A Simulation-Based Learning Automata Framework for
Solving Semi-Markov Decision Problems Under
Long-Run Average Reward

Abhijit Gosavi
Department of Industrial Engineering
State University of New York at Buffalo,
Buffalo, NY 14260
gosavi@eng.buffalo.edu
Tapas K. Das
Department of Industrial and Management Systems Engineering
University of South Florida, Tampa, FL 33620
das@eng.usf.edu
Sudeep Sarkar
Department of Computer Science
University of South Florida, Tampa, FL 33620
sarkar@bigpine.csee.usf.edu

October 7, 2002



Abstract. Many problems of sequential decision-making under uncertainty, whose underly-
ing probabilistic structure has a Markov chain, can be set up as Markov decision problems
(MDPs). However, when their underlying transition mechanism cannot be characterized
by the Markov chain alone, the problems may be set up as semi-Markov decision problems
(SMDPs). The framework of dynamic programming has been used extensively in the lit-
erature to solve such problems. An alternative framework that exists in the literature is
that of the learning automata (LA). This framework can be combined with simulation to
develop convergent LA algorithms for solving MDPs under long-run cost (or reward). A very
attractive feature of this framework is that it avoids a major stumbling block of dynamic
programming — that of having to compute the one-step transition probability matrices of
the Markov chain for every possible action of the decision-making process. In this paper,
we extend this framework to the more general SMDP. We also present numerical results
on a case study from the domain of preventive maintenance in which the decision-making
problem is modeled as an SMDP. An algorithm based on LA theory is employed, which may
be implemented in a simulator as a solution method. It produces satisfactory results in all

the numerical examples studied.



1 Introduction

A large class of problems of sequential decision-making under uncertainty, whose un-
derlying probability structure has a controlled Markov chain, can be formulated as Markov
decision problems (MDPs). The objective underlying the study of these problems is to find
the optimal action (control) in each state of the Markov chain. Optimality of actions is usu-
ally measured with respect to some performance metric such as the total discounted reward
over an infinite time horizon, or the average reward over an infinite time horizon (also called
the long-run average reward). In such a characterization (i.e., MDP), the time spent in the
transition from one state to another is either unity or else it is ignored (and assumed to be
unity) in the calculation of the performance metric. However, problems in which we cannot
ignore the transition times (which may be deterministic or random variables) can often be
solved using the semi-Markov decision model. This paper is centered on a simulation-based

technique related to the semi-Markov model.

The framework of dynamic programming (DP) has been used extensively in the literature
to solve Markov and semi-Markov decision problems (see Puterman, 1994). A stochastic-
approximation method called reinforcement learning, which is also based on the framework of
DP (see Bertsekas and Tsitsiklis, 1996 and Sutton and Barto, 1998 for textbook treatments),

has also appeared in the literature in recent years.

The theory of learning automata (LA) (see Narendra and Thatachar, 1989) forms an
alternative framework for solving MDPs — a framework that is very distinct from that of
DP. It is rooted in the principles of game theory. The LA framework, which is simulation-
based, can be used to develop convergent algorithms to solve MDPs under long-run cost
(or reward) (see Wheeler and Narendra, 1986). A very attractive feature of this framework,
unlike traditional DP, is its ability to generate near-optimal solutions without having to

compute the one-step transition probability matrices of the decision-making problem. In



this paper, we present an extension of the LA framework to the more general semi-Markov
decision problem (SMDP). We also conduct numerical tests on a decision-making problem
given in a paper by Das and Sarkar (1999). Their paper contains results for the optimal
policy for preventive maintenance (PM) of a production-inventory system. They obtain the
optimal policy via the harder route, which involves setting up the analytical expressions for
the one-step transition probabilities and the steady-state probabilities of the semi-Markov
process. (Such analytical techniques are feasible only for small problems. For real-world

large-sized problems, we have to rely on other techniques such as the one presented here.)

We model the PM optimization problem as an SMDP as in their paper, but use an
algorithm based on LA theory as a solution method. We refer to the algorithm as the MCAT
(short for Markov Chain Automata Theory) algorithm. The algorithm is shown to produce
optimal results in all the numerical examples studied. It was encoded in ARENA (ARENA
is marketed by Rockwell Software) and C. The computational savings obtained from the
LA approach are substantial because the LA approach does not compute the transition

probabilities and the steady-state probabilities.

The LA approach is a simulation-based optimization technique and as such requires a
simulator of the system. The optimal policy, using the LA approach, is “learned” from one
stmulation run of the system. The LA simulation run is not anything like what is understood
by a standard simulation replication, in which the policy is fixed at the start, once and for
all, and the system is simulated over a fixed time horizon to estimate the performance metric.
Rather, in an LA simulation run, the simulation starts with a random policy, but the policy
changes at every decision epoch, and the run ends with the system having “learned” the
optimal (deterministic) policy. It may be noted here that to simulate the system, it is
not necessary to generate the transition probabilities; all one needs is the knowledge of the

distributions of the random variables that govern the system behavior.

There is a vast body of literature on simulation-based optimization techniques. Lately,



research in simulation-based optimization has been drawing a great deal of attention per-
haps because analytical approaches do not fare well on many large, real-world, stochastic
problems. The response surface method (RSM) was one of the first simulation-based op-
timization approaches to have appeared in the literature. Employment of this approach
on our problem would require the simulation of several policies followed by the use of a
function-approximation technique, such as regression, to approximate the cost function over
the policy space (see Law and Kelton, 2000). RSM will be time consuming for our problem

but is nevertheless a robust procedure — which is why it is still used widely.

