
Beyond Exponential Utility Functions: A
Variance-Adjusted Approach for Risk-Averse

Reinforcement Learning*** TYPOS CORRECTED

Abhijit A. Gosavi∗, Sajal K. Das†, Susan L. Murray‡
∗Department of Engineering Management and Systems Engineering; Email: gosavia@mst.edu

†Department of Computer Science; Email: sdas@mst.edu
‡Department of Engineering Management and Systems Engineering; Email: murray@mst.edu

Missouri University of Science and Technology, Rolla, MO 65409

Abstract—Utility theory has served as a bedrock for modeling
risk in economics. Where risk is involved in decision-making, for
solving Markov decision processes (MDPs) via utility theory, the
exponential utility (EU) function has been used in the literature
as an objective function for capturing risk-averse behavior.
The EU function framework uses a so-called risk-averseness
coefficient (RAC) that seeks to quantify the risk appetite of
the decision-maker. Unfortunately, as we show in this paper,
the EU framework suffers from computational deficiencies that
prevent it from being useful in practice for solution methods
based on reinforcement learning (RL). In particular, the value
function becomes very large and typically the computer overflows.
We provide a simple example to demonstrate this. Further, we
show empirically how a variance-adjusted (VA) approach, which
approximates the EU function objective for reasonable values of
the RAC, can be used in the RL algorithm. The VA framework
in a sense has two objectives: maximize expected returns and
minimize variance. We conduct empirical studies on a VA-based
RL algorithm on the semi-MDP (SMDP), which is a more general
version of the MDP. We conclude with a mathematical proof of
the boundedness of the iterates in our algorithm.

I. INTRODUCTION

The Markov decision process (MDP) has been studied
for maximizing expected gains (rewards) extensively. The
MDP framework has been used in many problems where
the decision-maker/agent is a human being — a manager.
Most managers, however, are risk-averse. There is literature
to support the fact that managers with a moderate degree of
risk averseness tend to be more successful [8]. There is also
literature to indicate that the risk-averseness of managers can
be measured [31]. Yet most applications of the MDP frame-
work have been restricted to the classical framework, which is
risk-neutral and thus has a single criterion for optimization. In
a risk-neutral framework, one ignores variability in the rewards
of solutions (called policies). In other words, the framework
recommends policies that have higher returns but also high
variability. However, it is the variability in rewards that is
closely tied to the concept of “risk,” and is frequently an
important consideration for managers. For instance, consider
the situation in which a manager has to choose one from the
following two scenarios:

• Scenario 1: Make $900 with a probability of 0.9 and
$100 with a probability of 0.1.

• Scenario 2: Make $900 with a probability of 0.8 and
$500 with a probability of 0.2.

Note that both scenarios result in the same expected returns
of $820. A risk-prone person will choose Scenario 1, since
the probability of obtaining the highest reward is higher
with it. Most managers are risk-averse, however, and will
choose Scenario 2, because Scenario 2 appears to be less
“risky.” There are numerous ways to measure risk here: the
lowest amount obtainable, which is higher with Scenario 2
($500 > $100), can also be used to measure the risk; such
a criterion for risk analysis would lead to selecting Scenario
2. This criterion is closely related to the idea of “worst-case”
risk.

The literature on risk is quite rich now, and we will present
a review relevant to this paper later. We begin by noting that
the so-called risk-adjusted or risk-penalized framework can be
adapted for use in solving MDPs. It employs the following
objective function:

Maximize E[Returns]− θRisk[Returns], (1)

where E denotes the expectation while Risk denotes the risk in
the returns, and θ is small positive scalar. The scalar θ is called
the risk-averseness coefficient (RAC). Equation (1) presents a
general format of the objective function employed in a risk-
penalized framework. Via Equation (1), the goal is to attack a
multi-objective problem: maximize returns and minimize risks.

Another risk criterion called downside risk sets a psy-
chological threshold for the rewards, and the probability of
the reward falling below that threshold, or the downside
probability, is measured. With this criterion, the risk equals
the downside probability. If the psychological threshold for the
manager here is set at $100 for the reward (returns), X , then
the probability P (X < 100) is 0.1 for Scenario 1 and 0 for
Scenario 2. Hence, when used in the above, i.e., Equation (1),
for reasonable values of θ, e.g., 0.2, Scenario 2 is returned as
optimal. Of course, this approach can be somewhat subjective,
since changing the threshold can change the solution. For
instance, a threshold of $600 will reverse the choice, although
clearly Scenario 2 appears to be less risky. We now turn to the
most popular risk metric in practice.

Variance was first proposed as a metric in Markowitz [22]
to measure risk in returns from financial portfolios. Since

then, it has become a very popular risk metric in the world
of finance, where its square root (standard deviation) is also
called volatility. Variance for Scenario 1 is 57600 $2 while
the same for Scenario 2 is 37120 $2. For small values of θ,
e.g., 0.2, here, Scenario 2 will turn out to be optimal under
Equation (1) when variance is used as a metric for risk. As
stated above, while the risk-averse human is instinctively likely
to prefer Scenario 2, for an artificial intelligence algorithm, it
is necessary to develop an objective function that automatically
captures this risk-revenue tradeoff with minimal user inputs.
We must emphasize here that the discussion above, although
presented in the form a financial (portfolio allocation) problem,
applies in general to any managerial problem, e.g., preventive
maintenance, where variability in rewards is unattractive.

