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Abstract

Reinforcement Learning (RL) is an artificial intelligence technique used to solve
Markov and semi-Markov decision processes. Actor critics form a major class of
RL algorithms that suffer from a critical deficiency, which is that the values of
the so-called actor in these algorithms can become very large causing computer
overflow. In practice, hence, one has to artificially constrain these values, via
a projection, and at times further use temperature-reduction tuning parame-
ters in the popular Boltzmann action-selection schemes to make the algorithm
deliver acceptable results. This artificial bounding and temperature reduction,
however, do not allow for full exploration of the state space, which often leads
to sub-optimal solutions on large-scale problems. We propose a new actor-critic
algorithm in which (i) the actor’s values remain bounded without any projection
and (ii) no temperature-reduction tuning parameter is needed. The algorithm
also represents a significant improvement over a recent version in the literature,
where although the values remain bounded they usually become very large in
magnitude, necessitating the use of a temperature-reduction parameter. Our
new algorithm is tested on an important problem in an area of management sci-
ence known as airline revenue management, where the state-space is very large.
The algorithm delivers encouraging computational behavior, outperforming a
well-known industrial heuristic called EMSR-b on industrial data.

Keywords: reinforcement learning; actor critics; airline revenue management

1. Introduction

Reinforcement Learning or RL (see Bertsekas and Tsitsiklis [1], Sutton and
Barto [2], Gosavi [3] and Szepesvári [4]) is used to solve problems in which an
agent selects optimal actions in an unknown stochastic environment via repeated
trials and errors. In every trial, the agent gathers feedback from the environment
and uses the feedback to update its knowledge base. Typically, after a large
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number of trials and errors in its interactions, the agent learns to select an
optimal action in every state. The Markov Decision Process or Problem (MDP)
and the semi-MDP (SMDP) [1] have been extensively used as the underlying
models in the above-described RL domain. Essentially, in the MDP model,
the underlying system dynamics and behaviour are governed by Markov chains.
Further, in an MDP, the time taken in a one-step transition from any state to
any other is assumed to be the same. The SMDP is a more general model in
which this transition time is assumed to be a random variable whose distribution
is known.

In this paper, we study a class of RL algorithms known as actor critics. The
classical actor-critic algorithm [5] predates the more popular RL algorithm,
namely, Q-Learning, discovered by Watkins [6]. The classical actor-critic al-
gorithm, however, has the following critical deficiency: the values of one class
of iterates of the algorithm, called the actor’s values, become unbounded, i.e.,
become very large in magnitude. This causes the computer to overflow. One
approach to alleviate this difficulty is to use a mathematical projection that ar-
tificially bounds the actor values [7]. However, this artificial bounding curtails
the amount of exploration the algorithm can perform, leading to poor solutions
on large-scale problems at times. Kulkarni et al. [8] studied a version of this
projection-bounded actor-critic algorithm on a problem from airline revenue
management, but the best results from these algorithms were obtained from
employing numerous replications (re-runs of the simulations with new sets of
random numbers). In other words, at times, the algorithm did not explore suf-
ficiently [9]. To alleviate this difficulty, Gosavi [10] proposed a variant of the
classical algorithm in which the actor’s values were naturally bounded; how-
ever, experimentation with this algorithm also showed that the magnitude of
the actor’s values still often become quite large. When the magnitude of the
values becomes large, one needs to use a temperature-tuning parameter in the
Boltzmann action-selection strategy, which unfortunately adds a whole layer
to the computational exercise involved in the algorithm [11]. Also, different
temperatures lead to different depths of exploration, and hence one must then
search for a good temperature for the best exploration. Further, even with this
temperature tuning, the algorithm in Gosavi [10] may still explore insufficiently
on large-scale problems, leading the user to sub-optimal solutions. In other
words, overall, the artificial projection as well as the temperature-tuning make
it harder to use the algorithm in practice.
Contributions of this paper: In this paper, we present a new algorithm that
provides a significant improvement in its performance over that of the above-
described past work in the existing literature in the following ways: (i) the
actor’s values remain naturally bounded, thereby eliminating the need for any
artificial projection, and (ii) the actor’s values also remain small in magnitude,
thereby eliminating the need for any temperature tuning with the Boltzmann
action-selection. The algorithm is first tested on small-scale problems in this
paper to demonstrate both of these features. But, the true test of strength
for any RL algorithm is on large-scale problems, where unless the algorithm ex-
plores sufficiently, it cannot generate satisfactory performance. We hence tested
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our algorithm on a large-scale problem from airline revenue management with
real-world data, where it outperformed a well-known industrial heuristic called
EMSR-b [12]. We further note that while the λ-SMART algorithm [13] and
the projection-bounded actor-critic algorithm in [8] are other examples of RL
algorithms that have been applied to the airline revenue management problem
in the past, the λ-SMART algorithm is based on a finite trajectory, which may
not be applicable to all RL settings, and the projection-bounded actor-critic
algorithms of the past do not always return optimal solutions in practice.