Gradient-based techniques for simulation optimization compute the gradient of the cost
function and use a gradient descent approach. Initial gradient-based methods hinged on the
technique of finite-differences (see Azadivar and Talavage, 1980). With the simultaneous
perturbation technique, Spall (1992) has shown that the gradient-based approach can be
made much faster and can be performed with a modest number of function evaluations.
The number of function evaluations is an important issue in simulation-based optimization
because each function evaluation can take up a considerable amount of computer time.
The literature speaks of several other approaches that can be combined with simulation
— especially when the problem is one of finding the optimal values of a set of parameters
to minimize a cost function of the parameters in question. This problem is often called a
problem of parametric optimization as opposed to control optimization. In the latter, one
seeks to find the optimal action in each state visited by the relevant stochastic process.
Although the problem considered in this paper is one of control optimization, such problems
can be often solved by using a parametric-optimization approach especially when the optimal
policy has a threshold nature. Therefore, some discussion on the more recent approaches,
advocated by researchers for solving the parametric simulation-optimization problem, is in

order.

Metaheuristics such as tabu search (see Glover, 1990), simulated annealing (see Homem-



de-Mello, 2001), and genetic algorithms (see Boesel et al., 2000) have been combined with
simulation to solve problems of discrete stochastic optimization, and a varying degree of
success has been reported. A genetic algorithm has been used in the optimization module
of a commercial software (see Harrell et al., 2000). Random search methods proposed by
Andradéttir (1995, 1996) have been shown to be convergent. Ranking and selection (R & S)
procedures (see Goldsman et al., 1991, Nelson, 1992 and Goldsman and Nelson, 1994) are
statistically proven methods for comparing alternative solutions (systems or configurations)
and selecting the best with a high probability. Jacobson and Schruben (1999) present a
methodology to compute the gradient of the objective function and Hessian estimators using
harmonic analysis. They use Taylor series to approximate the objective function and show
that these estimates can be made from just one replication of the system. In this respect their
work bears resemblance to MCAT; however, the problem they attack is one of parametric
optimization. We have more to say on these topics (see Section 5.2) in the context of the
case study used in this paper. For some other references to these methods, see Rubinstein
and Shapiro (1983), Glasserman (1991), and Bonnans and Shapiro (2000). A comprehensive

source is Andradéttir (1998).

This paper, to the best of our knowledge, is the first to use a learning automata approach
to solve an SMDP. Previous computational work on the use of LA to problems of control
optimization was limited to small MDPs with a handful of states (see Wheeler and Narendra,

1986).

The rest of this paper is organized as follows. Section 2 contains an overview of the
existing literature on SMDPs and automata theory. Section 3 describes the SMDP. Section
4 presents an overview of the automata framework. Section 5 contains the details of the LA
algorithm used in this paper. Section 6 is centered on the preventive maintenance case study.

It also discusses results from our application of the LA algorithm. Section 7 concludes this

paper.



2 Overview of Related Literature

The existing literature reveals that Markovian and semi-Markovian models have been
studied extensively for decision-making purposes and have been used in the context of dy-
namic programming. For a detailed account on MDPs / SMDPs, the reader is referred to
Puterman (1994). Applications of these models can be found in a multitude of stochastic
optimization problems, some examples of which are: finding optimal inspection policies in a
quality control problem (Cassandras and Han, 1992), optimal control of a queuing problem
with two customer types (Shioyama, 1991), optimal maintenance in random environments
(Ozekici, 1995), part selection in an FMS (Seidmann and Schweitzer, 1983), optimal mainte-
nance of a production-inventory system (Das and Sarkar, 1999), and a stochastic economic
lot-size scheduling problem with two part types (Bai et al., 1996). Sennott (1999) discusses

examples of decision-making in stochastic systems, especially those in queuing systems.

The theory of learning in controlled Markov Chains, in the context of game theory, has
received an excellent treatment in Narendra and Thatachar (1989). The first significant
result, which may be applied to MDPs, appeared in Wheeler and Narendra (1986). Some
other comprehensive references to research related to learning algorithms, using the paradigm
of game theory, are Lakshmivarahan (1981) and Lakshmivarahan and Narendra (1981). Das
and Sarkar (1999) derive the optimal policy for the preventive maintenance problem using a
semi-Markov model, and hence we use their problem to benchmark the performance of the

MCAT algorithm.

3 Semi-Markov Decision Problems

An SMDP, which has an underlying Markov chain (MC), can be characterized by the

following five elements: 1) the state space of the MC, 2) the action (decision or control)



space, 3) the transition cost (or reward) matrix, 4) the transition probability matrix, 5) the
transition time matrix. All the states in the MC are not necessarily decision-making states.
This does not mean that we are dealing with an uncontrolled MC here. Rather it means
that there are some states in the MC in which there is no decision making involved and only

one action is taken.

The two stochastic processes that accompany the underlying MC are (i) the natural
process (NP) and (ii) the decision-making process (DMP). The NP tracks all the state
changes in the MC while the DMP tracks only the decision-making states. Obviously, the
NP and the DMP coincide at the decision-making instants. Any given transition in the
SMDP is characterized by a current state, the next state, and the action that caused it. The
transition probability refers to the probability that the DMP goes from the given current
state to the given next state, under the given action. Similarly, the transition cost and
the transition time denote the cost incurred and the time spent, respectively, in any given
transition. The time spent in a transition for an SMDP is usually a random variable drawn

from a general distribution. Next, we quickly formalize the above discussion.

