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1 INTRODUCTION

Abstract

This paper develops a model-free simulation-based optimization model to solve a seat-allocation
problem arising in airlines. The model is designed to accommodate a number of realistic assumptions for
real-world airline systems — in particular, allowing cancellations of tickets by passengers and overbooking
of planes by carriers. The simulation-optimization model developed here can be used to solve both
single-leg problems and multi-leg or network problems. A model-free simulation-optimization approach
only requires a discrete-event simulator of the system along with a numerical optimization method
such as a gradient-ascent technique or a meta-heuristic. In this sense, it is relatively “easy” because
alternative models such as dynamic programming or model-based gradient-ascent usually require more
mathematically-involved frameworks. Also, existing simulation-based approaches in the literature, unlike
the one presented here, fail to capture the dynamics of cancellations and overbooking in their models.
Empirical tests conducted with our approach demonstrate that it can produce robust solutions which
provide revenue improvements over heuristics used in the industry, namely, EMSR (Expected Marginal

Seat Revenue) for single-leg problems and DAVN (Displacement Adjusted Virtual Nesting) for networks.

1 Introduction

The field of airline revenue management studies mazimization of revenues obtained by selling airline seats. An
important problem in this field requires the development of a revenue-optimal strategy of customer selection.
The product (airline seat) in airlines is said to have a “perishable” nature because its value becomes zero if
it is not sold by the end of the booking horizon, which begins when the flight is opened for sale and ends
when the flight takes off.

Typically, there are significant differences in the preferences (demands) of customers of an airline company.
Some customers, usually business travelers, demand flexibility in cancellation options and return tickets
within a week, while those traveling for leisure do not have these restrictions and opt for cheaper non-
refundable tickets (with stiff cancellation penalties). Therefore, airline companies generally offer seats at
different fares to utilize differences in passenger expectations to their own advantage. The number of business
travelers is quite small in proportion, and business tickets are booked at the last minute, thereby making it
important for the company to retain a few seats until the end of the booking horizon. The question that
then arises is: how many seats should be allowed to be sold at any given fare? If one reserves too many seats
for high-revenue passengers, it is possible that the plane will fly with many empty seats; on the other hand

if all seats are sold at discount fares, one will potentially lose high-revenue passengers. Thus, an important
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1 INTRODUCTION

task is to determine the upper limit, called the booking limit, on the number of seats to be sold at or allocated

to each fare offered.

The above-described “seat-allocation” problem is complicated by uncertainties in customer behavior and
forecasts. Forecasts are generally prepared to estimate the probability distribution of the number of arrivals
in each fare class. Inevitably, some passengers cancel tickets. Hence, airlines overbook planes in order to
minimize the probability of flying with empty (canceled) seats, which adds to the complexity of the problem
because cancellations are random. Thus seat-allocation should account for random cancellations and the
feature of overbooking. Some realistic features of actual airline systems include: (i) random customer
arrivals for booking, (ii) random cancellations, (iii) change in arrival rates with time, and (iv) concurrent
(non-sequential order) arrivals of passengers, i.e., arrivals do not follow any particular order such as low fare

classes first etc.

This paper studies the use of a model-free simulation-optimization model to solve the seat-allocation problem
in a near-optimal manner. There are at least two reasons that make this approach attractive. Firstly,
simulation can easily accommodate realistic assumptions (such as cancellations and overbooking), which
often render theoretical models intractable. Secondly, model-free simulation-optimization models do not
require knowledge of the internal structure of the stochastic system; all they need is an estimated numerical
value of the objective function at any given point in the solution space, and a discrete-event simulator can
provide these values easily. Actually, much research in recent times has allowed the efficient combination of
simulation with numerical optimization techniques, such as gradient-ascent or meta-heuristics, which paves
the way for generating implementable solutions. A commonly-prescribed method for simulation optimization
in continuous spaces is the gradient-ascent approach that uses finite differences of the revenue function to
estimate the gradient. A major difficulty with this approach is that the number of simulations required
per iteration grows proportionately with the number of decision variables. Simultaneous perturbation (SP),
which is due to Spall (1992), is a relatively new technique for gradient-ascent. The remarkable feature of
this technique is that its computational burden is not proportional to the number of decision variables,
and despite this, it has been shown to be convergent under certain conditions. It has been already used
in countless applications (Spall, 2003). Although ours is a problem of discrete optimization, we have used
a continuous approzimation for solution purposes. Continuous (fluid) approximations for solving discrete
problems are very common in the literature; see e.g., van Ryzin and Vulcano (2003). In addition to SP,
we also apply simulated annealing (SA) on the problem. SA is a well-known meta-heuristic for discrete
optimization and is known to be convergent only in an asymptotic sense. But since it has been widely

applied in the industry, it will be used as a standard benchmark method in our computational experiments.
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1 INTRODUCTION

Because the revenue function will be estimated via simulation in this paper, the issue of simulation-induced

noise — that can corrupt the function value — will be analyzed.

