,2>

2 174.76 175.84 111.75 170.78 0.8409 0.8357 < 2,2>

3 511.08 485.85 528.66 520.59 0.7169 0.7442 < 1,1>

4 461.93 464.59 436.29 421.59 1.3450 1.3401 < 2,1>

which means the optimal action is 1 for state 2 as well.
Thus, policy d* delivered by the algorithm for this system
is 〈1, 1〉, which coincides with the optimal policy. Further,
note that the optimal average reward’s estimate from the
algorithm is R(1,1)

T(1,1) = 0.7169, which closely approximates
the value provided by policy iteration: ρ∗ = 0.7442. It
is clear from a similar inspection of the Q-factors in
the table that for every system, the iSMART algorithm
generates the optimal policy.

5.2. TPM results frommedium- and large-scale
systems

Results of using iSMART and RSMART on the TPM
problem are presented here. The gamma distribution, as
discussed above, is used for the time between failures,
production time, and repair times, while the exponen-
tial distribution is used for the time between customer
(demand) arrivals and the uniform distribution is used
for the maintenance time. The mean of the gamma dis-
tribution parametrised by (n, λ) is given by n/λ, and its
variance by n/λ2. The uniform distribution for the main-
tenance time will be characterised by (a, b), where a is
the lower limit and b the upper limit. The exponential
distribution for the time between arrivals will be defined
by its single parameter μ, such that the mean is 1/μ.
The inventory limit is defined by the upper and lower
bounds (L, U).

The mean time between failures (MTBF) is used to
classify problems into (i) medium-scale problems and
(ii) large-scale problems. The medium-scale cases have
MTBF of 100 time units or less, while the large-scale
cases have MTBF exceeding 100 time units. The cost val-
ues used for the model, as described above, are Cm and
Cr, which are the cost of one maintenance and cost of
one repair, respectively; the revenues earned from sell-
ing one unit are denoted by P. Table 2 details the data for
two sets of cost/revenue parameters used in our exper-
iments. Table 3 provides the inputs for the first 10 cases
studied, which aremedium-scale problems, while Table 4
provides the input data for the four large-scale cases (the
last four cases). In all the experiments, L = 2 and U = 3.

For all large-scale cases, the maintenance time param-
eters are: a = 5 and b = 20. For all cases, (i∗, a∗) was
set to equal (0, 1) i.e. the state where the age is zero and
inventory level equals 1.

Like in the small-scale systems of the previous sub-
section, the simulator of the MTS PI system and the
embedded algorithm were coded in MATLAB and run
using a 2.60 GHz Intel Core i7-6700HQ processor on a
64-bit Windows operating system. The system for each
case was run for 1000,000 time units, and this is called the
learning phase in which the optimal policy is being gen-
erated (learned). The learning rates defined in Equations
(11) and (12) were used with iSMART for these cases;
these are standard rules used widely in other experiments
in the literature (Gosavi, 2015). In other words, no addi-
tional tuning or tinkering of these rates was needed with
iSMART. Further, it should be noted that the same rules
worked for all the cases.

The policy generated here is of a threshold nature,
where there is an upper limit on the threshold beyond
which no production must be performed and main-
tenance should be conducted when that threshold is

Table 2. Cost and profit parameters.

Cost/Revenue Structure CS1 CS2

Cm 2 2
Cr 5 10
P 1 0.5

Table 3. Input parameters for the medium-scale cases: these
cases use the cost structure CS1.

Case

Time
between
demands
(1/μ)

Time
between
failures
(n, λ)

Time for
production

(n, λ)
Maintenance
Time (a, b)

Repair
Time
(n, λ)

Cost
Revenue
Structure

1 10 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
2 5 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
3 7 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
4 15 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
5 20 (8, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
6 10 (4, 0.1) (8, 0.8) (5, 20) (2, 0.01) CS1
7 10 (4, 0.08) (8, 0.8) (5, 20) (2, 0.01) CS1
8 10 (8, 0.08) (4, 0.4) (5, 20) (2, 0.01) CS1
9 10 (8, 0.08) (8, 0.8) (2, 10) (2, 0.01) CS1
10 10 (8, 0.08) (8, 0.8) (5, 20) (1, 0.05) CS1

Table 4. Input parameters for the large-scale cases: maintenance
time for all the cases was set at (5, 20).