Let X,, and T}, denote the system state and time respectively at the mth decision-making
instant. We define two stochastic processes: X = {X,, : m € N} and T = {7}, : m € N'}
where N is the set of natural numbers. We also define a joint process (X, T) = {(X, Trn) :
m € N}, which is the DMP underlying the Markov chain, X. If it can be shown that

P[Xm—H = j: Tm—|—1 - Tm < t|X0: ---,Xm;TOa aTm] = P[Xm—H = j: Tm—|—1 - Tm < t|XmaTm]a

then the DMP (X, T) is a Markov renewal process. If ¥; denotes the state of the system at
any time ¢, then in light of the (X, T) process being a Markov renewal process, the stochastic
process Y = {Y; : t > 0} will be a semi-Markov decision process. The process, Y, is also
the NP of the MC. The average reward of an SMDP, starting at state ¢ and continuing with

policy 7 for an infinite time period can be given (using the renewal reward theorem; cf.



Puterman, 1994 and Ross, 1997) as

o limy e R BT [0 gk, ans k)|

p" (1)

iMoo + B [0 ik, ks k)]

where 75, and a; denote the state and action, respectively, at the kth decision-making epoch,
9(ik, ag, igs1) denotes the immediate reward earned in the transition from state i, to state
ir+1 under the action ay taken in state iy, t(ix, a, ix+1) denotes the time taken in the same
transition, and ET[.] denotes the expectation operator under policy 7 when the initial state
is i. If the Markov chain X has a unichain transition probability matrix (see Puterman,
1994 for a detailed analysis and definition of a unichain transition probability matrix), the

expected average cost does not vary with the initial state for any stationary policy.

In the next section, we give a brief outline of the theory of learning automata for MDPs.

4 A Simulation-Based Learning Automata Framework

The idea underlying any learning algorithm for MDPs / SMDPs is simple and intuitively
appealing (see Figure 1). The learning agent (or decision-maker) starts with a random policy.
As it implements the policy (either in real time or in simulation), it obtains a response from
the system (environment). This response is used as feedback to update the policy. Depending
on what feedback the actions of a policy generate, the actions are deemed good or bad. Over
time, with trial and error, the system learns the optimal action in each state. The feedback
or response is actually the immediate reward or cost generated by an action. We next discuss

the framework in more formal terms.

Let A; denote the set of actions available at state ¢. Hence the union of A; over i gives

the action space. With every state-action pair, we associate a probability P(i,a) of taking



i Feedback
Simulator
(environment) |

: <«
acio| Learning Agent

Figure 1: Mechanism of Learning Using the Simulation-Based MCAT Algorithm

action a in state 7. Clearly Y ,c 4, P(i,a) = 1. At the start of the learning process, the
policy is random and each action is equally likely. Hence in the beginning, P(i,a) = 1/7;
where r; = |A4;| is the number of possible actions in state i. If the performance of an action
is good (in terms of the costs or rewards), the probability of that action is increased and
if the performance is poor, the probability is reduced. This is called updating of the state-
action probabilities. Of course, the updating scheme must always ensure that the sum of the

probabilities of the different actions for any given state is always 1.

The feedback mechanism works as follows. Whenever a state ¢ is revisited, the average
reward earned in the system since its last visit to that state is used as a measure of the
response. The average reward is calculated by the total reward earned since the last visit to
that state divided by the number of decision-making state transitions since the last visit to
that state. Thus, if state i is visited, the response () in the MDP is

¥0) = 3

where R(7) is the total reward earned since the last visit to state ¢ and N(4) is the number

10



of transitions that have taken place in the DMP since the last visit to i. (The SMDP
case is discussed in the next section.) The response is further normalized to ensure that it
lies between 0 and 1 — since it is used to update the probabilities, which must lie in the
same range. The normalized response is called feedback. The normalization is done using:
B(i) = %, where ,,,;, denotes the minimum response possible in the system and
Ymaz denotes the maximum response possible in the system. The feedback is used to update

the probabilities. The conversion of the response to feedback is a research topic by itself,

and for further reading, see Narendra and Thatachar (1989).

Figure 2 depicts a 3-state two-action SMDP and shows how the MCAT algorithm works
in a simulator. Here A; = Ay = A3. We next discuss a learning scheme for updating the

action probabilities.

1

| ! Legend

| S 1 S,S,S5: System states
: 3o o

! ! LA : Learning automata

4 4, : Available actions
—— : State transition

LA

Figure 2: Schematic showing how the learning automata updates its knowledge base and

selects actions causing the Markov chain to jump from one state to another.

11



4.1 Learning Scheme

The scheme for updating the probabilities using feedback is also a topic of considerable
research and several schemes have been suggested in literature. The scheme that gave us the
best results is known as the Reward-Inaction scheme (see Narendra and Thatachar, 1989).

In what follows, we describe this scheme.

When the system visits a new state 4, the probabilities of all the actions in state ¢ are first
updated. For this, 8(7) is calculated first, and then the probabilities are updated as shown
in equation (1). Let A(i) denote the action selected in state ¢+ € S in its last visit to i, and

let 1 denote the “learning rate.” Update P(i,u;) as shown next:
P u;) = P, u;) +nB(0)1(AG) = wi) — nB(i) P(i, us), (1)

where u; denotes the action whose probability of getting selected in state 7 is to be updated,

and I(.) equals 1 if the condition inside the round brackets is satisfied and 0 otherwise.