The reader interested in exploring the connection of actor-critics to policy
gradients [14] is referred to an excellent review paper by Grondman et al. [15].
Actor-critics have also been studied via a control-theoretic viewpoint [16, 17,
18, 19]. Finally, RL algorithms based on Q-Learning [6] and SARSA [20] have
been used widely in industrial problems, ranging from preventive maintenance
[21, 22] to supply chain management [23, 24, 25] and robotics [26], but industrial-
scale applications of actor-critics are not as common as those of traditional
Q-Learning-based algorithms.

The rest of this article is organized as follows. Section 2 provides the back-
ground on the MDP and SMDP, as well as that of the airline revenue manage-
ment problem. Section 3 presents the new algorithm, as well as a review of the
past work. Section 4 discusses numerical results with using the algorithm. Con-
cluding remarks along with comments on future work are provided in Section
5.

2. Background

This section is divided into two parts: the first subsection is devoted to
presenting the mathematical framework underlying MDPs and SMDPs, as well
the motivation for using RL, while the second is devoted to a description of the
airline revenue management problem.

2.1. MDPs, SMDPs, and RL

As mentioned above, MDPs and SMDPs are useful in modeling interactions
in stochastic environments. In such models, in every state visited by the system,
a decision must be selected from a set of permitted actions in that state. The
objective considered in this paper is to maximize the so-called average reward,
i.e., the expected reward per unit time over an infinitely long time horizon;
in such an objective function, the assumption is that the system settles down
into a steady state after a long period of time. In MDPs, the time taken for
any transition from one state to another is the same for every transition and
is considered to be one unit. In an SMDP, the time of transition is any given
random variable, whose distribution is known, and the time is explicitly modeled
into the objective function. Since the MDP is a special case of the SMDP in
which the time of transition always equals one, we present details of the SMDP.
We first present some notation:

• S: the finite set of states in the system
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• A(i): the finite set of actions permitted in state i

• A: the union of all sets A(.), i.e., ∪i∈SA(i) ≡ A

• π(i): the action chosen in state i when policy π is pursued

• p(i, a, j): the probability associated with the transition from state i to j
under action a

• r(i, a, j): the one-step immediate reward of transition from state i to j
under action a

• t(i, a, j): the time spent in one transition from state i to j under action a

Also, note that: r̄(i, a) =
∑

j∈S p(i, a, j)r(i, a, j) will denote the expected
immediate reward in state i when action a is chosen in state i, while t̄(i, a) =∑

j∈S p(i, a, j)t(i, a, j) will denote the expected immediate transition time out
of state i when action a is chosen in state i.

We now define the so-called average reward for a policy π in an SMDP. Let
xs denote the state of the system before the sth transition of the system, where
it is important to note that in an infinite horizon problem, s will go from 1 to
infinity. Then, the following scalar, in which x1 = i, is called the average reward
of the policy π if the system starts its transitions from state i:

ρi(π) = lim
k→∞

E
[∑k

s=1 r(xs, π(xs), xs+1)|x1 = i
]

E
[∑k

s=1 t(xs, π(xs), xs+1)|x1 = i
] . (1)

It can be shown that when the policy π is regular [27], the average reward does
not depend on the starting state i and can hence be denoted as ρ(π), which
essentially means that the average reward is the same regardless of which state
the system starts at. In this paper, we will assume that all policies in our SMDP
are regular. The goal in solving the SMDP is then to identify the policy that
maximizes the average reward, i.e., identify a policy π∗, whose average reward
equals ρ∗:

Maximizeπ ρ(π) ≡ ρ∗.

In an MDP, which, as we stated above is a special case of the SMDP, the
transition time t(., ., .) = 1 for all instances of t(., ., .). The average reward for
the MDP can then be analogously obtained from Equation (1).

The average reward is necessary in the large-scale tests of our new algo-
rithm. However, in order to demonstrate key properties of the algorithm, such
as boundedness, we also used the so-called discounted-reward metric in tests
on small-scale problems. The discounted reward metric for MDPs is defined as
follows:

Θi(π) = lim
k→∞

E

[
k∑

s=1

λs−1r(xs, π(xs), xs+1)|x1 = i

]
, (2)
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where λ is the discount factor. The goal in this context is to identify a policy,
π∗, that maximizes Θi(.) for every value of i ∈ S.