Case

Time
between
demands
(1/μ)

Time
between
failures
(n, λ)

Time for
production

(n, λ)
Repair

Time (n, λ)
Cost/Revenue
Structure

11 10 (4, 0.01) (8, 0.8) (2, 0.01) CS1
12 10 (8, 0.008) (8, 0.8) (2, 0.01) CS1
13 10 (4, 0.01) (8, 0.8) (2, 0.01) CS2
14 10 (8, 0.008) (8, 0.8) (2, 0.01) CS2

10 A. ENCAPERA ET AL.

Figure 3. Optimalmaintenance policies based on age and inven-
tory levels.

reached. As such, it is economical and also more insight-
ful to describe the optimal policy in terms of the thresh-
olds, rather than in terms of actions prescribed for every
state. The optimal policy for each system is hence denoted
by 3 integers: (i1, i2, i3). This notation implies that if the
inventory level is c, the optimal action is to produce until
the production count is less than ic and tomaintain when
the production count equals ic for c = 1, 2, and 3. This
can also be explained via Figure 3 where the y-axis is
the production count at which maintenance should be
performed, and the x-axis is the inventory level. In this
example, the optimal solution was recorded as (8, 6, 4).
This means that when the inventory level equals 1, the
system should be maintained after 8 production cycles
are complete; if the inventory level equals 2, the system
should be maintained after 6 production cycles are com-
plete; if the inventory level equals 3, the system should be
maintained after 4 production cycles are complete. The
optimal policy description given here and displayed in
this work omits inventory levels of 0 because when the
inventory level is 0, the optimal action has shown to be
to produce regardless of the production count (Das &
Sarkar, 1999). Presenting thresholds of this nature also
make practical sense on shop floors where implementa-
tion is typically done from charts, such as the one shown
in Figure 3.

The simulator for each case was then run again using
the optimal policy for 100,000 time units with 8 replica-
tions. This is called the frozen phase. The learning and
frozen phases typically took 45 and 27 s, respectively.

Table 5. Numerical results from iSMART benchmarked against
those from the numerical optimisation in Das and Sarkar (1999).

Results from iSMARTResults fromOptimisation

PolicyCase ρ PolicyPr* ρ iSMART

1 (6, 5, 5) 0.0296 0.65 (4, 5, 5) 0.0296± 0.0005
2 (6, 6, 5) 0.0237 0.65 (6, 8, 7) 0.0236± 0.00062
3 (6, 5, 5) 0.0273 0.65 (5, 5, 5) 0.0283± 0.0009
4 (6, 6, 5) 0.0267 0.65 (5, 5, 5) 0.0284± 0.0005
5 (6, 6, 6) 0.0232 0.75 (5, 5, 4) 0.0239± 0.0004
6 (4, 4, 4) −0.0054 0.65 (5, 3, 5) −0.0055± 0.0006
7 (4, 4, 4) −0.0001 0.65 (4, 3, 4) −0.00007± 0.006
8 (6, 6, 5) 0.0287 0.65 (5, 5, 6) 0.0296± 0.0011
9 (7, 6, 5) 0.0261 0.65 (7, 5, 7) 0.0272± 0.0009
10 (8, 8, 6) 0.0413 0.65 (6, 5, 5) 0.0422± 0.0008
11 (21, 19, 13) 0.0616 0.91 (16, 16, 31) 0.0621± 0.00018
12 (63, 59, 41) 0.0754 0.95 (56, 63, 53) 0.0751± 0.00028
13 (19, 18, 15) 0.0235 0.89 (17, 19, 21) 0.0240± 0.00084
14 (57, 54, 42) 0.0354 0.95 (50, 57, 70) 0.0356± 0.00013