The reason why the above scheme is so named can be explained as follows. An action that
results in a good reward automatically has a high value for £, and thus significantly increases
the probability of that action . On the other hand, an action that results in a poor reward
has a low value for §, and thus does not significantly change the probabilities (see equation
(1)). Thus a reward is acted upon, but a poor response is somewhat ignored (inaction). As
the probabilities are updated, usually one action starts predominating. In other words, the
probability of the predominant action starts converging to 1, while the probabilities of the
other actions start converging to 0. If there are k¥ optimal actions, then the probability of
each of the optimal actions starts converging to 1/k. That such a mechanism will converge

to the optimal solution has been established by Wheeler and Narendra (1986).

A straightforward extension of this MDP framework to the SMDP case is possible. The
response term, 1 (i), for a given state i, requires a simple modification. The response term

actually denotes the average reward earned since the last visit to the state. So instead of

12



dividing the total earned reward by the number of transitions (since the last visit) in the
DMP of the SMDP, we divide the total reward by the total time spent in the NP of the

SMDP since the last visit. Thus response for the SMDP may thus be calculated as:

(i) = % )

where T'(i) denotes the time spent in the NP of the MC since the last visit to the state 7. All
other steps of the updating process for an SMDP will be identical to those followed for an

MDP. Next, we present a step-by-step description of the MCAT algorithm, and in Section

4.3 we illustrate the use of the MCAT algorithm on a simple 3-state SMDP.

4.2 The MCAT Algorithm

A step-by-step description of the MCAT algorithm is given in Figure 3. The algorithm
presented in this paper is for a PM case study where there are 2 possible actions in each
state. The terms v,,;, and 1,4, denote the minimum and maximum values, respectively, of
the average reward from the system over the policy space. Knowledge of ¥4, and ¥, can
be obtained easily from the values of the cost elements in the problem and some elementary

extreme-case analysis. (See Section 5.1 for more on this.)

There are a number of ways to terminate the algorithm. One way is to wait until all
probabilities have approached 0 or 1. The other method is to run the algorithm for a finite
number of iterations and then choose the most probable action in each state.

4.3 An Illustrative 3-state Example

In this section, we show how MCAT works on a simple 3-state SMDP. For the sake of

simplicity, we shall first assume that each state has two possible actions. In the next section,

13



MCAT ALGORITHM:

A. Let S denote the set of decision-making states in the SMDP. Set iteration count
m = 0. Initialize action probabilities P(i,a) = % for all i € S and a € A;. Set
the cumulative reward C,(i) = 0 and the cumulative time C;(i) = 0 for all € S.
Also initialize to 0 the total reward earned in system from the start, R.u rent, and the
simulation clock, 7T,y rens- Initialize s,,;, and $,,.; as given in the text. Prefix u; to
any action that is allowed in state ¢. Start system simulation.

B. While m < MAX_STEPS do

If the system state at iteration m is 7 € S,

1. If state ¢ has been visited for the first time, go to step 3; else, in the following
order, set:
R(Z) — Rcurrent - CT(Z)a T(Z) — Tcurrent - Ct(Z),
(i) 7 and finally 5(3) - A0 tmin

2. Update P(i,u;) using equation (1).
3. With probability P(i, a), select an action a € A,;.
4. Set A(l) —a, CT(Z) — Rcurrent; and Ct(l) — Tovrrent-

5. Simulate the chosen action a. Let the system state at the next decision epoch
be j. Also let t(i,a,j) be the transition time, and ¢(i,a, j) be the immediate

reward earned in the transition resulting from selecting action a in state .
6. Set Rcurrent — Rcurrent + g(z, a, .7) and Tcurrent — Tcurrent + t(Z, a, ])

7. Set current state ¢ to new state j, and m < m + 1.

Figure 3: Steps in the MCAT Algorithm

14




we shall describe how MCAT is combined with a simulator, and then in the following section,

we show the details of how the action probabilities are updated.

4.3.1 MCAT and the simulator

We will not require the values of the transition probabilities of the underlying Markov
chain; a simulator of the system will be sufficient. Using the simulator, we can generate a
trajectory of states, and when the simulator visits a given state, certain quantities related

to that state will be updated.

Let us assume that the system starts out in state . With a probability of P(i,a), where
a € A;, action a is chosen. The updating required is performed within the simulator, and
the action chosen is simulated. Let the next state be j. Again, an action is chosen, the
quantities in question are updated, and the selected action is simulated. This continues
until, in each state, the probability of one action(s) starts dominating the probabilities of

the other actions. We next illustrate the updating process with numerical values.

4.3.2 MCAT and the updating

Let us assume that the first few states of the trajectory generated by the simulator turn
out to be (2,1,3,1). We begin by setting C,(i) = 0 and Cy(:) = 0,Vi. We also set Reyrrent
and T,yrrent to 0. Also, we shall assume that u; = 1, Vi, ¥ee = 10, ¥ = —5, and n = 0.1.
Also,

P(1,1) = P(1,2) = P(2,1) = P(2,2) = P(3,1) = P(3,2) = 0.5.

The updating calculations performed in each state are listed in Table 1. The updating is
continued in this fashion for a large number of iterations. The most likely action (the action

with the largest probability) in each state is considered to be the best action for that state.