Surprisingly, the classical MDP framework is risk-neutral;
in other words, when faced between two policies with the
same expected returns, it does not know how to distinguish
between the two. In an MDP, the decision-maker (manager)
must choose an action in each state visited by the system. Visits
from one state to the next are governed by Markov chains. An
immediate reward is earned in visits from one state to another.
The goal is to select the action in each state in such a manner
that some function of the immediate rewards is optimized. The
semi-MDP (SMDP) framework [3] seeks to capture the effects
of time and is a more general version of the MDP. In an SMDP,
the time spent in transitioning from one state to another is a
random variable, while in an MDP the time is fixed and the
same for all transitions. Thus, an MDP is only a special case
of the SMDP. Problems with the real world more often tend to
be SMDPs. In this paper, we will present algorithms from the
perspective of the SMDP — in an attempt to provide a more
general perspective. Further, in this paper, we are interested
in a Reinforcement Learning (RL) approach ([4], [28], [12]).
The RL approach seeks to solve the MDP/SMDP in a simulator
without generating the transition probabilities of the underlying
Markov chains.

Two main frameworks that use risk in this context are: (i)
the risk-sensitive framework of Howard and Matheson [21] and
(ii) the variance-penalized framework of Filar et al. [10]. The
risk-sensitive framework has some very useful features that
enable it to model extreme risk — seen in e.g., bankruptcy [6].
Unfortunately, as we will demonstrate below, computationally,
the risk-sensitive framework breaks down on problems where
there is high variability. This is because it requires computation
of exponential of the immediate reward, i.e., eX where if X
is large, the computer overflows. The use of the exponential
term stems from the exponential utility function employed in
this framework. Hence, the risk-sensitive framework is also
called the exponential utility (EU) framework. It is important
to emphasize that problems where risk-averseness becomes
critical acquire significance only in cases where there is
significant variability in the rewards, i.e., where some values
of X are small while others are large. Hence, a viable solution
method must work on numerical problem instances where
some values of X are large. Some other difficulties with the
EU framework have been identified before in the literature; see
[23]. The variance-penalized metric is called variance-adjusted
(VA) metric in stock markets where this metric was used
originally. Hence, in this paper, we will refer to this approach
as the VA approach.

Contributions of this paper: The main contributions of
this paper are fourfold: First, we demonstrate, via a simple
numerical example, how the EU framework may break down in
practice on problems with significant variability in rewards and
where risk-averseness becomes an issue as a consequence. We
will show that the breakdown occurs because some elements of
the value function become too large in practice. Our second
contribution is that of developing a novel Bellman equation
that incorporates variance and a contraction factor that allows
the value function to remain bounded. Our third contribution
is to show how the VA approach can perform well in practice
to produce risk-averse solutions on problem instances where
the EU approach breaks down; in particular, we propose a new
RL algorithm that is a modified version of the one presented
in [16]. We demonstrate, via simple experiments on small
problems, how our VA approach can be used on the SMDP,
which is a more general version of the MDP. Last but not least,
we provide a mathematical proof of the boundedness of the
iterates in our new algorithm.

The rest of this paper is organized as follows. Section II
provides a review of the literature and the connection between
the EU and the VA framework. The new RL algorithm based
on variance adjustment is presented in Section III along with
computational results; here we will also show how the EU
framework breaks down via a counterexample. Section IV
provides a mathematical proof of boundedness of the iterates
in our new algorithm. Section V ends this paper with some
concluding remarks and scope for future work.

II. RELATED WORK AND PRELIMINARIES

We first present a review of literature relevant to this topic
in order to motivate the need for our work and the gap in the
literature. Thereafter, we show how the VA approach can be
linked to the EU approach.

A. Literature review

Other than [21], some other works that consider the EU
framework include [24], [32]. Although the EU-based Bellman
equation has some nice mathematical properties that make
it tractable for mathematical analysis, it has three important
drawbacks:

Unstable iterates: As stated above, the main difficulty with
the EU framework is that the iterates in the RL algorithm can
become so large, especially in problems with large variance,
that the computer can overflow — rendering these algorithms
useless in practice. What is even more important is that the EU
framework actually is aimed at problems with large variability!
Infinite objective function: A main difficulty with the EU
framework is that the objective function’s value equals infin-
ity ([23], [24]); i.e., it cannot be measured in finite terms,
which makes it unsuitable for quantitative comparisons (or
calibrations) of two different policies. Real world managers
prefer quantifiable and explainable metrics, which makes the
EU function very unsuitable for managerial problems.
Unrealistic solutions: EU functions may also generate unre-
alistic solutions in practice [30] and “stochastic policies.”

Recently, there has been some interest in the literature
on management science to reduce variability in costs ([9],
[1]). Other than these, there are some other papers that study