Table 5 presents the results from running iSMART on
all the medium-scale and large-scale cases for TPM on
the MTS PI system. The table shows the optimal policy,
as obtained from the numerical optimisation performed
in Das and Sarkar (1999), along with the average reward
delivered by it in the simulator. The table then shows
the policy delivered by iSMART and its average reward
from running the frozen phase. Pr in the table denotes
the probability of selecting the action produce, which
is never changed, thereby leading to fixed exploration.
In most cases, it has to be held above 0.5, due to the
nature of the problem. The upper and lower bounds for
95% confidence intervals (CI) on the average reward (ρ)
are also provided for the policy delivered by iSMART.
In all cases, iSMART’s performance is very close to that
of the optimal policy. It should be noted that in some
cases, the optimal policy is slightly outperformed, and
there are two reasons for that: (i) the average reward is
computed from discrete-event simulations, which intro-
duce approximations and (ii) the optimal policy in Das
and Sarkar (1999) uses numerical integrations to deter-
mine the transition probabilities, which can introduce
approximations of their own and hence slightly different
results.

 The performance of iSMART was benchmarked
against that of R-SMART, as iSMART has been derived
from R-SMART. As stated above, it is expected that
RSMART needs tuning of the exploration rate, since
the exploration rate has to be decayed properly. Our
experi- ments on the MTS PI system showed that with
R-SMART, not only does one have to tune the
exploration rate prop- erly, but one also has to tune the
learning rate for the average reward (ρ) i.e. β . In other
words, the rule used in Equation (12) did not always
generate satisfactory per- formance. The reason for this
is that the convergence of R-SMART relies critically on
the trajectory of ρ that the algorithm’s path generates
(Gosavi, 2004). On the other

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 11

Table 6. Results from using R-SMART for cases 1:10 where the
exploration rate is given by q(i, a) = (Pr)k and the learning rate
for the average reward ρ is given by βk .

Case βk Pr Policy ρR−SMART

1
100

300+ k
0.9999 (5, 3, 4) 0.0297± 0.0014

2
105

300+ k
0.9999 (4, 4, 6) 0.0234± 0.00064

3
1000

2000+ k
0.99999 (5, 4, 5) 0.0284± 0.0008

4
1000

2000+ k
0.99999 (4, 4, 4) 0.0261± 0.0005

5
1500

3000+ k
0.99999 (6, 5, 4) 0.0236± 0.0004

6
1500

3000+ k
0.99999 (3, 4, 5) −0.0055± 0.0004

7
1200

2400+ k
0.99999 (4, 5, 4) 0.00015± 0.0007

8
1100

2300+ k
0.99999 (4, 5, 4) 0.0283± 0.0006

9
1300

2500+ k
0.99999 (5, 5, 5) 0.0266± 0.0011

10
1500

3000+ k
0.99999 (6, 7, 7) 0.0417± 0.0005

hand, in iSMART, ρ is estimated via the R- and T-factors,
which makes the process of estimating ρ more stable,
and hence a variety of rules can work for β . Tables 6
and 7 present the results of experiments with R-SMART;
Table 6 is for the first 10 medium-scale cases and Table 7
is for the large-scale cases (Cases 11 through 14). These
tables show how for each case the exploration rate and
the learning rate β may have to be selected separately in
R-SMART in order to generate near-optimal solutions.
In the experiments with R-SMART, the following explo-
ration rate based on Equation (1) was used: For every
i ∈ S,

q(i, 1) = (Pr)k, (13)

where (Pr)k denotes the scalar Pr raised to the power
k and q(i, 2) = 1− q(i, 1) for every i ∈ S; note that a =
1 in q(i, a) denotes the production action, while a = 2
denotes the maintenance action. The value of Pr chosen
for each case is shown in Tables 6 and 7. Also, shown in
these tables is the learning rateβ chosen for each case. For
all the cases, the following rules was used for the learning
rate α:

αk = 1500/(3000+ k) (14)

As is clear from examining Tables 6 and 7, R-SMART also
generates good policies, albeit with the experimentation
needed to identify the appropriate learning rate β and
the appropriate exploration rate. This is further explained
next.