Airline Networks: An airline network is composed of one or more hubs and spokes. A leg in a hub-and-
spoke network is composed of two cities. When a customer travels from one city to another via other cities,
the itinerary of the customer contains multiple legs. Consider Figure 1 which shows a small network of four
cities in the US. Chicago serves as the hub, and cities such as Miami, Denver, and Boston serve as spokes.
Customers flying from one spoke city to another are routed via the hub. Most companies have one or two
major hubs. Thus, Miami-Chicago-Boston forms one origin-destination itinerary or simply one itinerary. In
large networks, one finds several hundred itineraries, and for each itinerary, multiple fares may be available;
each itinerary-fare combination is often described as a product. The problem of seat-allocation can be studied
either at the leg level (on a leg-by-leg basis) or at the network level. At the leg level, each fare is referred to
as a class, while in the network, each itinerary-fare combination is referred to as a product. At the leg level,
the problem is one of finding the number of customers to be allowed for a given fare (class). In a network,
the seat-allocation problem is to determine the number of customers to be accepted for any given product.
Complexity in the network version of the problem arises from the fact that seat-allocation on one leg affects
that on one or more of the other legs. As a result, ideally, the airline that operates in networks must solve
the problem in its entirety, i.e., solve the network version. In recent times, a large number of point-to-point
carriers have emerged, which do not have hubs, but offer direct services from one city to another. For such

carriers, it is sufficient to solve the problem at the leg level.

@

Chicago: Hub
Denver: Spoke
Boston: Spoke
Miami : Spoke

Figure 1: A schematic showing a network involving 4 cities

A literature review and contributions of this work: A sizable chunk of the work in single-leg revenue

management exploits the equation underlying the pioneering work of Littlewood (1972), which has developed
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1 INTRODUCTION

into a very robust solution technique called EMSR (Expected Marginal Seat Revenue) described in Belobaba
(1989). Displacement Adjusted Virtual Nesting (DAVN), which has its roots in the work of Glover et al.
(1982), is a powerful approach for network models in revenue management. This model has been modified
in subsequent years by several researchers including Smith and Penn (1988) and Williamson (1992). The
literature on airline revenue management is quite voluminous. See McGill and van Ryzin (1999) for a review
and Talluri and van Ryzin (2004) for textbook treatment of this topic, while the history is traced in Boyd and
Bilegan (2003). Some important works in the domain of single-leg control are: Howard (1971); Shlifer and
Vardi (1975); Curry (1990); Wollmer (1992); Lee and Hersh (1993); Brumelle and McGill (1993); Chatwin
(1998); Robinson (1995). Subramaniam et al. (1999) present a finite-horizon Markov decision process to solve
the single-leg problem, but make some limiting assumptions such as a Poisson rate for cancellations and equal
cancellation probabilities for all classes. van Ryzin and McGill (2000) present a Robbins-Monro scheme that
exploits simulation to solve the problem with forecasting as an integral part of the solution model; in most
models in the literature, forecasts are assumed to be known. For the single-leg problem, Gosavi et al. (2002)
present an approximate dynamic programming (DP) or reinforcement learning approach (Bertsekas and
Tsitsiklis, 1996; Gosavi, 2003) that is based on value iteration and employs function approximation with
neural networks for estimating the value function of DP within a simulator. Gosavi (2004) uses a policy
iteration based algorithm in reinforcement learning for solving the same problem. Both of the above papers
do not require the transition probabilities of the underlying stochastic dynamic program but work within

simulators of airline systems.

For network control, outside of the pioneering paper of Glover et al. (1982), a subset of important works
includes Vinod (1995); Smith and Penn (1988); Simpson (1989); Williamson (1992); Wong et al. (1993). Bert-
simas and de Boer (2005) use a combination of gradient-ascent based on finite differences and approximate
dynamic programming to solve the network problem. van Ryzin and Vulcano (2003) use a fluid approxima-
tion of the booking limits to obtain exact expressions for sub-gradients. The model in their paper exploits
the structure of the problem, and can be viewed to belong to the class of model-based simulation-optimization
algorithms (see Chapter 15 of Spall (2003)). Although both of the above papers use simulation, they are
not designed to handle cancellations, which form an integral part of the booking process. Other approaches
include: Experimental designs and multi-variate adaptive regression splines (Chen et al., 2003) in a DP set-
ting, a sampling-based approach that combines merits of mathematical programming and Markov decision
processes for a two-leg problem (Cooper and Homem-de-Mello, 2004), and an approximate DP algorithm for
networks in which cancellations and overbookings are permitted (Bertsimas and Popescu, 2003). Karaesmen

and van Ryzin (2004) is a recent paper that develops a cancellation-based model that exploits two-stage
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stochastic programs. The work of de Boer et al. (2004) uses a combination of stochastic programming with
simulation to derive booking limits for a network. Simulation optimization (Gosavi, 2003; Bonnans and
Shapiro, 2000) is a rapidly growing area of research. The robust response surface method, which is a classi-
cal technique (Law and Kelton, 1999) for static simulation-based optimization, has made way for techniques
that depend on meta-heuristics like tabu search (Glover, 1990), genetic algorithms (Holland, 1975), and

simulated annealing (Kirkpatrick et al., 1983).