risk: Filar et al. [10] develop the VA framework in Equation
(1), but do not propose a Bellman equation framework that
can be used in RL; see also [27] for variance within MDPs.
Mihatsch and Neuneier [23] develop a scaling parameter
which is used to transform the reward function. Geibel [11]
study problems in which some states are declared to be risky
and are avoided; worst-case risk (discussed above) problems
are studied in Heger [20]. Prior work in VA-based Bellman
equation algorithms includes [26], [15], [18], and [16]. The
work in Sato and Kobayashi [26] provides a Bellman equation
but present a so-called policy-gradient algorithm rather than
a direct value iteration approach. The algorithm in [15] uses
one-step variance rather than long-run variance studied here,
but provides for the first time a dynamic programming and
Bellman equation for risk-adjusted Bellman equations. The
algorithm in [18] is for long-run variance but is based on a
relative value iteration approach, which is different than the
one we will consider in this paper, while the work in [16]
is based on an algorithm in which the average reward and
variance are estimated on a second time scale like in the R-
SMART algorithm [13]. Our work in this paper is closely tied
to that in [16]; however, for the algorithm in [16], there are no
guarantees that the iterates will remain bounded. Therefore,
in our current work, we will use a modified version which
will employ an artificial contracting factor — in order to keep
the iterates bounded. We note that [25] also studied risk-
averse Bellman equations but in the context of finite time
horizon and the discounted infinite time horizon, neither of
which is under consideration here. When the VA objective
function is used in the MDP framework, a (deterministic)
stationary optimal policy exists; see [10], and this implies
that the optimal policy from a VA framework is also “time
consistent” (time consistency is defined in [5] and [25]). In
other words, time consistency of the solutions generated from
using a VA objective does not provide any difficulties to us,
unlike the VaR and CVaR measures popular in literature and
analyzed at length in [5].

B. EU-VA connection

We now show how the EU and the VA approach are
related. We begin with some notation. Let S denote the finite
set of states, A(i) the finite set of actions permitted in state
i, and µ(i) the action chosen in state i when policy µ is
pursued, where ∪i∈SA(i) = A. Let r(i, a, j), p(i, a, j), and
t(i, a, j) denote the associated reward, transition probability,
and transition time respectively of transiting from state i to
state j under the influence of a. Then the expected immediate
reward earned in i when a is chosen in it can be expressed
as: r̄(i, a) =

∑|S|
j=1 p(i, a, j)r(i, a, j). Similarly, t̄(i, a) =∑|S|

j=1 p(i, a, j)t(i, a, j). As stated above, the “risk-sensitivity”
metric alluded to above uses exponential utility function. The
so-called multiplicative form of the Bellman equation [21]
needed in the EU framework seeks to maximize this function.
It is defined as:

Λµ(i) ≡ lim inf
k→∞

lnEµ
[
exp

(∑k
s=1 Θr̄(xs, µ(xs))

)
|x1 = i

]
Θk

,

(2)
where xs denotes the state of the Markov chain before the
sth transition, µ(i) is the action in state i when policy µ is
used, Θ is the RAC, and Eµ is the expectation operator under

µ. In the above formulation, Θ > 0. Rewards in all states
encountered are added together, and then a logarithm is com-
puted of the infinite sum, leading to an infinite-valued objective
function. However, using the associated Bellman equation,
mathematically, one can obtain a policy that penalizes risk.
Unfortunately, as stated above, the exponential terms lead to
numerical difficulties.

It can be shown, see e.g., [23], that the objective function
above can be approximated, via a Taylor series expansion, as
follows:

1

Θ
lnE [exp(ΘX)] = E[X] +

Θ

2
Var[X] +O(Θ2).

If we ignore terms of the order of Θ2, we obtain the following
objective function to be maximized:

E[X] +
Θ

2
Var[X].

Now, if we use the above, however, we must reverse the sign
of Θ and ensure that Θ < 0; otherwise, variance will not be
penalized. In other words, if Θ > 0, then our objective function
in the approximation ought to be:

E[X]− Θ

2
Var[X].

Hence, if we set θ = Θ/2, where θ > 0, then our objective
function, which is to be maximized, becomes: E[X]−θVar[X],
which is the VA objective function proposed in [10]. Fortu-
nately, the VA objective function is finite and it does not have
the exponential terms which are difficult to compute when
the power of the exponential is large, e.g., 20. A Bellman
equation approach for this objective has been presented in
[18]. The algorithm presented in [18] however uses a relative
value iteration approach. In this paper, we use a two-time-scale
approach that is described below.

III. RL ALGORITHM

In this section, we will first present the RL algorithm
for the VA objective function. Thereafter, we will present a
numerical example to demonstrate how the EU framework
breaks down. Thereafter, we will present numerical studies
on small SMDPs. We will conclude with a comparison of our
approach to existing approaches from the literature.

We begin with some definitions from [19] and the Bellman
equation based on [16]: We first define three quantities:

%µ(i) ≡ lim
k→∞

Eµ

[
k∑
s=1

r̄(xs, µ(xs))|x1 = i

]/
k,

which is the first moment of the immediate reward,

τµ(i) ≡ lim
k→∞

Eµ

[
k∑
s=1

t̄(xs, µ(xs))|x1 = i

]/
k,

which is the first moment of the time in one transition, and

σµ(i) ≡ lim
k→∞

Eµ

[
k∑
s=1

r̄2(xs, µ(xs))|x1 = i

]/
k,

which is the second moment of the immediate reward. Then for
irreducible and recurrent Markov chains, the long-run average
reward of a policy µ in an SMDP, starting at state i, is

ρµ(i) =
%µ(i)

τµ(i)
.

Via Theorem 1 of [15], the long-run variance of rewards of
the policy µ in an SMDP, starting at state i, is defined as:

ψµ(i) =
σµ(i)

τµ(i)
− (%µ(i))2

τµ(i)
.