15



Table 1: Sample calculations from a 3-state SMDP. Iteration 4 updates probability P(1,1)
from 0.5 to 0.476, via equation (1), using R(1) = 3.5, T(1) = 1.64, ¢(1) = 2.134, and

B(1) = 0.476.
Iteration | {Current State (¢), | Action, a, in ¢ | {C,.(7), {9(iya,7), | {Reurrent,
Next State (j)} | a = A(1) Ci(i)} t(6,0,5)} | Teurrent}
1 (2,1} 1 {0,0} {4.5,2.34} | {4.5,2.34}
2 {1,3} 2 {4.5,2.34} | {3.5,0.11} | {8,2.45}
3 (3,1} 2 {8,245} | {~1,1.55} | {7,4}
4 (1,2} 1 {7,4} {2.4,1.23} | {9.4,5.23}

We next discuss convergence of the MCAT for SMDPs. Since the convergence result is
based on game-theoretic concepts, we will present some key game-theoretic ideas to relate

the SMDP to a stochastic game.

4.4 Semi-Markov Convergence

An SMDP can be thought of as a non-zero sum game with multiple players and a common
payoff. We associate one player (automaton) with each state in the Markov chain. Then
running the system that has N decision-making states with a fixed policy is equivalent to
playing a game with N players. The common payoff to all the players is defined in the
SMDP by the long-run average reward associated with the policy. Our task then is to find
the equilibrium point of the game — where the payoff is maximized. We are measuring the
payoff in terms of the feedback from the system, i.e., 5. Nash (1950) proved that all finite

games have at least one pure or mixed strategy equilibrium.

The convergence of the MCAT algorithm has been established via a game-theoretic con-
nection (see Wheeler and Narendra, 1986) in a very general setting that includes the MDP

case. We need to define two terms before stating the result.

16



Let us define 8%(7) to be feedback received by the automaton in the ith state at the kth
iteration of the algorithm, and M* (i) to be its ezpected value. The feedback is associated
with given values for the vector Pk= (P¥(i,1), P¥(,2),..., P*(i,r;)), where P*(i, a) denotes
the probability of selecting action a in state i in the kth iteration of the algorithm. A

mathematical definition for M*(7) is:

M () = B[Sk (i)| P¥].

We next define d(m) to be the expected feedback received by the MDP or SMDP when
a policy 7 is followed. A policy is a rule that associates a unique action with each state.
Clearly, in the SMDP (like in the MDP), there is a single performance metric to be optimized

(the long-run average reward in this case). It can be shown that

lim M*(3)

k—o0
exists (Narendra and Thatachar, 1989) and is the same for all values of i. We denote this

limit by M*. Then Wheeler and Narendra’s result can be stated as:

Theorem: Let G be a common-payoff game among N players (i = 1,2,...,N); the ith
player has r; actions. Assume that all the players use the Reward-Inaction learning scheme.
Further, let G have a unique equilibrium 7*, whose expected feedback is d(7*). Then for any

€ > 0, there exists an n*, 0 < n* < 1, such that for any positive n < n*:

lim E[M*] > d(7*) — .

k—00

What this result says is that by a suitable choice of the learning rate (or step size),
7, in the Reward-Inaction scheme, one can obtain a feedback that is arbitrarily close to
that associated with the optimal policy. In other words, the Reward-Inaction schemes are

e-optimal.

The above-stated result holds for any scenario (as long as the conditions of the learning

algorithm are satisfied) in which one seeks to mazimize the feedback. According to the

17



normalization scheme, a feedback equaling 1 is the best, as it is associated with ,,,,, and
that associated with 0 is the worst — hence the term ‘maximize’. Therefore, for the SMDP,
this result will hold as long as the feedback is calculated (properly) — keeping track of the
time spent in earning any given reward. For the SMDP, one is interested in maximizing the
average reward calculated per unit ¢ime over an infinitely long time horizon. (This differs
from the MDP case, where the performance metric is calculated on a unit-step basis). And
therefore, we must divide the incremental reward R(i) by the incremental time 7°(z). This is
how we justify equation (2). Our equation captures the performance metric we are interested
in.

Of course, the result will hold regardless of how we define the response, as long as it is
normalized, but the policy learned will only be as good as our definition of the performance
metric. In other words, all that the result guarantees us is that the policy learned will
optimize the performance metric chosen. Because of the generality of its conditions, the
result actually holds even when the system does not have an underlying Markov chain (see
Wheeler and Narendra, 1986). Furthermore, it is likely to have applications to problems

modeled with partially observable Markov chains.

5 Case Study

To demonstrate empirically that the MCAT algorithm generates a near-optimal policy
on SMDPs from real-life problems, we choose a case study from preventive-maintenance
literature (Das and Sarkar, 1999). This case study is especially suitable because the optimal
policies are available in Das and Sarkar (1999) on some experiments; and hence it can serve

as a nice vehicle for benchmarking MCAT. We now describe the problem in some detail.

Consider a production-inventory system as shown in Figure 4. It produces a single product

type to satisfy an external demand process. The system is prone to failures; the time between

18



. Finished part
Incoming

raw

materials .

Production

i

Possible working conditions of
the production system

fffff > Satisfied demand

Inventory Buffer
(S,s) Policy

Unsatisfied demand
(when buffer is empty)

A

_ __Poisson demand arrival
(no backordering)

Figure 4: A Production-Inventory System

failures, a random variable, is not exponentially distributed. Hence preventive maintenance
(see Lewis, 1994) is an option to reduce the downtime of the machine. Demands that arrive
when the inventory buffer is empty are not backordered and are, therefore, lost. A finished-
product inventory buffer of the product is maintained so as to minimize the chances of losing
demand when the machine is down due to breakdown or maintenance. The system stops
production when the inventory reaches Z; and the production resumes when the inventory
drops to Z,. During its vacation, i.e., when production stops due to the inventory reaching
its upper limit Z;, the system is assumed not to age or fail. Preventive maintenance decisions
are made only at the completion of a part production. The problem of finding the optimal

PM decisions can be cast as an SMDP. We next discuss the SMDP formulation.