The contributions of our work, in the perspective of the existing literature, are (i) for the single-leg and
network problems, we provide a model-free simulation-based optimization approach that can account for a
variety of system-related assumptions, including arbitrary distributions for demand-arrival processes and
cancellations, (ii) we introduce in the area of revenue management, the SP algorithm of Spall (1992), which
other than in simulators (as we have done) could also be exploited in model-based gradient-ascent approaches
in revenue management (van Ryzin and Vulcano, 2003; Bertsimas and de Boer, 2005), and (iii) we establish
the usefulness of our simulation-optimization approach by analyzing the effect of simulation-induced noise

in our computational experiments.

The rest of this paper is organized as follows. Section 2 presents a simulation-optimization model along with
techniques used for solving the associated problem. Numerical results are discussed in Section 3. Section 4

concludes this paper.

2 A simulation-optimization approach

Two undesirable events are associated with not setting an upper limit on the number of seats to be sold at
the different fares offered: 1) Passengers who end up in the plane at takeoff are primarily from the lower-
revenue classes, which translates into loss of potential revenue. This is because lower-revenue passengers
tend to book early and, if no booking limits are imposed, can buy all the seats in the plane. 2) Clearly, with
no booking limits imposed, the number of passengers who show up for boarding can ezceed the capacity of
the plane. When this happens, some passengers have to be bumped, i.e., denied boarding request, although
they have purchased tickets, which leads to loss of goodwill and revenue (arising from paying for tickets on
alternative routes and hotel stays). However, if selling is discontinued as soon as the number of seats sold
equals the capacity of the plane, some seats are likely to remain empty at takeoff — because of no-shows

and last-minute cancellations.

We now introduce some mathematical notation. Each flight in a simulation model constitutes of arrivals,
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2 A SIMULATION-OPTIMIZATION APPROACH 2.1 A simulation model

cancellations, and the takeoff of the plane. Let 2 denote the (universal) set of all possible flights. Consider
a probability space (2, F, P) where F is a sigma-field of subsets of Q and P denotes a probability measure
on (Q,F). In general, the seat-allocation problem can be described mathematically as follows. One has to
find the values of the booking-limits vector & = {z1, z2,...,z,} that maximizes the expected revenue from
each flight, i.e., Ep [T(#,w;)], where n denotes the number of classes (distinct fares) or products, Ep stands
for the expectation operator induced by the probability measure P, and T : R™ x 2 — R is a scalar-valued
function. Here, T(#,w;) will denote the total (net) revenue obtained from the ith sample flight, denoted
by w; € Q, in which the booking-limits vector is fixed at Z. In order to explain the working mechanism
of a “simulation-optimization” approach, we need to make the problem statement more precise. A typical
stochastic optimization problem is of the form

max f(Z) = max Ep [T(Z, wi)] (1)
where 6 is a compact subset of R™ and Z denotes the vector of decision variables. The random variables will
have w in the notation to distinguish them from other quantities. Using the distribution P, if IV i.i.d random
samples, wi,ws,...,wn, are generated, we can develop an approximation of the stochastic optimization

problem in (1). The approximation is

Feo i=1 T(f\,f%)’ @)
where
F@) =Ep [TEw)] ~ 30 T _ py(a). Q

i=1

Now, (2) can be used in simulation-based optimization using a “sufficiently” large value for N. Although (2)
is only an approximation of the problem in (1), it can be shown from the strong law of large numbers that

N AN
as N — 00, (2) — (1) with probability 1 (almost surely). Also, we will assume that if imy_; o W

N —
. . .. . - T(Z,w;
does not exist, we will maximize liminfpy_, o %

The problem then is to formulate a procedure to estimate T'(.,.). The estimation can be performed in a
simulator provided one formulates a suitable expression for T'(.,.) — a task that we accomplish in the next

subsection.

2.1 A simulation model

We ith aggregate sample of flights over all legs will be defined as: @; = {w},w?,... ,wé, .o ,wk}, where L

denotes the number of legs in the network and w! denotes the lth leg of the ith aggregate sample of flights.
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2 A SIMULATION-OPTIMIZATION APPROACH 2.1 A simulation model

Also, we define the following terms. H: the booking time horizon (in days); n : the number of products;
M,: penalty incurred by a passenger for cancellation of the vth product; V,: revenue associated with the
vth product; B,: penalty incurred by the company for bumping a passenger of the vth product; C': plane’s
capacity in the lth leg; p, (Z,@;): the number of passengers admitted for the vth product in the network if
the booking-limits vector is Z; p! (&, w!): the number of passengers admitted for the vth product in the Ith
leg if the booking-limits vector is Z (clearly, this quantity will always equal 0 if the vth product does not use
the Ith leg); &,(Z,®;): the number of passengers who cancelled tickets for the vth product in the network if
the booking-limits vector is &; cﬁ, (Z, wé): the number of passengers who cancelled tickets for the vth product

in the lth leg if the booking-limits vector is Z (clearly this quantity will also be 0 if the vth product does not
use the [th leg).