A classical method for solving MDPs and SMDPs is dynamic programming
(DP) [28]. DP seeks to solve these problems using the so-called transition prob-
abilities (TPs) of the Markov chains underlying the system transitions; the TP
is the probability of transitioning from one state to another under a given action
and has been defined above in the notation. Because TPs are required in DP,
the latter tends to break down when the number of state-action pairs exceeds a
few thousands. This is because the TP model then becomes too large to store
in the computers. To be more specific, a system with N states and M actions
would yield a TP matrix (TPM) of size N ×N for each of the M actions. As a
result, when N is large, it is difficult to store and process all the elements of the
TPMs, and then the so-called curse of dimensionality sets in. This is typical
of large-scale problems in the real world. RL was invented to deal with the
curse of dimensionality; RL avoids the TPs, but requires either a simulator of
the real-world system or has to be implemented in the real-world system itself
to work. RL thus allows us to bypass the construction of the TPMs, thereby
avoiding the curses of dimensionality but still producing near-optimal solutions.

2.2. Airline Revenue Management

Deregulation in 1978 gave airlines in the U.S. the flexibility to determine
their own schedules, routes, and fares, as long as they followed the guidelines
formulated by the Federal Aviation Administration. The science of airline rev-
enue management started gaining attention from then onwards. More recently
with the progress of DP and simulation, the problem of airline revenue man-
agement has been studied via near-optimal or optimal techniques. The main
decision to be made in the context of revenue management is to decide whether
to accept or reject customers as they arrive, via a website [29], for the price
they are willing to pay. Essentially, the airline offers different fares for differing
privileges for a given origin-destination itinerary, and customers reserve tickets
accordingly. But as time passes and as seats at different fares are sold, the
airline must close down certain fares and open new fares—in order to maximize
their profits. This is the central theme underlying the dynamics of the airline
revenue management problem.

Durham [30] estimates that a reservation system may need to handle up
to five thousand potential bookings per second, which should highlight the im-
portance and scale of this problem. The customer in the main cabin of the
economy class is generally offered a set of several different fares for a given
origin-destination plan. Internally, for the airline, each fare is associated to a
fare class. Different fare classes do not imply that the seats are located in dif-
ferent sections of the plane; typically, all seats are available to all fare classes
within the cabin. Generally, the lower fare classes are among the first ones to
be closed down by the airline. This is because, in general, the lower fare classes
have the greatest demand and are hence sold first; however, it should be noted
that the higher fare classes may offer advantages, and hence some passengers
arriving early in the booking horizon may actually buy higher fares, even when
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lower fares are still available. Customers who choose to pay a higher fare, even
when lower ones are available, generally, receive better benefits such as a lower
cancellation penalty or the ability to board the flight sooner. In general though,
customers arriving earlier in the booking horizon are more likely to buy a lower-
priced ticket. Each airline typically updates its price offerings regularly based
on the time remaining until departure, preferences of the customer, and many
other factors. Prices have to be adjusted in a suitable manner in order for the
continued success of an airline company.

Mathematically, the problem of setting prices is really one of determining
the number of seats to be allocated to each fare class in a way that leads to
the maximum profits. If too many seats are allocated to the lower fare classes,
there would be few empty seats at the time of departure, but low profits would
also result at the same time. On the other hand, if too many seats are allocated
to the higher fare classes, one will end up with many empty seats at the time
of departure, which will also lead to diminished profits. Thus, airlines seek a
compromise between these two extreme scenarios to strike a balance.

Another aspect of this problem is the number of empty seats in the plane
when it takes off. Airline seats are a perishable commodity, meaning that as
soon as a flight departs, any empty seat signifies a loss of potential revenue.
Needless to add, airline companies strive to reduce the probability of empty
seats; of course, this is a world of cut-throat competition, and every opportunity
to make revenues is seized upon by competitors, making it essential for every
airline to ensure that it loses no opportunity to make revenues in a legal manner.
These cancellations and no shows are accounted for by overbooking a flight. This
implies that the airline company sells more seats than the total number of seats
available on the plane. If the number of passengers who show up exceeds the
capacity, the airline company must pay an overbooking penalty to the passengers
who could not get a seat (a compensation fee) and also find a new flight for them.