We can show that for irreducible and recurrent Markov chains,
%, τ , σ, ρ and ψ do not depend on the starting state i. Then,
we have that for any i, i.e., for the entire system, the objective
function via Equation (1), for a given policy µ, is:

φµ = ρµ − θψµ. (3)

Expressions for φ, ρ, and ψ can be obtained in terms of the
steady-state probabilities of the Markov chain of the policy µ
as shown in [19]. Let Πµ(i) denote the steady-state probability
of state i under policy µ. These probabilities can be determined
by solving the following system of linear equations: For j =
1, 2, . . . , |S|,∑

i∈S
Πµ(i)p(i, µ(i), j) = Πµ(j);

∑
j∈S

Πµ(j) = 1.

Then, the average reward of policy µ can be expressed as:

ρµ =

∑
i∈S Πµ(i)r̄(i, µ(i))∑
i∈S Πµ(i)t̄(i, µ(i))

.

The variance of policy µ, using the formulation developed in
[19], can be expressed as

ψµ =

∑
i∈S Πµ(i) [r̄(i, µ(i))]

2∑
i∈S Πµ(i)t̄(i, µ(i))

−
[∑

i∈S Πµ(i)r̄(i, µ(i))
]2∑

i∈S Πµ(i)t̄(i, µ(i))
.

Then, the expressions above for ρµ and ψµ can be used in
Equation (3) to obtain the value of the objective function for
any given policy µ. This allows us to perform an exhaustive
evaluation of all policies; however, as is well known, that
approach is computationally very burdensome for large prob-
lems and a Bellman equation approach is preferred for larger
problems. The variance-adjusted Bellman equation for the
SMDP proposed in [16] is as follows: For all (i, a) ∈ S×A(i),

Q(i, a) =
∑
j∈S

p(i, a, j)[r(i, a, j)− θ(r(i, a, j)− %∗)2−

φ∗t(i, a, j) + max
b∈A(j)

Q(j, b)], (4)

where %∗ denotes the optimal average reward on a per transi-
tion basis (not on unit time basis) and φ∗ denotes the optimal
score (score of the optimal policy) on a unit time basis. In
other words, if µ∗ denotes the policy that optimizes the VA
objective function, then %∗ = %µ∗ and φ∗ = φµ∗ .

We will now modify the original Bellman equation, shown
above, in order to introduce a contraction. Our modified
Bellman equation for SMDPs is as follows:

Q(i, a) =
∑
j∈S

p(i, a, j)[r(i, a, j)− θ(r(i, a, j)− %)2−

φt(i, a, j) + η max
b∈A(j)

Q(j, b)], (5)

where η is an artificially introduced constant (scaling factor)
taking values in the interval (0, 1). For any given values of the
scalars % and φ, the above equation is guaranteed to have a
unique solution. Use of scaling factors such as η ∈ (0, 1) is
common in the literature on average reward (see [29] where an
eligibility trace is used and [2] in policy gradients to force a
unique solution to the Bellman equation) in order to facilitate
convergence. In practice, η will be set to a value very close
to 1. We will refer to our new equation as the contractive
variance-adjusted Bellman equation (CV-ABE) and the cor-
responding solution framework as the CV-ABE framework.
Our proposed CV-ABE framework thus combines the classical
risk-neutral Bellman equation with (i) variance and (ii) the
contraction factor. The novelty of the new framework, depicted
via Figure 1, stems from the fact that the algorithm behaves
gracefully in practice, unlike the large values exhibited by the
iterates of the EU framework. In order to use the CV-ABE
framework, we will make the following assumption about η.

Assumption A: There exists a value for η̄ in the interval (0, 1)
such that for all η ∈ (η̄, 1), the unique solution, Q(., .), of
Equation (5) with φ ≡ φ∗ and % = %∗ produces a policy d
defined as follows

d(i) ∈ arg max
a∈S

∑
j∈S

p(i, a, j)[r(i, a, j)− θ(r(i, a, j)− %∗)2−

φ∗t(i, a, j) + η max
b∈A(j)

Q(j, b)]

such that φd equals φ∗ and %d equals %∗. Under this as-
sumption, if we use Equation (5) instead of (4), we should
still obtain the optimal solution. In practice, the assumption
is usually satisfied when η is very close to 1. Note that
when η = 1, the two equations are identical. The numerical
advantage of Equation (5) is that the iterates remain bounded
in practice. We present details of the algorithm below, while
a flowchart is provided in Figure 2.

Bellman Equation

Variance

Reinforcement Learning

(Simulation Model)

Quadratic
Programming
(Transition
Probability
Model)

CV-ABE
Policy

CV-ABE
FRAMEWORK

Contraction
Factor

Fig. 1. CV-ABE: The new proposed Bellman equation framework for the
SMDP that combines variance and the contraction factor, η within the Bellman
optimality equation. The QP (Quadratic Programming) approach needs the
transition probability model, while the RL model bypasses it and works within
a simulator.

Steps in Algorithm:

Step 1. Set k, the number of state changes or the number of
iterations, to 0. Set for all (l, u), where l ∈ S and u ∈ A(l),

Qk(l, u)← 0. Set %k, the estimate of the long-run reward per
state change in the kth iteration, and σk, the estimate of the
long-run squared reward per state change in the kth iteration,
to 0. Let τk denote the estimate of the time spent in each
transition in the kth iteration, which should be initialized to a
very small positive quantity. Set η to a value close to 1, e.g.,
0.99. Let αk and βk be step-sizes that are decayed according
to standard RL rules. Set kmax, the number of iterations for
which the algorithm is run, to a sufficiently large number. Start
system simulation at any arbitrary state.