Then, the gross revenue obtained in the ith aggregate sample of the network from selling seats and from

cancellations, with & as the booking-limits vector, can be expressed as

G(@,@:) = > (Po(,@:) — &(@, @) Vi + D Co(&, 0i) M.

v=1 v=1

Also, the number bumped in the Ith leg of the ith aggregate sample will be

—~

Kl(fa wf) = max lov {Z(pi(f, wi) - Cv(:i", wi)) - Cl}

Let K(&,&;) denote the number bumped for the vth product in the ith aggregate sample, which can be
determined from the values of
KY(Z, w}),K?(Z,w?),..., KE(F wl) and the simulator. Then, the net network revenue, associated with the

ith sample, can be calculated from:

In our simulation-optimization approach, a booking-limits vector of & implies that a customer requesting
the ith product is accepted only if the net number (accepted number minus the cancellations) of customers
currently booked for all products including ¢ and those below i is less than z;. In the single-leg scenario, the

products are ranked by fares, and in the network by their net worth to the network, which is explained later.

Sample flights can be simulated in a computer program, and thereby one can compute the function T°(.,.)
for N sample flights using the definition above. Then (3) can be used to estimate the value of the objective

function.

We now describe in detail the two techniques that we have used for simulation optimization.

To appear in OR Spectrum, Vol 29, pp 21-38, 2007 8



2 A SIMULATION-OPTIMIZATION APPROACH 2.2 Simultaneous Perturbation

2.2 Simultaneous Perturbation

SP, as mentioned previously, is an efficient steepest-ascent technique that can be used to solve continuous
optimization problems with a large number of decision variables and a noisy function evaluator, e.g., a
simulator. It is particularly suitable for simulation optimization Spall (2003). The gradient estimate of SP,
unlike traditional finite differences, requires only two function estimates — that is, two simulations. This is
the primary advantage of this method, and makes it suitable for our problem in which we have many decision
variables. For a problem with n decision variables, finite difference approaches on the same problem would

take n times as many simulations per iteration of the steepest-ascent algorithm.

We must note that SP is guaranteed only local convergence unless the function is concave or unimodal. It
is extremely unlikely that the function in our problem domain is concave (even quasi-concave (van Ryzin
and Vulcano, 2003)). As a result, in practice, one can start the search at a number of different points and
select the best of the local optima as the solution. The steps, described in detail next, are written in terms

of maximizing the objective-function value.

Step 1. Set k = 1 and ' = {xl,zl,...,2L} to an arbitrary feasible solution in X, the feasible set of the

solution space, which as a rule of thumb can be set to {0,1,2,..., M}, where M is the maximum number of
customers that can arrive in the booking horizon. Denote S = {1,2,...,n}. Set the step size u to a small
value Msm“”. Set fimin to a small value such as 0.001.

Step 2. A random value for each J (i) is generated by simulation, where i € S, from the Bernoulli distribution
whose two equally-likely values are 1 and —1. Thus J(7) is either 1 or —1 with the same probability. We set
d = 1/k™ where k" denotes k raised to the power w, and w is fixed to a value in (0, 1), e.g., 0.5. Then the

perturbation parameter, h; for every i € S is computed as follows: h; = J(i)d.

Step 8. Let f denote the noisy function value obtained from a simulator. Thus f denotes the estimate

obtained in Equation (3) using N samples from the simulator. Calculate F* and F~ using the following:

F+:f(mll‘:+h1yml2c+h27"'axlri+hn)) F- :f("vllc_hlyzg_h%"wxﬁ_hn)‘

Step 4. For each 7 in S, first obtain the derivative estimate and then update :ciC via steppest descent:

0f (@) ]

6mi
Step 5. Increment k by 1, and set: p < #——. If 4 < pmin, stop. Otherwise, return to Step 2.

of (&) Ft—F- k41 k
A ~ : 1I :
0T; |z_zn 2h; R

where IIx[.] denotes the projection operator onto the feasible set X.
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2 A SIMULATION-OPTIMIZATION APPROACH 2.2 Simultaneous Perturbation

When the function is evaluated in Step 3, one must round off each element of the vector Z to the nearest
integer. We need to discuss the effect of simulation-induced noise on the objective function value. Fortunately,
the simulator has a regenerative structure in which a new i.i.d. sample is generated whenever the flight takes
off. Also, the objective function in (3) is the expected net revenue in one flight, and the problem is one of
a finite horizon. As a result, the question of computing profits on a unit-time basis, which can lead to an
additional bias (see the excellent discussion on pages 374-379 of Spall (2003)), does not arise. In fact, the
estimator fi(Z) is an unbiased estimator of f(Z) provided i.i.d samples are generated for T'(.), which we

ensure in our simulator.