An infinite supply of raw material is assumed. When the system produces a part, the part
goes into the inventory buffer. When a demand arrives, the buffer is depleted by one unit;
if the buffer is empty that particular demand goes away never to return. As the machine

ages during production, it can fail. The repair time and the production times are random

19



variables. After the end of the repair or maintenance, the machine is assumed to be as good
as new. When the machine completes the manufacture of one part, two options are available
to the decision maker: (i) to produce one more part and (ii) to schedule a maintenance.
Clearly, when the decision maker is faced with the decision of choosing between one more
production cycle and a maintenance, it has to make the decision based on the age of the
machine and the number of parts in the buffer (w). A measure of the age is the number of
parts produced since the last repair or maintenance. This will be denoted by ¢ (also called
the production count). The decision-making state space of the system may hence be denoted
by (w,c). For more details on the semi-Markov model and the method used to obtain the

optimal policies, the reader is referred to Das and Sarkar (1999).

5.1 Numerical Results

We present results from numerical examples of two types for which 1) theoretical results
via exact Markov chain analysis are available and 2) optimal solutions are not available.
It is usually the case that a few modeling complications or an increase in the size of the
state space for stochastic systems can cause analytical methods to break down; then one has
to turn to simulation for modeling the system. It is not surprising that the Markov chain
approach of Das and Sarkar (1999) breaks down if the buffer limits (2, Z5) are increased
from (3,2) (an analytically-tractable size) to vectors of larger entries. It is for these cases
(type 2) that we turn to a popular heuristic based on renewal theory from the domain of PM.
The idea is again to benchmark MCAT’s performance against some standard — the optimal
solution or a heuristic solution. The renewal-theory heuristic that we have used is known as
the age-replacement (AR) heuristic. Details related to the heuristic have been placed in the

appendix.

The demand arrival process (with batch size of 1) is Poisson (). The time between

machine failures, the production time, and the machine repair time are gamma distributed

20



with parameters (k, p) (d,\), (r, §), and respectively. The time for preventive maintenance
has a uniform distribution with parameters (a,b). For each of the fourteen parameter sets
(shown in Table 2), the cost parameters considered are denoted by: Cj (net revenue per
demand serviced), C, (cost per repair), and Cj, (cost per maintenance). The results (aver-
age reward) for the single-product inventory system obtained from the theoretical model /
heuristic model, and those obtained from the LA algorithm are summarized in Table 3. In
the first nine cases, the LA results are compared to the optimal results and in the last five

cases, the comparisons are with AR.

The first nine cases have a smaller state space compared to the last five cases. Exact
expressions for the transition probabilities (in the first nine cases) were derived by Das and
Sarkar (1999) for the buffer limits (2, 25) = (3,2). However, the expressions were derived
for these numbers specifically; new values would require a re-determination of the expressions.
Furthermore, a unit increase in the upper buffer limit needs at least 25 additional expressions.
(The number 25 is the minimum value of ¢ at which the machine fails almost surely.) As

such, we do not have the optimal results for the last five cases, where Z; > 4.

An approximation for the value of ,,;, can be obtained from the worst-case scenario,
in which no maintenance is performed. In such a situation, %,,;, can be approximated by
the quotient of the negative reward (cost) of one repair and the mean time between failure.
Of course, ¥4, is set to some value higher than 1,,;,. In our study, we know the optimal
solution in some cases and hence the value of ¢/,,,, for those cases. When the optimal solution
cannot be obtained, a heuristic (such as AR) is often used, and then t,,,, can be set to be

a multiple of the average reward obtained from the heuristic.

A statistical test comparing two means — the average reward obtained from the policy
generated by the MCAT algorithm and that obtained from the theoretical results of Das and
Sarkar — reveals no significant difference at a 95 % confidence level for the first nine cases.

A similar test does show a significant difference, in the last five cases (between the MCAT

21



and AR values). This shows that MCAT outperforms AR, in the experiments performed

here.

Table 2: Input parameters for fourteen sample numerical examples

System | Time Bet. | Time Bet. | Time bet. | Maint. Repair | Inventory
Demands Failure Product. Time Time Limits

(’Y) (k’ U) (d’ )‘) (a7 b) (’I‘, 6) (Zla ZQ)
1 1/10 (8, 0.08) (8, 0.8) (5,20) | (2, 0.01) (3,2)
2 1/10 (8, 0.008) (8, 0.8) (5,20) | (2, 0.01) (3,2)
3 1/7 (8, 0.08) (8, 0.8) (5,20) | (2, 0.01) (3,2)
4 1/15 (8, 0.08) (8, 0.8) (5, 20) | (2, 0.01) (3,2)
5 1/15 (8, 0.08) (8, 0.8) (25, 40) | (2,0.01) (3,2)
6 1/15 (8, 0.08) (8, 0.8) (5, 20) | (2, 0.02) (3,2)
7 1/15 (8, 0.08) (8, 0.8) (5, 20) | (4, 0.02) (3,2)
8 1/15 (8, 0.01) (8, 0.8) (5, 20) | (4,0.02) (3,2)
9 1/20 (8, 0.04) (8, 0.4) (5, 20) | (4, 0.02) (3,2)
10 1/15 (8, 0.08) (8, 0.8) (5, 20) | (2, 0.01) (5,4)
11 1/15 (8, 0.08) (8, 0.8) (5,20) | (2, 0.01) (6,5)
12 1/15 (8, 0.08) (8, 0.8) (5,20) | (2, 0.01) (7,6)
13 1/15 (8, 0.08) (8, 0.8) (5,20) | (2, 0.01) (8,7)
14 1/15 (8, 0.08) (8, 0.8) (5, 20) | (2,0.01) (9,8)