Step 2. Let the current state be i. An action u will be considered
greedy if u = arg maxb∈A(i)Q

k(i, b). Select action a such
that all actions are selected with equal probability in the first
iteration, but gradually the probability of selecting the non-
greedy action is reduced.

Step 3. Simulate action a using an ε-greedy strategy [28]. Let
the next state be j. Let r(i, a, j) be the immediate reward
earned in the transition to j from i under action a.

Step 4. Compute ψk = σk−(%k)2
τk and φk =

[
%k

τk − θψk
]
.

Update Q(i, a) as follows:

Qk+1(i, a)← (1− αk)Qk(i, a) + αk[r(i, a, j)−

θ
(
r(i, a, j)− %k

)2 − φkt(i, a, j) + η max
b∈A(j)

Qk(j, b)].

Step 5. If a is greedy, update %, σ, and τ using the following:

%k+1 ← (1− βk)%k + βk
[
r(i, a, j) + %kk

]
k + 1

;

σk+1 ← (1− βk)σk + βk
[
(r(i, a, j))2 + σkk

]
k + 1

;

τk+1 ← (1− βk)τk + βk
[
t(i, a, j) + τkk

]
k + 1

.

Step 6. Increment k by 1. If k < kmax, set i← j and then go
to Step 2. Otherwise, go to Step 7.

Step 7. For each l ∈ S, select d(l) ∈ arg maxb∈A(l)Q
k(l, b).

The policy returned is d. Stop.

In the above, the exploration is gradually reduced. The
algorithm can be used for an MDP by setting t(., ., .) = 1
for all transition times and τk = 1 for all k, i.e., τk is not
updated.

Check for
greediness
of action

Update Q-values
(Step 4)

r(i,a,j)

Non-greedy

GreedyIs k<kmax?

Initialize

Action
selection &
simulation
(Steps 2&3)

k = k+1
STOP

N
o

t(i,a,j)

Update other
scalars
(Step 5)

Y
es

k = k+1
r(i,a,j)

t(i,a,j)

Fig. 2. Working mechanism of the RL algorithm: A flowchart

A. Counterexample: How the EU algorithm breaks down

We will now illustrate how a Q-Learning algorithm breaks
down numerically on problems where the immediate reward
can take on high values. The Q-Learning algorithm based
on the EU function will follow a format similar to the RL
algorithm presented above with the following differences:

• Any state-action pair, e.g., (1,1) is selected to be a
distinguished state-action pair, (i∗, a∗) in Step 1. All
the Q-values are initialized to 1 in Step 1.

• Exploration is never decayed.

• In Step 4, for an MDP version [6] of the problem, the
update of the Q-value will be as follows:

Qk+1(i, a) = (1− α)Qk(i, a)+

α

[
exp(Θr(i, a, j))

Qk(i∗, a∗)
max
b∈A(j)

Qk(j, b)

]
.

• The scalars, ρ, ψ, φ, %, σ, and τ , are not needed.

We now show via an illustrative example how the EU
algorithm breaks down via a counterexample.

Example A: We choose a 2-state MDP from [16] as an
example. Pa and Ra denote the transition probability and
reward matrices for action a respectively; Pa(i, j) = p(i, a, j)
and Ra(i, j) = r(i, a, j).

P1 =

[
0.7 0.3
0.4 0.6

]
;P2 =

[
0.9 0.1
0.1 0.9

]
; (6)

R1 =

[
6.0 −5
7.0 12

]
;R2 =

[
5.0 68
−2 12

]
. (7)

The optimal policy is computed via an exhaustive evaluation
of all policies via determining the steady-state probabilities of
the Markov chain for each policy and then determining the
values of ρ and ψ as shown at the start of this section. In what
follows, we will use the notation (a1, a2) to denote the policy
where a1 will denote the action selected by the policy in state
1, while a2 will denote the same for state 2. Thus, for Example
A, there are four policies to be evaluated: (1, 1), (1, 2), (2, 1),
and (2, 2). The optimal policy using the VA objective function
with θ = 0.15 and the risk-neutral solution for Example A
are shown in Table 1. The EU function algorithm computes

TABLE I. RESULTS OF EXHAUSTIVE EVALUATION FOR EXAMPLE A:
THE OPTIMAL POLICY’S METRICS ARE IN BOLD

Example A (θ = 0.15) Example A (θ = 0)
Policy ρ ψ φ ρ
(1,1) 5.828571 30.142041 1.307265 5.828571
(1, 2) 8.625000 31.284375 3.932344 8.625000
(2,1) 11.04000 287.23840 -32.04576 11.04000
(2,2) 10.95000 187.54750 -17.182125 10.95000

exp(2θ · 68) = exp(20.4) = 723781420.9; unfortunately, such
a large number has to be further multiplied in the multiplicative
form of the algorithm; the multiplicative form stems from the
multiplicative form of the underlying Bellman equation [21],
and within a few iterations, the computer overflows. We note
that in problem instances for which risk becomes an issue,
some values of the immediate reward must be high and some
must be small. This was kept in mind while designing this test

instance. The VA algorithm uses the standard additive form of
the Bellman equation (as opposed to the multiplicative form
required with the EU function) and is hence numerically more
stable.