The SP algorithm is guaranteed to converge under a number of conditions that we enumerate below. The
conditions related to the step-size can be easily met in our computational experiments. In fact the step-
size rules that we stated in our algorithm description obey these conditions. But the conditions related
to the function gradients, e.g., differentiability and concavity, are difficult to verify. Spall himself notes
in his book (see page 161 of Spall (2003)) that verifying the convergence conditions when the gradient is
computed numerically is an “abstract ideal” and that the conditions “may not be verifiable for the very
reason” one is forced to use numerical gradient differences. Fu and Hill (1997) state: “In practice, it may
be difficult to verify the conditions on the objective function, since simulation is applied to those systems

”

for which analytical properties are not readily available.” Some of these conditions could be verified only

when expressions for gradients could be derived — in which case these expressions could be directly used
in the optimization — making a numerical evaluation of the gradients unnecessary. The objective function
considered in this paper has a black-box nature — especially when realistic assumptions are made for the

system, and this is precisely why we pursue a simulation-based approach.

The conditions and the result that we state next are based on work in Fu and Hill (1997), which applies in

our setting, i.e., constrained optimization in a compact subset.
Step-size and variable-parameter conditions:
1. Let pj denote the step-size in the kth iteration of the algorithm. Then: Y oo, ux = co.

2. For every 4, the sequence of random variables J(7) are mutually independent with mean 0, have bounded

second moments, and E[|1/J(¢)|] is uniformly bounded.

3. If ex (i) denotes the noise in the gradient due to the use of SP, and € = [ex(1), ex(2),- .-, ex(n)]T, then

> req E[eFéxlui < oo almost surely.

Objective function conditions: The function f(Z) is differentiable for each z; and and is either concave
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2 A SIMULATION-OPTIMIZATION APPROACH 2.3 Simulated Annealing

or unimodal.

Theorem 1: For the SP algorithm, if the conditions enumerated above are true, if ) denotes the solution

in the kth iteration, and if Z* denotes the optimal solution, limg_, ., Zx = Z* with probability 1.

2.3 Simulated Annealing

As mentioned above, we have also used a standard meta-heuristic, namely, Simulated Annealing (SA), in our
computational experiments. This is a widely-used meta-heuristic that can generate high-quality solutions in
problems of combinatorial optimization. It is often claimed that it can escape local optima; see Lundy and
Mees (1986) for a convergence analysis. In what follows, we present a quick description of the steps we used

for computational experiments.

Steps. Start at an arbitrary feasible solution, denoted by Z.yrrent- L€t Zpes: denote the best solution
obtained so far, which is initialized to Zcyrrens. Set 1, the so-called temperature, to a high value. The
algorithm is run for a number of phases. Set Ppax, the maximum number of phases, to a large number. Each
phase, in the algorithm, consists of I iterations. Within a phase, the temperature is not changed. The values
of Pnax and I are set according to the time available on the computer. In the algorithm, f(#) will denote

the objective function value associated with the vector Z. Set neighbor search parameter, x, to a suitable

value.
Step 1. Set P, the phase number, to 1.
Step 2. Randomly select a neighbor of Z,yrrent as follows.

To select a neighbor, generate a random number u(i) for ¢ = 1,2,...,n from the uniform distribution
U(0,1). For each i = 1,2,...,n, do the following: If u(i) < 0.5, Tnew(i) ¢ Teurrent(?) + k; otherwise
ZTnew (1) < Teurrent(1) — K. If any Tpeq,(7) exceeds the upper limit of the feasible value of booking limits or
falls below 0, it is projected back into the feasible set X" (similar to the procedure of SP). In our experiments,

K was set at 3.
Step 8. If f(Znew) > f(Zrest) then set: Tpest ¢ Tnew-
Let A = f(fcurrent) - f(-'fnew)- If A S 07 set fcurrent <~ fnew-

Otherwise, that is, if A > 0, generate a random number @ from U(0,1). If 7 < exp(—A/v), set: Teurrent

-
xnew-
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3 COMPUTATIONAL RESULTS

Step 4. Steps 2 and 3 constitute an iteration of the algorithm. Repeat Steps 2 and 3 for [ iterations and then
reduce the temperature as follows: 1 < G(1), where G(¢) is a decreasing function of 9, e.g., ¥ + 1 — 10
or 1 < /2. Then increment P by 1. If P < Py, return to Step 2. Otherwise stop and return Zp.,; as the

solution.

The effect of simulation noise in evaluating the function cannot be ignored. This effect can be analyzed,
mathematically, via a result in Gosavi (2002). The result states that by selecting a sufficiently large number
of samples it is possible to ensure that the algorithm that uses noisy function values mimics the algorithm

that uses exact function values.

Theorem 2. With probability 1, the version of the SA algorithm that uses simulation-based estimates of

the function can be made to mimic the version that uses exact function values.