Computational Time Savings with iSMART: The actual
running times of the two algorithms, iSMART and R-
SMART, are almost identical. The critical difference lies

Table 7. Results from using R-SMART for Cases 11:14 where the
exploration rate is given by q(i, a) = (Pr)k and the learning rate
for the average reward ρ is given by βk .

Case βk Pr Policy ρR−SMART

11
1300

2500+ k
0.999999 (19, 22, 23) 0.0620± 0.00033

12
1300

300+ k
0.999999 (54, 98, 93) 0.0758± 0.00029

13
1300

2500+ k
0.999999 (19, 22, 23) 0.0231± 0.0013

14
1300

2500+ k
0.999999 (57, 89, 93) 0.0353± 0.00017

in the tuning the exploration rate parameter and the
learning rate β parameter. This is the time taken to iden-
tify parameters that work and deliver good behaviour
from the algorithm. This kind of tuning means that one
must run the system simulation with a set of parame-
ters and if these parameters do not work, one must try
another set of parameters. Thus, this involves time spent
offline. This offline time period can be significantly long.
The small-scale cases took about 5–10min of experimen-
tation, while the large-scale cases needed about 30min. It
is to be further noted that a key goal of deep learning
and artificial intelligence is to have robust and automatic
parameters that require little tuning, and it is here that
the advantage of iSMART is truly obvious.Wemust note,
however, that the storage burden of iSMART is some-
what heavier than that of R-SMART. This is because of
the additional R- and T-factors. Thus, for R-SMARTwith
100 states and two actions, one needs 200 Q-factors and
the scalar ρ, i.e. 201 scalars. On the other hand, iSMART
requires in addition to the 200 Q-factors, 200 R-factors
and 200 T-factors, i.e. 600 scalars. Increased computa-
tional burden is becoming less of an issue with modern
computers used by companies such as Google. Nonethe-
less, ideally future research should also consider avenues
to more robust behaviour without adding to the com-
putational burden, as additional computational burden
appears to be hurting the environment (Strubell, Ganesh,
& McCallum, 2019).

6. Conclusions

TPM is a critical practice in MTS PI systems, which
can save large firms millions of dollars annually, and
is as such an important component of effective man-
agement strategy. The problem becomes complicated in
large-scale systems where the number of states is very
large. This paper considered the TPM problem in MTS
PI systems under some very general assumptions on the
input parameters, such as the time between failures, the
repair time, the production time, the maintenance time,
and the time between successive customer (demand)

12 A. ENCAPERA ET AL.

arrivals. The paper also proposed a new version of an RL
algorithm called iSMART to solve this challenging prob-
lem. The new algorithm is based on a Q-factor version
of the Bellman optimality equation that uses a mirror
imaging principle to seek optimality and is designed to
overcome a critical deficiency of R-SMART, specifically
the need for decaying exploration. Finding the correct
rate for exploration adds an extra layer to the compu-
tational burden of the R-SMART algorithm. iSMART
works with an exploration rate that is never changed dur-
ing the course of the algorithmand thus removes the need
for tuning of the exploration parameter – thereby saving
a significant amount of time in the computational exer-
cise associated with running the algorithm on large-scale
problems. In the experiments conducted, iSMART was
able to generate optimal solutions on every small-scale
problem tested and delivered very robust performance on
larger-scale problems from the TPM domain.

A preliminary version of this paper with a small sub-
set of results presented here has appeared in a conference
(Encapera & Gosavi, 2017). In future work, mathemat-
ical convergence of the iSMART algorithm should be
studied. Further, studying non-Poisson arrivals and mul-
tiple machines will lead to other exciting avenues for
future research, where fluid-based approaches may be
more suitable.