Our VA-based RL algorithm uses the following
parameters: η = 0.99, αk = 1500/(3000 + k), and
βk = 150/(300 + k). The probability of selecting either
action is 0.5 in the first iteration, but the probability
of selecting the non-greedy action (exploration) is set
to 0.5(0.999)k−1. The VA-based RL algorithm was run
in a discrete-event simulator of the Markov chains and
produced the following Q-values: Q(1, 1) = 230.7135;
Q(1, 2) = 106.3651; Q(2, 1) = 155.5511;
Q(2, 2) = 247.2558. Then, arg max{Q(1, 1), Q(1, 2)} =
arg max{230.7135, 106.3651} = 1, and thus
the optimal action for state 1 is 1. Simi-
larly, for state 2: arg max{Q(2, 1), Q(2, 2)} =
arg max{155.5511, 247.2558} = 2, which means that
the optimal action for state 2 is 2. This implies that the policy
returned by the algorithm is (1, 2), which coincides with the
optimal policy shown in Table 1. Figures 3 and 4 show the
evolution of the learning of the Q-values for actions 1 and
2 respectively. It is clear that the optimal action is learned
within a few iterations, although the Q-values take some time
to converge. The simulator was coded in MATLAB and the
learning took about 8 seconds on an Intel Pentium Processor
with a speed of 2.66 GHz on a 64-bit operating system.

0 20 40 60 80 100 120
0

50

100

150

200

250

Number of Iterations in hundreds

Q
−

va
lu

e

Q(1,1)

Q(1,2)

Fig. 3. Run-time performance of the algorithm: Q(1, .) during the simulation

B. Numerical simulation results with the SMDP

We now present numerical results with our algorithm
on four small SMDPs. We have named these four SMDPs:
Examples B1 through B4. We present the relevant data for each
example below. For each example, the algorithm was run for
10,000 iterations using η = 0.99 with the following rules for
the step sizes: αk = log(k+1)/(k+1) and β = 150/(300+k).
The probability of selecting the non-greedy action was set at
0.5(0.999)k−1. For each example, the optimal solution was
also determined via exhaustive enumeration. In each case, our
algorithm converged on the optimal solution. In each case, the

0 20 40 60 80 100 120
0

50

100

150

200

250

Number of iterations in hundreds

Q
−

va
lu

e Q(2,1)

Q(2,2)

Fig. 4. Run-time performance of the algorithm: Q(2, .) during the simulation

simulation ended in about 8 seconds on the same computer
used for the experiment with Example A.

Example B1: The transition probability matrices were identical
to those defined in (6), except p(2, 2, 1) = 0.2 and p(2, 2, 2) =
0.8. The transition reward matrices were also identical to those
given in (7). The transition times were fixed and are given as:

T1 =

[
10 5
20 60

]
;T2 =

[
50 75
7 20

]
; (8)

Also, θ = 0.15. The optimal policy is (1,1) and φ∗ = −0.0195
with ρ = 0.1427 and ψ = 1.0807.

The resulting Q-values are: Q(1, 1) = 70.9; Q(1, 2) =
7.96; Q(2, 1) = 85 and Q(2, 2) = 51.57, which indicates that
the algorithm identifies the optimal policy.

Example B2: The input parameters are identical to those of
Example B1 with the following exception: r(2, 1, 2) = 120.
The optimal policy is (1,2) whose φ∗ = −0.1598 with
ρ = 0.4769 and ψ = 4.2442. The resulting Q-values are:
Q(1, 1) = 203.76; Q(1, 2) = 113.6; Q(2, 1) = −740.8 and
Q(2, 2) = 246.27, indicating that the algorithm identifies the
optimal policy.

Example B3: The input parameters are identical to those of
Example B1 with the following exception: r(2, 1, 2) = 7. The
optimal policy is (1,1) whose φ∗ = −0.0102 with ρ = 0.1112
and ψ = 0.8092. The resulting Q-values are: Q(1, 1) = 65.01;
Q(1, 2) = 4.82; Q(2, 1) = 76.72 and Q(2, 2) = 49.41; hence
the algorithm identifies the optimal policy.

Example B4: The input parameters are identical to those
of Example B1 with the following exception: θ = 0.35.
The optimal policy is (1,1) whose φ∗ = −0.2356 with
ρ = 0.1427 and ψ = 1.0807. The resulting Q-values are:
Q(1, 1) = 110.048; Q(1, 2) = −31.75; Q(2, 1) = 146.0471
and Q(2, 2) = 71.1518; thus, the algorithm is able to identify
the optimal policy.

C. A comparison

We now compare our approach described in the CV-ABE
framework to existing approaches in the literature. Essentially,
there are three approaches to solving the risk-penalized prob-
lem: (i) the EU framework, (ii) the VA-framework using a

quadratic programming (QP) procedure described in Filar et
al. [10], and (iii) the CV-ABE framework described in this
paper. The QP approach of [10], which has been adapted for
the SMDP in [19], does not yield a dynamic programming
algorithm and hence does not yield a simulation-based RL
algorithm either. The QP approach in itself is stable, but
works only when the transition probabilities are available. The
EU framework is rooted in a Bellman equation amenable to
dynamic programming and hence to a simulation-based RL
algorithm, but as stated above, the simulation-based algorithm
is numerically unstable. In light of this, our new framework not
only provides a simulation-based algorithm but also one that is
numerically stable. It is important to emphasize the need for a
simulation-based algorithm: a simulation-based (RL) algorithm
allows one to bypass the transition probabilities, simulate the
system, and generate a solution for the problem. For large-
scale and complex problems, transition probabilities are often
hard to find and thus a solution procedure that works without
them is very advantageous. The discussion is summarized in
Table 2.