Taken together, for any given origin-destination, the demand for different
fares, the probability of cancellations, and overbooking make the airline rev-
enue management problem a challenging one in which it is necessary to get the
arithmetic right in terms of how many seats are sold at each fare, prior to flight
departure. This requires data collection on the actual demand for each fare,
the cancellation probabilities, the cancellation penalties, and the overbooking
penalties. When this data is available, one can either use a heuristic, or if the
problem has a small dimension, a more advanced DP technique. DP techniques
break down on large-scale problems encountered in industry; though heuristics
work on large-scale problems, they are always questionable in terms of how
close to optimality their solutions are. In this paper, we will use the SMDP
model underlying DP, but use an RL technique that can be employed on large-
scale problems for solution purposes. RL can generate near-optimal solutions
on MDPs/SMDPs when DP breaks down on them due to their large dimen-
sionality, making it impossible to compute the TPs underlying the respective
Markov chains. We will also show that the RL-based approach outperforms the
heuristic approach in our numerical experiments.

We now enumerate two assumptions made in our model. 1) We assume
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a binary choice to the customer: either the customer accepts the offer of the
current fare or rejects it. This assumption is justified by the nature of the data
we use for our simulation model, where the arrival process is assumed to be
Poisson and hence the arrival of each customer class is an independent Poisson
process (see Chapter 2 of [31]). See also Talluri and van Ryzin [32] for a model
in which this assumption is relaxed, but, their approach is not simulation-based;
rather used in conjunction with the heuristic EMSR-b. 2) The input data for
every leg in the network is known and can be used independently for each leg.
The decomposition of the network problem into independent legs is possible via
the Displacement Adjusted Virtual Revenue approach developed in the revenue
management community (see [12]) for networks. The decomposition allows the
airline to focus on the key legs that generate the most revenues and use the very
tractable single-leg approach in each of the legs studied. A network model that
considers multiple legs becomes too unwieldy and acquires a black-box nature
that practicing managers are not attracted to. Also, from a technical standpoint,
network problems become intractable for simulation-based settings and typically
require either multi-stage stochastic programming [33] or a recently developed
fluid model [34]. As such, the single-leg approach continues to be popular in the
airline industry, as indicated to us by industry practitioners in the 2016 Annual
Conference of the Institute of Operations Research and Management Science
(INFORMS) during our presentation.

SMDP model. Before presenting the SMDP model, i.e., the state and action
space, for the revenue management problem, we present additional notation
that is required:

• si: the number of seats sold in the ith fare class

• n: the number of fare classes

• c: class of the current customer

• t: the time remaining for the departure of the plane

• Λ: Poisson rate of arrival of all customers

The action space for this problem contains two actions, which are (Ac-
cept,Reject), and the state space is as follows: (c, t, s1, s2, . . . , sn, ψ1, ψ2, . . . , ψn),
where ψi is a vector of size si that contains the times of arrival (in the booking
horizon) of the passengers in the ith fare class. Clearly, the state space here is
too large. Even if the continuous component, t, is ignored, the size of the state
space equals several billion. Naturally, developing TPs for this model is also
ruled out, thus making this a suitable case study for an RL algorithm.

Even for RL, the state space cannot be used as is. After significant ex-
perimentation for the airline case study (the details of which can be found in
Section 4.2), it was found that keeping t and the vectors ψ did not improve
the results from the RL algorithm, and hence t and ψ were dropped from the
state space. Such approximation of state-space is common in the RL community
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[2]. The following function from [35] was used to reduce its dimensionality to a
manageable number:

ϕ =

∑n
i=1(fi × si)

θ
,

where fi is the fare for the ith class and θ is a hand-coded, but user-defined,
scaling value used in the encoding needed to produce an aggregation of the
state space. The value of θ must be determined through experimentation (trial
and error) for each case of input parameters, and its value will hence be case
dependent. We further note that ϕ is often referred to as a feature in the
literature [1]. The equation above actually produces a continuous state space,
which can be problematic; but by rounding the value of the right-hand side of
the equation down to the nearest integer, we have a discrete integer value for ϕ
and thus a suitable feature space that can be used in our experimentation. As
a result of the above transformation, the altered state (feature) space can now
be defined in discrete terms as (c, ϕ).

EMSR-b. A widely used heuristic in the airline industry for solving the single-
leg version of the problem is called EMSR-b [12]. We will use this heuristic
to benchmark the computational results from using our RL algorithm on the
airline case study. We now present details of how the heuristic works.

As noted above, we will use fi to denote the fare in dollars for the ith
class, where f1 < f2 < f3 < · · · < fn, and Yi to denote the demand (i.e.,
projected number of customers) in the ith class. The heuristic first computes
two quantities based on the fares and the projected demands: (i) the so-called
aggregate demand, Ŷi, for the ith fare class and (ii) the so-called aggregate
revenue, f i, for the ith fare class. For i = 1, 2, . . . , n,

Ŷi =

n∑
j=i

Yj .