Acknowledgements

The authors wish to thank the editors and the reviewers for
their careful reading of the manuscript that has led to a sig-
nificantly improved paper and in particular the presentation
of additional numerical results for benchmarking of the new
algorithm.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Angelo Encapera obtained an M.S. in Systems Engineering
from Missouri University of Science and Technology, Rolla,
MO, USA in Dec, 2017. He obtained a B.S. in Petroleum Engi-
neering in May 2016, also fromMissouri University of Science
and Technology, Rolla, MO, USA. He is currently employed
at Garmin Inc. as a Systems Engineer. His research interests
include machine learning and systems engineering.

Abhijit Gosavi obtained a Ph.D. in Industrial Engineering from
the University of South Florida, Tampa, FL, USA. He obtained
a B.S. andM.S., both inMechanical Engineering from Jadavpur
University, Kolkata, India, and the Indian Institute of Tech-
nology, Madras, India, respectively. He currently serves as an
Associate Professor in theDepartment of EngineeringManage-
ment and Systems Engineering at Missouri University of Sci-
ence and Technology, Rolla, MO. His research interests include

simulation-based optimisation, reinforcement learning, and
total productive maintenance.

Susan L. Murray obtained a Ph.D. in Industrial Engineering
from Texas A&M University, College Station, TX, USA. She
obtained a M.S. in Industrial Engineering from the Univer-
sity of Texas at Arlington, TX, USA and a B.S. in Industrial
Engineering from Texas A&M University, College Station, TX,
USA. She currently serves as Chair and Professor of Indus-
trial Psychology at Missouri University of Science and Tech-
nology, Rolla, MO. Her research interests include safety, total
productive maintenance, and human factors.

ORCID

Abhijit Gosavi http://orcid.org/0000-0002-9703-4076
Susan L. Murray http://orcid.org/0000-0003-0985-3854

References

Ahmed, S., Hj. Hassan, M., & Taha, Z. (2005). TPM can go
beyond maintenance: Excerpt from a case implementation.
Journal of Quality in Maintenance Engineering, 11(1), 19–42.

Ahuja, I. P. S., & Khamba, J. S. (2008). Total productive main-
tenance: Literature review and directions. International Jour-
nal of Quality & Reliability Management, 25(7), 709–756.

Aissani, N., Beldjilali, B., & Trentesaux, D. (2009). Dynamic
scheduling of maintenance tasks in the petroleum indus-
try: A reinforcement approach. Engineering Applications of
Artificial Intelligence, 22(7), 1089–1103.

Askin, R. G., & Goldberg, J. B. (2001). Design and analysis of
lean production systems. New York, NY: John Wiley & Sons.

Beck, C. L., & Srikant, R. (2012). Error bounds for constant
step-size Q-learning. Systems and Control Letters, 61(12),
1203–1208.

Bellman, R. (1957). Dynamic programming. Princeton, NJ:
Princeton University Press.

Benjaafar, S., Kim, J. S., & Vishwanadham, N. (2004). On the
effect of product variety in production–inventory systems.
Annals of Operations Research, 126(1–4), 71–101.

Bertsekas, D. (2014). Dynamic programming and optimal con-
trol (4th ed.). Belmont: Athena.

Bertsekas, D. (2019). Feature-based aggregation and deep rein-
forcement learning: A survey and some new implementa-
tions. IEEE/CAA Journal of Automatica Sinica, 6(1), 1–31.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic program-
ming. Belmont: Athena Press.

Chaharsooghi, S. K.,Heydari, J., &Zegordi, S.H. (2008). A rein-
forcement learning model for supply chain ordering man-
agement: An application to the beer game. Decision Support
Systems, 45, 949–959.

Christensen,W. J., Germain, R. N., & Birou, L. (2007). Variance
vs average: Supply chain lead-time as a predictor of financial
performance. Supply Chain Management: An International
Journal, 12(5), 349–357.

Das, T. K., Gosavi, A., Mahadevan, S., &Marchalleck, N. (1999,
April). Solving semi-markov decision problems using aver-
age reward reinforcement learning. Management Science,
45(4), 560–574.