TABLE II. A COMPARISON OF CV-ABE TO THE EU AND THE QP
SOLUTION TECHNIQUES: NA DENOTES NOT APPLICABLE WHILE TBD

DENOTES TO BE DETERMINED

Characteristic EU QP CV-ABE
Dynamic programming algorithm Yes No Yes

Simulation-based algorithm Yes No Yes
Numerical stability of

simulation-based algorithm No NA Yes
Convergence proof Yes Yes TBD

IV. BOUNDEDNESS OF ITERATES

We will now show that the iterates in our proposed RL
algorithm will remain bounded. Our main result is as follows.

Theorem IV.1. The sequence {Qk, %k, φk}∞k=1 remains
bounded.

Proof: We will first prove that the iterates %k, σk, and τk
remain bounded. It is clear from Step 4 that if these iterates
remain bounded, φk will remain bounded.

Lemma IV.2. The sequence {%k}∞k=1 remains bounded.

Proof: Define %̄ = max{%1, R} where R =
max |r(., ., .)|, i.e., R denotes the maximum of the absolute
value of the immediate reward r(., ., .). We will use induction
to show that |%k| ≤ %̄ for all k. From Step 5 of the RL
algorithm, for k = 1,

|%2| ≤ (1− β1)|%1|+ β1 R

1 + 1
+ β1 1|%1|

1 + 1

≤ (1− β1)%̄+ β1 %̄

2
+ β1 %̄

2
= %̄.

Assuming the result is true for k = m, i.e., |%m| ≤ %̄, we have
from Step 5,

|%m+1| ≤ (1− βm)|%m|+ βm
R

m+ 1
+ βm

m|%m|
m+ 1

≤ (1− βm)%̄+ βm
%̄

m+ 1
+ βm

m%̄

m+ 1
= %̄.

In a manner similar to the lemma above, one can show
boundedness of σk and τk. We will next show boundedness
of the Q-factor using arguments along the lines of [14].

We first claim that for every state-action pair (i, a):

|Qk(i, a)| ≤M(1 + η + η2 + · · ·+ ηk), (9)

where M is a positive finite number defined as follows:

M = max

{
wmax, max

i∈S,a∈A(i)
Q1(i, a)

}
, (10)

where wmax = max
i,j∈S,a∈A(i)

|w(i, a, j)| and (11)

w(i, a, j) = r(i, a, j)− θ
(
r(i, a, j)− %k

)2 − φkt(i, a, j)
Since %, φ, r(., .,), and t(., .,) are bounded, wmax must be
bounded. Since we start with finite values for the Q-factors,
then M too must be bounded. Then, from the above claim (9),
boundedness follows since if k →∞,

lim sup
k→∞

|Qk(i, a)| ≤M 1

1− η

for all i ∈ S and a ∈ A(i), since 0 ≤ η < 1. We now prove
our claim in (9) via induction.

In asynchronous updating, the Q-factor of only one state-
action pair is updated in a given iteration, while the other
Q-factors remain un-updated. Hence, in the kth iteration of
the asynchronous algorithm, the update for Qk(i, a) is either
according to Case 1 or Case 2.

Case 1: The state-action pair is updated in the kth iteration:

Qk+1(i, a) = (1−α)Qk(i, a)+α

[
w(i, a, j) + η max

b∈A(j)
Qk(j, b)

]
.

Case 2: The state-action pair is not updated in the kth iteration:

Qk+1(i, a) = Qk(i, a).

Now, if the update is carried out as in Case 1:

|Q2(i, a)| ≤ (1− α)|Q1(i, a)|+ α|w(i, a, j) +

η max
b∈A(j)

Q1(j, b)|

≤ (1− α)M + αM + αηM (from (11) and (10))
≤ (1− α)M + αM + ηM (since α ≤ 1)

= M(1 + η)

Now, if the update is carried out as in Case 2:

|Q2(i, a)| = |Q1(i, a)|
≤ M ≤M(1 + η).

From the above, our claim in (9) is true for k = 1. Now
assuming that the claim is true when k = m, we have that for
all (i, a) ∈ (S ×A(i)).

|Qm(i, a)| ≤M(1 + η + η2 + · · ·+ ηm). (12)

Now, if the update is carried out as in Case 1:

|Qm+1(i, a)| ≤ (1− α)|Qm(i, a)|+ α|w(i, a, j) +

η max
j∈A(j)

Qm(j, b)|

≤ (1− α)M(1 + η + η2 + · · ·+ ηm)

+αM + αηM(1 + η + η2 + · · ·+ ηm)

(from (12)
= M(1 + η + η2 + · · ·+ ηm)

−αM(1 + η + η2 + · · ·+ ηm)

+αM + αηM(1 + η + η2 + · · ·+ ηm)

= M(1 + η + η2 + · · ·+ ηm) + αMηm+1

≤ M(1 + η + η2 + · · ·+ ηm) +Mηm+1

= M(1 + η + η2 + · · ·+ ηm + ηm+1)

Now, if the update is carried out as in Case 2:

|Qm+1(i, a)| = |Qm(i, a)|
≤ M(1 + η + η2 + · · ·+ ηm)

≤ M(1 + η + η2 + · · ·+ ηm + ηm+1)

From the above, the claim in (9) is proved for k = m+ 1.