3 Computational Results

We begin this section with a description of the EMSR-b heuristic which is used in single-leg and also in
network problems. Thereafter, we present computational results with the single-leg and network problem.
In the single-leg problems, we use the Poisson distribution for modeling the arrival process. In the network
problems, we have used non-homogeneous Poisson processes to model the arrival of customers for booking.
We note that our simulation-based approach is independent of the nature of the arrival processes and that
these choices were dictated by the need to show that our approach works well with both homogeneous and
non-homogeneous Poisson processes. The discrete-event simulator for the single-leg case and the network

was coded in C using the approach outlined in Law and Kelton (1999) (see Chapter 2).

3.1 EMSR-b

We note that in our notation: V; < V5 < .-+ < V,,. Let Y; denote the random demand for the ith product
in the entire time horizon H. Then, Y; = Z;’:i Y; denotes the sum of the demands of all classes above i
and including i. Then, we define the aggregate revenue for the ith class to be the weighted mean revenue of
all classes above i and including i as follows: V; = Z?:i V;E[Y;]/ Z?:i E[Y;]. Then Littlewood’s equation of
EMSR-b can be given as: V; = Vi1 Pr (Yiq1 > Siy1) fori=1,2,...,n — 1, where S;, the protection level,
denotes the number of seats to protect for fare classes 7,7 + 1,...,n. There is no protection level for the

lowest class 1. Then, if C' denotes the capacity of the plane, the booking limit for the ith class is defined to
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3 COMPUTATIONAL RESULTS 3.2 Single-leg problems

be: BL; = max{C — S;11,0} for i = 1,2,...,n— 1. The booking limit for the highest class n is the capacity
of the plane. If the mean cancellation probability is known to be ¢, then cancellations can be accounted
for in Littlewood’s equation by replacing C in the above equation by C/(1 — q) as suggested in Belobaba
(1989). Here (1 — g) is the so-called correction factor. For solving Littlewood’s equation, one requires the

distribution of each random variable ¥;.

3.2 Single-leg problems

In Table 1, Pri(.) and Pro(.) denote two patterns for arrival probabilities, CP;(.) and CP»(.) denote two
patterns for cancellation probabilities, NP(.) denotes a pattern for no-show probabilities, V(.) denotes a

pattern used for the revenue per passenger (fare), and M (.) denotes the cancellation penalty per passenger.

Ci = 100 and C2 = 200 denote two patterns for the capacity of the plane, and A;(.) and A2(.) represent
two arrival patterns, where \;(I) denotes the Poisson rate of arrival in the lth time zone when the ith
pattern is used. The arrival rate in the vth class in the [th time zone is equal to Pr,,(v)\,(l), where
v e{l,2,...,10},m € {1,2}, and | € {1,2,3}. Also, the bumping cost is 700, while A\;(1) = 0.8, A1(2) =
1.0, \1(3) = 2, \a(1) = 1.5, \2(2) = 2.2, and A(3) = 3.5.

Table 1: Data for Pry(.), Pra(.), CPi(.), CPy(.), NP(.), V(.) and M (.); v denotes product.
v 1 2 3 4 5 6 7 8 9 10
019 017 015 013 011 0.09 0.0r 0.05 0.03 0.01
0.17 015 014 013 010 0.09 0.0r 0.06 0.06 0.04

(v) | 0.030 0.030 0.035 0.040 0.050 0.070 0.080 0.100 0.150 0.2
CP(v) | 0.050 0.060 0.065 0.080 0.10 0.125 0.15 0.2 0.25 0.2
NP(v) | 0.001 0.001 0.001 0.001 0.001 0.002 0.009 0.015 0.080 0.1
V(v) 100 180 200 240 280 300 330 350 380 400
M(v) 70 65 60 55 50 45 40 35 30 25

In Table 3, we present the 95% confidence intervals of the average revenue per flight obtained from simulating
the admission policies prescribed by each of the three methods: EMSR-b (van Ryzin and McGill, 2000)
(corrected with an overbooking factor), SA, and SP. For EMSR-b calculations, the mean of the arrival rates
of the Poisson processes in the three time zones is used as the mean arrival rate of a single Poisson process,
and the latter is approximated by the normal distribution to solve Littlewood’s equation. We do not find

any overlap with the results from EMSR-b, in any of the 8 systems studied, and this implies that EMSR-b
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Table 2: The patterns used for each system studied.

System Patterns

1 Pry,CP;,Ch, and A (.).
2 Pry,CPy,Ch, and Aq(.).
3 Pry,CP,,Ch, and Aq(.)-
4 Pry,CP,,Cy, and A (.).
5 Pry,CPy,Cy, and Ag(.).
6 Pry,CPy,Co, and Ag(.).
7 Pry,CPy,Cy, and Ay(.).
8 Pry,CP,,Cy, and Ay(.)

has been outperformed — at least in a statistical sense. In Table 3, the parameter I My for method M
denotes the percentage improvement of method M¢ over the heuristic (EMSR-b in this case), and is defined

as follows:

Ry — RupURISTIC

IMy = x 100, (4)

Rururistic

where Rj;; denotes the average revenue obtained from applying method Mt on the problem.