Das, T., & Sarkar, S. (1999). Optimal preventive maintenance
in a production inventory system. IIE Transactions, 31,
537–551.

http://orcid.org/0000-0002-9703-4076
http://orcid.org/0000-0003-0985-3854

INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE: OPERATIONS & LOGISTICS 13

Encapera, A., & Gosavi, A. (2017, June 4–8). A new rein-
forcement learning algorithm with fixed exploration for semi-
markov control in preventivemaintenance. Proceedings of the
ASME 2017, 12th International Manufacturing Science and
Engineering Conference MSEC2017 (Vol. 3), Los Angeles,
CA, USA.

Gosavi, A. (2004). Reinforcement learning for long-run aver-
age cost. European Journal of Operational Research, 155,
654–674.

Gosavi, A. (2015). Simulation-based optimization: Reinforce-
ment learning and parametric optimization techniques (2nd
ed.). New York: Springer Science.

Gosavi, A., Bandla, N., & Das, T. K. (2002). A reinforcement
learning approach to airline seat allocation for multiple fare
classes with overbooking. IIE Transactions, 34, 729–742.

Howard, R. (1960). Dynamic programming and markov pro-
cesses. Cambridge, MA: MIT Press.

Ireland, F., & Dale, B. G. (2001). A study of total productive
maintenance implementation. Journal of Quality in Mainte-
nance Engineering, 7(3), 183–191.

Jardine, A. K., &Tsang, A.H. (2005).Maintenance, replacement,
and reliability: Theory and applications. BocaRaton, FL: CRC
Press.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11), 1238–1274.

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and
analysis (Vol. 3). New York: McGraw-Hill.

Lewis, E. E. (1994). Introduction to reliability engineering (2nd
ed.). Hoboken, NJ: John Wiley and Sons.

Manzini, R., Regattieri, A., Pham, H., & Ferrari, E. (2009).
Maintenance for industrial systems. New York, NY: Springer
Science & Business Media.

Marcellus, R. L., &Dada,M. (1991). Interactive Process Quality
Improvement.Management Science, 37(11), 1365–1376.

McCall, J. J. (1965). Maintenance policies for stochastically
failing equipment: A survey. Management Science, 11(5),
493–524.

McKone, K. E., & Weiss, E. (1998). TPM: Planned and
autonomous maintenance: Bridging the gap between prac-
tice and research. Production and Operations Management,
7(4), 335–351.

Mortazavi, A., Khamseh,A.A., &Azimi, P. (2015).Designing of
an intelligent self-adaptive model for supply chain ordering
management system. Engineering Applications of Artificial
Intelligence, 37, 207–220.

Rokhlin, D. B. (2018). Robbins-Monro conditions for persistent
exploration learning strategies. arXiv preprint arXiv:1808.
00245.

Ross, S.M. (2014). Introduction to probability models (10th ed.).
Cambridge, MA: Academic Press.

Silver,D.,Huang,A.,Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., . . . Hassabis, D. (2016). Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587), 484–489.

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and
policy considerations for deep learning in NLP. arXiv preprint
arXiv:1906.02243.

Sutton, R., & Barto, A. (1998).Reinforcement learning: An intro-
duction. Cambridge, MA: MIT Press.

Van der Duyn Schouten, F. A., & Vanneste, S. (1995). Main-
tenance optimization of a production system with buffer
capacity. European Journal of Operational Research, 82(2),
323–338.

Wuest, T., Weimer, D., Irgens, C., & Thoben, K.-D. (2016).
Machine learning inmanufacturing: Advantages, challenges,
and applications. Production & Manufacturing Research,
4(1), 23–45.

Zhu, F., & Ukkusuri, S. V. (2014). Accounting for dynamic
speed limit control in a stochastic traffic environment: A
reinforcement learning approach. Transportation Research
Part C: Emerging Technologies, 41, 30–47.

View publication statsView publication stats

https://www.researchgate.net/publication/338175526

	1. Introduction
	2. Background
	3. Problem definition
	4. The new algorithm: iSMART
	5. Numerical results
	5.1. Small-scale SMDP systems
	5.2. TPM results from medium- and large-scale systems

	6. Conclusions
	Acknowledgements
	Disclosure statement
	ORCID
	References