We found that the learning rates do affect the solution that the algorithm generates. The
learning rate was set to 0.1 during our calculations. We found that lowering the learning rate
below 0.1 made the learning process slower, although convergence to the optimum was still
achieved. However when the learning rate was increased above 0.1, the algorithm generated
a sub-optimal solution. The reason for this can be traced to the convergence result which

states that the learning rate has to be sufficiently small.

5.2 Other Simulation Optimization Methods

The PM case study can also be cast as a stochastic integer program. But there are two
difficulties with this. Firstly, it is not easy to find the objective function in closed form and

secondly, the solution space will be enormous for a pointwise evaluation of the search space

22



Table 3: Results from the MCAT algorithm, which were averaged over 30 runs, where each
simulation run lasted for 1.0 million time units.

Cy=1,C, =5,Cp, =2
System | Optimal/AR Average Reward | MCAT Average Reward
($ per unit time) ($ per unit time)
1 0.034 0.034
2 0.076 0.075
3 0.035 0.035
4 0.028 0.028
5 0.025 0.025
6 0.031 0.030
7 0.028 0.028
8 0.057 0.057
9 0.020 0.020
10 0.01531 0.02951
11 0.01545 0.02993
12 0.01578 0.02957
13 0.01607 0.03012
14 0.01608 0.03063

via simulation. A stochastic integer formulation is shown below.
Maximize h(zg,z1,. ..,z ) where x; € {0,1,2,...,0}.

Here 6 denotes the smallest production count at which the machine fails with probability
approaching 1, and h(.) denotes the long-run average reward earned by following a policy
which maintains the machine when there are ¢ units in the buffer, and the production count
equals z;. (Recall that Z; is the upper limit for the buffer.) Hence it is clear that the total
number of policies is equal to (6 4+ 1)(Z1+1). For most of the cases considered in this paper,
6 = 25 (see Das and Sarkar, 1999), and so the total number of alternative configurations
(each configuration is associated with a policy) is 26*. Therefore a separate evaluation of

each configuration will be computationally burdensome.

Ranking and selection procedures are recommended for systems with up to 20 or 30 con-

figurations; however recently they have been used on larger problems (see Boesel et al.,

23



2000). Boesel et al. (2000) have designed software that uses ranking and selection proce-
dures in combination with a genetic-algorithm search that has a remarkable statistical error
control. In particular, the algorithm search delivers a statistical guarantee of the solution
generated after the search method ends. An interesting feature of the MCAT algorithm
and the genetic-algorithm procedure, as described in Boesel et al. (2000), is that both use
a somewhat similar philosophy. Both use selection probabilities that favor the seemingly
better “solutions” while retaining the probabilities of the “solutions” that seem to be giving
poorer feedback. However, the analogy ends here because a genetic-algorithm search is de-
signed for solving a problem of parametric optimization whereas the MCAT search is useful

in control optimization.

6 Conclusions

This paper presented an application of simulation-based optimization to a hard problem
in manufacturing. The MCAT algorithm is representative of a new paradigm in simulation-
based optimization. For decision-making problems, it forms an alternative both to traditional
response surface and gradient-based methods, and to reinforcement learning. The extension
of the MCAT framework from the MDP to the SMDP, which is a contribution of this pa-
per, should make it more amenable to real-life problems, which more frequently tend to be
SMDPs than MDPs. Also, the theory of learning automata remains largely unknown in
the simulation-optimization community, and one objective of this paper was to show how
this useful framework may be utilized in solving complex problems. We hope that this will
lead to more applications along similar or related lines to difficult problems of stochastic
optimization. We are currently working on the use of Bayesian networks to model the action
probabilities. We are also exploring the possibility of using the framework on the more dif-
ficult, partially observable version of the SMDP. Other possible avenues for further research

in this area include the study of this framework for discounted rewards.

24



Acknowledgements. The authors would like to thank the simulation area editor Professor
Dave Goldsman and an anonymous reviewer for carefully reading the manuscript and making
various suggestions that have improved the quality of this work. This research was partly
funded by National Science Foundation via grant ITR/AP 0114007 to the first author and
grant DMI-0113946 to the second and the third author.

A Appendix

The AR heuristic, which was used for benchmarking MCAT’s performance on large-sized

problems, is developed via the powerful renewal-reward model.

With an analytical expression for the cost of maintaining the machine, when its age is 7,
one can use non-linear programming to find the optimal value of the age, 7, that minimizes
the average cost. See Ross (1997) for details of this model. The average cost using the
renewal-reward theorem can be written as EC/CT, if EC is the expected renewal cost and

CT is the expected renewal time. Let X denote the time between failures. Then,
EC=(1-F(r)C,+ F(r)C,,

where 7 is the age of maintenance, F'(x) is the cumulative distribution function of the random

variable X, C,, is the cost of one maintenance, and C, is the cost of one repair. Also,
CT = 7P (r) + [ af(2)dz + ( + ) (1 = F(7))
0

where f(z) denotes the probability density function of the random variable X, and 7, and

7, denote the mean time for maintenance and failure, respectively.