3.3 Network problems

For the network problem, we simulated the entire network in the same computer program. Then the simulator
was connected to an optimizer — also in the same computer program. The simulator for the entire network,
obviously, requires more time for function evaluation in comparison to that written for a single leg. However,
we found that optimization can be performed easily, even on small computers available in a university setting,
within 15 minutes for a network with 24 legs. With more powerful super-computers, optimization should
take an even smaller amount of time. To generate the best results in a given amount of time, we used
a sequential combination of SP and SA in the optimization process. SP was used first because it quickly
produced a good solution. The best solution produced by SP was used as a starting solution for SA. The
solution produced by a related linear program (LP), which we will describe below, was used as one of the

starting solutions for the SP.

We next describe the DAVN-EMSR-b approach in some detail. This will serve as a benchmark heuristic for

our simulation-optimization procedure.
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Table 3: Results obtained from EMSR-b, SP, and SA. IM is defined in (4). UL and LL denote the upper

and lower confidence interval limits, respectively, on the average revenue in dollars per flight using a 95%

confidence level.

System EMSR-b SP IMsp SA IMgx
(LL,UL) (LL,UL) % (LL,UL) %
1 (22140,22349) (22595,22899)  2.26  (22546,22806) 1.94
2 (23040,23326) (23899,24214)  3.77  (23737,23996)  2.95
3 (22768,22959) (23325,23611) 2.64  (23378,23625) 2.79
4 (21701,21870) (22209,22409) 2.40  (22158,22560)  2.63
5 (44629,44937) (45177,45643) 1.40  (45101,45521) 1.18
6 (46816,47142) (47529,48087) 1.76  (47502,47957)  1.60
7 (45691,46002) (46537,46896) 1.90  (46561,47031)  2.07
8 (42752,42992) (44324,44771) 3.91  (44142,44648) 3.55

DAVN-EMSR-b: Let E[Y;] denote the expected demand and V; the revenue for the jth product. Then

the following linear program is solved:

Maximize ZV}zj, such that 0 < z; <E[Y;], j=1,2...
j=1

(5)

’n7

and Y z <C', I=12,..,L,

JEA;

(6)

where A; denotes the set of fare classes that use leg I, and C! denotes the capacity of the plane on the /th
leg. The value of z; could be used as booking limit for product j, and will be used as the starting solution
for SA. But a more sophisticated approach that exploits EMSR-b on every leg from the dual prices of the
above LP can be employed. This approach is called DAVN-EMSR-b. The displacement adjusted revenue
(or virtual revenue) for the jth product that uses leg [, i.e., DARE;-, is computed using;:
DARE; =V; - ) Bi, where j € A;, i€{1,2,...,L}andl€{1,2,...,L},
il

and B; denotes the dual prices associated with the ith capacity constraint (6) in the linear program (5).
Then DARE;- is treated as the virtual revenue of the product j on leg [. If there are too many DARE values
in a given leg, similar DARE values are clustered (van Ryzin and Vulcano, 2003) to produce a manageable
number of aggregate classes. Now that the (virtual) revenue of each product on each leg is available,

EMSR-b can employed on each leg separately. For this, on every leg, products that are relevant have to be
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re-ordered according to their DARE values; the higher the DARE value, the higher the class. This leads to
the generation of separate booking limits for each product-leg combination. The booking limit for product j
on leg [ will be represented as BLé-. A customer requesting a given product is accepted only if the conditions
with respect to all the booking limits are satisfied, i.e., if at time ¢ in the booking horizon, ¢;(t) denotes
the number of seats sold for product j, then a product j is accepted if ¢;(t) < BLé- for every leg [ used by
product j. Otherwise that customer is rejected. It could happen that a customer meets the above condition

for one leg but not for some other leg; but if the conditions for all legs are not met, the customer is rejected.

We now describe a network of four cities (see Figure 1) that we used for computational purposes. The hub
will be denoted by A and the three other cities by X,Y, and Z. Some of the network data are supplied in
Tables 4, 5, and 6. Some other data are as follows: the arrival process, which is non-homogeneous Poisson,
is described by (a = 9,b = 0.03) per day, the booking horizon is 100 days long, the penalty of cancellation

to the customer is 80 dollars and the penalty to the airline for bumping a passenger is 500 dollars.

For the arrival pattern, we use a non-homogeneous Poisson process, whose intensity function for the time
horizon of length H is defined as a+bt, where t denotes the time. We assume concurrent arrivals of all classes
and products since this is the most general of assumptions. We must point out that since we use simulation,
any arrival distribution can be used just easily. The parameters a and b for the ith product equal Pr(i)a
and Pr(i)b, respectively, such that each product has its own independent non-homogeneous Poisson process
(Ross, 2003). For simulating the non-homogeneous process, we used the method described as “Method 1”

on page 59 of Kao (1997).