V. CONCLUSIONS

The goal of this paper was to study RL algorithms for
a risk-penalized/risk-adjusted objective function, which is es-
sentially a multi-objective problem. The EU risk-sensitive
framework has been widely advocated in the literature for
studying the risk-averse MDP. Some deficiencies of the EU
framework were identified. In particular, it was shown how
the iterates can become very large. The VA Bellman equation
framework was first developed in [15] for one-step variance
and for one-step target variance in [17]. The problem of long-
run variance, studied here, was also studied in [18] under a
relative value iteration perspective and is closely tied to the
EU framework. Our contribution here is in the same spirit
as in the aforementioned papers. Our new algorithm is a
modified version of the same in [16], but we show that the
iterates will remain bounded. We supplemented our analysis
with some encouraging numerical studies with on some small-
scale SMDPs. For future work, there are at least two avenues
for the algorithm: a convergence analysis (using differential
equations) and an application to a large-scale study, e.g., case
studies in [28], [12], [7].

REFERENCES

[1] C. Barz and K. Waldmann. Rsik-sensitive capacity control in revenue
management. Math. Meth. Oper. Res., 65:565–579, 2007.

[2] J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence, 15:319–350, 2001.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control: Volume
II. Athena Scientific, Belmont, Massachusetts, fourth edition, 2012.

[4] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[5] K. Boda and J.A. Filar. Time consistent dynamic risk measures. Math.
Meth. Oper. Res., 63:169–186, 2006.

[6] V. S. Borkar. Q-learning for risk-sensitive control. Mathematics of
Operations Research, 27(2):294–311, 2002.

[7] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, 2010.

[8] M. Caliendo, F. Fossen, and A. Kritikos. The impact of risk attitudes
on entrepreneurial survival. Journal of Economic Behavior and Orga-
nization, 76:45–63, 2010.

[9] Y. Chen and J. Jin. Cost-variability-sensitive preventive maintenance
considering management risk. IIE Transactions, 35:1091–1101, 2003.

[10] J. Filar, L. Kallenberg, and H. Lee. Variance-penalized Markov decision
processes. Mathematics of Operations Research, 14(1):147–161, 1989.

[11] P. Geibel. Reinforcement learning via bounded risk. In ICML01, pages
162–169. Morgan Kaufman, 2001.

[12] A. Gosavi. Simulation-Based Optimization:Parametric Optimization
Techniques and Reinforcement Learning. Kluwer Academic Publishers,
Boston, MA, 2003.

[13] A. Gosavi. Reinforcement Learning for long-run average cost. European
Journal of Operational Research, 155:654–674, 2004.

[14] A. Gosavi. Boundedness of iterates in Q-learning. Systems and Control
Letters, 55:347–349, 2006.

[15] A. Gosavi. A risk-sensitive approach to total productive maintenance.
Automatica, 42:1321–1330, 2006.

[16] A. Gosavi. Reinforcement learning for model building and variance-
penalized control. In Proceedings of the Winter Simulation Conference,
Austin, TX. IEEE, 2009.

[17] A. Gosavi. Target-sensitive control of Markov and semi-Markov
processes. International Journal of Control, Automation, and Systems,
9(5):1–11, 2011.

[18] A. Gosavi. Variance-penalized Markov decision processes: Dynamic
programming and reinforcement learning techniques. International
Journal of General Systems, 43(6):649–669, 2014.

[19] A. Gosavi and M. Purohit. Stochastic policy search for variance-
penalized semi-Markov control. In Proceedings of the 2011 Winter
Simulation Conference; S. Jain, R. R. Creasey, J. Himmelspach, K. P.
White, and M. Fu, eds., 2011.

[20] M. Heger. Considerations of risk in reinforcement learning. In
Proceedings of 11th International Conference on Machine Learning,
pages 105–111. Morgan Kaufmann, 1994.

[21] R. Howard and J. Matheson. Risk-sensitive Markov decision processes.
Management Science, 8:356–369, 1972.

[22] H Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91,
1952.

[23] O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning.
volume 49, pages 267–290, 2002.

[24] M. Rabin. Risk aversion and expected utility theory: A calibration
theorem. Econometrica, 68:1281–1292, 2000.

[25] A. Ruszczynski. Risk-averse dynamic programming for Markov deci-
sion processes. Math. Program. Ser. B, 125:235–261, 2010.

[26] Makoto Sato and Shigenobu Kobayashi. Average-reward reinforce-
ment learning for variance penalized markov decision problems. In
ICML ’01: Proceedings of the Eighteenth International Conference on
Machine Learning, pages 473–480, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

[27] M. Sobel. Mean-variance tradeoffs in an undiscounted in an undis-
counted MDP. Operations Research, 42(1):175–183, 1994.

[28] R. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press,
Cambridge, Massachusetts, 1998.

[29] J. N. Tsitsiklis and B. Van Roy. Average cost temporal-difference
learning. Automatica, 35(11):1799–1808, 1999.

[30] C. Wang, S. Webster, and N.C. Suresh. Would a risk-averse newsvendor
order less at a higher selling price? European Journal of Operational
Research, 196:544–553, 2009.

[31] E. Weber, A. Blais, and N. Betz. A domain-specific risk-attitude scale:
Measuring risk percep- tions and risk behaviors. Journal of Behavioral
Decision Making, 15:1–28, 2002.

[32] P. Whittle. Risk-sensitive optimal control. John Wiley, NY, USA, 1990.