25



References.

S. Andradéttir. 1995. A method for stochastic approximation with varying bounds. Opera-
tions Research. 41. 1946-1961.

S. Andradottir. 1996. A global search method for discrete stochastic approximation. STAM

Journal on Optimization 6. 513-530.

S. Andradéttir. 1998. Simulation Optimization. In Handbook of Simulation (edited by Jerry
Banks). Chapter 9, John Wiley and Sons, New York, NY.

F. Azadivar and J.J.Talavage. 1980. Optimization of stochastic simulation models. Mathe-

matics and Computers in Simulation. 22. 231-241.

S.X. Bai, J.H. Burhanpurwala, M. ElHafsi, and Y.K. Tsai. 1996. Hierarchical production
control for a flow shop with dynamic setup changes and random machine breakdowns. OR

Spektrum. 18. 81-96.

D. Bertsekas and J. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific.
Belmont, MA.

J. Boesel, B.L. Nelson, and N. Ishii. 1999. A Framework for Simulation-Optimization

Software. To appear in IIE Transactions.

J.F. Bonnans, and A. Shapiro. 2000. Perturbation Analysis of Optimization Problems.
Springer Verlag. New York, NY.

C.G. Cassandras and Y. Han. 1992. Optimal Inspection Policies for a Manufacturing Station.

FEuropean Journal of Operational Research. 63. 35-53.

T. K. Das and S. Sarkar. 1999. Optimal Preventive Maintenance in a Production Inventory

System. IIE Transactions. 31. 537-551.

D. Goldsman, B.L. Nelson, and B. Schmeiser. 1991. Methods for selecting the best system.

26



In Proceedings of the 1991 Winter Simulation Conference. (B. L. Nelson, W.D. Kelton, and
G.M. Clark, eds.) 177-186.

D. Goldsman and B.L. Nelson. 1994. Ranking, selection, and multiple comparisons in

computer simulation. In Proceedings of the 1994 Winter Simulation Conference. (J.D. Tew,

S. Manivanan, D.A. Sadowski, A.F. Seila, eds.) 192-199.

P. Glasserman. 1991. Gradient Estimation Via Perturbation Analysis. Kluwer Academic

Press, Boston.
F. Glover. 1990. Tabu Search: A Tutorial. Interfaces. 20(4). 74-94.

C. Harrell, B.K. Ghosh, and R. Bowden. 2000. Simulation Using Promodel. McGraw Hill

Higher Education, Boston.

T. Homem-de-Mello. 2001. On the Convergence of Simulated Annealing for Discrete
Stochastic Optimization. Working Paper, Department of Industrial, Welding and Systems

Engineering, Ohio State University, Ohio.

S. H. Jacobson and L. W. Schruben. 1999. A harmonic analysis approach to simulation

sensitivity analysis. IIE Transactions. 31(3). 231-243.

S. Lakshmivarahan. 1981. Learning Algorithms: Theory and Applications. Springer-Verlag,
New York, NY.

S. Lakshmivarahan and K.S. Narendra. 1981. Learning Algorithms for two-person zero
sum stochastic games with incomplete information. Mathematic of Operations Research. 6.

379-386.

A.M. Law and W.D. Kelton. 2000. Simulation Modeling and Analysis. McGraw Hill, New
York, NY.

E.E. Lewis. 1994. Introduction to Reliability Engineering. John Wiley and Sons, New York,
NY.

27



K.S. Narendra and M.A.L. Thatachar. 1989. Learning Automata. Prentice Hall, Englewood
Cliffs, NJ.

J.F. Nash. 1950. Equilibrium Points in N-Person Games. Proceedings, Nat. Acad. of
Science, USA. 36. 48-49.

B.L. Nelson. 1992. Designing efficient simulation experiments. In Proceedings of the 1992
Winter Simulation Conference. (J.J. Swain, D. Goldsman, R.C. Crain and J.R. Wilson eds.)
126-132.

S. Ozekici. 1995. Optimal Maintenance policies in random environments. European Journal

of Operational Research. 82. 283-294.

M. L. Puterman. 1994. Markov Decision Processes. John Wiley and Sons Inc., New York,
NY.

S. M. Ross. 1997. Introduction to Probability Models. Academic Press, San Diego, CA.

R. Y. Rubinstein and A. Shapiro. 1983. Sensitivity Analysis and Stochastic Optimization by
the Score Function Method. John Wiley and Sons, Inc., New York, NY.

A. Seidmann and P.J. Schweitzer. 1983. Part Selection Policy for a Flexible Manufacturing
Cell Feeding Several Production Lines. IIE Transactions. 16(4). 355-362.

L.I. Sennott. 1999. Stochastic Dynamic Programming and the Control of Queueing Systems.
John Wiley and Sons, Inc., New York, NY.

T. Shiyoyama. 1991. Optimal Control of a Queueing Network System with Two Types of

Customers. FEuropean Journal of Operational Research. 52. 367-372.

J.C. Spall. 1992. Multivariate Stochastic Approximation Using a Simultaneous Perturbation

Gradient Approximation. IEEE Transactions on Automatic Control. 37. 332-341.
R. Sutton and A.G. Barto. 1998. Reinforcement Learning. MIT Press. Cambridge, MA.

28



R. Wheeler and K. Narendra. 1986. Decentralized Learning in Finite Markov Chains. /IEEFE
Transactions on Automatic Control. 31(6). 373-376.

29