For EMSR-b calculations, the integrated intensity function of the non-homogeneous Poisson process, m(t),
was calculated so that one could use a Poisson approximation (see page 57 of Kao (1997)); the Poisson process
could be further approximated in a convenient fashion by the normal distribution to solve Littlewood’s
equation. For our function, the integrated intensity function turns out to be m(t) = at + 0.5bt> from which
the mean demand in the time horizon of length H becomes aH + 0.5bH?. This is used as the mean (and
also the variance) of an equivalent Poisson distribution, which, as stated above, can be approximated easily
(and accurately) by the normal distribution. For the simulation-optimization approach, the products are
ranked using DAVN values, i.e., by their net worth, which was calculated as W; =3 ;.. DAVN. %, where L;

denotes the set of legs needed for product j. The higher the value of W for a product, the higher its rank.

For the SP-SA combination, the booking limits derived from the LP are used as a starting solution. Fare
structures defined in Table 6 are used to define the five networks studied here. Table 7 shows the actual

revenues obtained from DAVN-EMSR-b and the SP-SA combination. As is clear, the SP-SA combination is
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clearly superior to DAVN-EMSR-b. We must add that in some cases, SA did not improve at all upon the
solution of SP, and hence the solution from the combination is essentially that of SP. In our experiments

with SP, we used w = 0.5 and p*™*! = 0.01.

Table 4: Description of various legs in the network.

Plane (leg) | Origin | Destination | Capacity
1 A X 100
2 X A 100
3 A Y 100
4 Y A 100
5 A Z 100
6 y/ A 100

4 Conclusions

This paper presented an integrated simulation-based approach that can be applied to solve a complex seat-
allocation problem in the airline industry. The model developed accommodated most real-life considerations,
including cancellations and overbooking, which are ignored in many models in the literature. Two efficient
optimization techniques were combined with the simulation model. Computational results showed that our
simulation-optimization approach can outperform both EMSR-b for single-leg problems and DAVN-EMSR-b
for network problems. The single-leg results are from the MS thesis of Ozkaya (2002). A further improvement
over this approach could be realized by simulating each leg on a separate processor in a parallel-processing
environment. Future research will be directed towards minimizing the run time by using parallelization

techniques.
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Table 5: The meanings of the symbols are as follows. Pr(i): Probability that an arriving passenger requests

the ith product, and C'P(i): Probability of cancellation for the ith product.

Product (i,7) | Itinerary | (Pr(i), Pr(j)) | (CP(i),CP(5))
(1,13) A= X (0.056,0.014) (0.025,0.3)
(2,14) XA (0.064,0.016) (0.025,0.3)
(3,15) AoY (0.048,0.012) (0.025,0.3)
(4,16) YA (0.056,0.014) (0.05,0.3)
(5,17) A7 (0.064,0.016) (0.05,0.3)
(6,18) 7 A (0.048,0.012) (0.075,0.3)
(7,19) X = YviaA | (0.08,0.020) (0.125,0.3)
(8,20) Y — X via A | (0.096,0.024) (0.2,0.3)
(9,21) X > Zvia A | (0.08,0.020) (0.2,0.3)
(10,22) 7 — X via A | (0.072,0.018) (0.225,0.3)
(11,23) Y 5 ZviaA | (0.08,0.02) (0.2,0.3)
(12,24) Z - YviaA | (0.056,0.014) (0.2,0.3)
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Table 6: The table enumerates a number of fare structures for the network problem. F'Sy denotes the kth

fare structure.

Product FS; FS, FS; FS, FSy
(1,7) (Vi, Vj) ViVs) | WV | (VW) | (Vi V5)
(1,13) (350,700) | (250,500) | (350,500) | (250,400) | (125,250)
(2,14) (375,750) | (275,550) | (375,525) | (275,425) | (175,350)
(3,15) (400,800) | (300,600) | (400,550) | (300,450) | (200,400)
(4,16) (430,860) | (330,660) | (430,585) | (330,480) | (230,460)
(5,17) (450,900) | (350,700) | (450,600) | (350,500) | (250,500)
(6,18) | (500,1000) | (400,800) | (500,650) | (400,550) | (300,600)
(7,19) | (600,1200) | (500,1000) | (600,750) | (500,650) | (350,700)
(8,20) | (610,1220) | (510,1020) | (610,760) | (510,660) | (375,750)
(9,21) | (620,1240) | (520,1040) | (620,770) | (520,670) | (380,760)
(10,22) | (630,1260) | (530,1060) | (630,780) | (530,680) | (390,780)
(11,23) | (640,1280) | (540,1080) | (640,790) | (540,690) | (395,790)
(12,24) | (650,1300) | (550,1100) | (650,800) | (550,700) | (400,800)

Table 7: Ry denotes the expected revenue in dollars per flight when method Mt is used

solution of (5), which forms an upper bound on the network revenues.

Fare Structure | Rpavn_gmsr—bs | Rsp—sa | IMsp_sa LP*
1 283739.03 299723.34 5.63 337136
2 227289.78 258984.27 13.94 268803
3 203190.75 229602.85 12.99 258269
4 168539.17 190217.56 12.86 208596
5 144905.63 156285.29 7.85 188706.5
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