Thus, Ŷi denotes the sum of the demands for the ith fare class and that for all
classes with fares exceeding fi. Also, for i = 1, 2, . . . , n,

f i =

∑n
j=i fjE[Yj ]∑n
j=i E[Yj ]

.

Next, the heuristic solves the following equation, also called Littlewood’s
equation [36]: For i = 1, 2, . . . , n− 1,

fi = f i+1Pr[Ŷi+1 > Pi+1],

where Pi+1 is the so-called protection level for the ith class and is one of the
(n−1) unknown variables, whose value needs to be determined from solving the
equation above; the protection level is the number of seats to be protected for
a given class from the lower fare classes. Thus, Pi is the number of seats to be
protected for class (i−1) from classes i, i+1, . . . , n. There is no protection level
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for class 1, as it is the lowest fare class from which no protection is needed. For
solving the Littlewood’s equation, one needs the distribution of each of the ran-
dom variables, Y i, for all values of i; these distributions can be determined from
the input data available to airlines, and oftentimes, the underlying distribution
is normal, which can be approximated by the Poisson distribution, which allows
us to use the exponential distribution for the time between successive arrivals.

Finally, in the last step of the heuristic, the booking limit for the ith class
is calculated as follows: BLn = C and for i = 1, 2, . . . , n− 1,

BLi = max{C − Pi+1, 0},

where C denotes the capacity of the plane. The tangible meaning of the booking
limit in the airline reservation system is that if there are BLi seats booked in
class i already, no further customers are allowed in that class. If overbooking
is considered, one heuristically replaces C in the above by C/(1 + cp), where
cp denotes the average cancellation probability over all fare classes, in order
to accommodate for an artificially increased capacity only during the booking
process.

3. New Algorithm

In this section, we first present the background theory of actor critics, along
with mathematical reasons for difficulties encountered with the algorithm in
the literature, and finally propose a new algorithm: first a discounted-reward
version and then the average-reward version; the latter is suitable for the air-
line case study. This section is organized as follows. Subsection 3.1 discusses
the background material focussing on the classical actor critic. Subsection 3.2
presents the discounted-reward version on the MDP model. Subsection 3.3 is
devoted to presenting a step-by-step description of the new algorithm on the
average-reward SMDP.

3.1. Classical Actor Critics

The key underlying problem in the RL setting is to discover the optimal
action in each state. The so-called policy is a collection of actions for each state.
The optimal policy is hence one that delivers the best value for the performance
metric. In the actor-critic setting, an actor is the agent that selects a policy
and a critic is the other agent that computes the so-called value function of
dynamic programming [28] for each policy. As a result of its interactions with
the environment, both the actor and the critic update their iterates on the
basis of feedback produced by the environment. We now provide mathematical
notation needed for the actor-critic algorithm.

• P (i, a): The value of the actor’s iterate associated to state i and action a

• V (i): The value of the critic’s iterate for state i; equivalently the current
value function of state i
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• q(i, a): The probability with which the algorithm selects action a in state
i

• η: A tunable contraction factor, set in the range (0, 1), close to 1

• λ: The discount factor in discounted-reward MDPs

• α: The learning rate or step-size for the actor

• β: The learning rate or step-size for the critic

• γ: The learning rate or step-size for the average reward

Steps in Projection-Bounded Actor-Critic Algorithm for Discounted-
Reward MDPs:

The main steps in the discounted-reward traditional actor-critic MDP algo-
rithm that uses the projection to bound its actor’s values are as follows.

• Inputs: Initialize all actor, P (., .), and critic, V (.), values to zero. Let P

be a large positive number, such that eP can be stored in the computer
without overflow. Set k, the number of iterations, to 0. Let kmax denote
the maximum number of iterations for which the algorithm is run.

• Loop until k = kmax

– Let i be the current state. Select action a with probability of

q(i, a) =
eP (i,a)∑

b∈A(i) e
P (i,b)

.

The above is called Boltzmann action selection. Simulate action a,
and let the next state be j. Let r(i, a, j) be the immediate reward in
the state transition.

– Actor’s update:

P (i, a)← P (i, a) + α [r(i, a, j) + λV (j)− V (i)] . (3)

– Projection: If P (i, a) > P , set P (i, a) = P . If P (i, a) < −P , set
P (i, a) = −P .

– Critic’s update:

V (i)← (1− β)V (i) + β [r(i, a, j) + λV (j)] . (4)

– Set k ← k + 1. If k = kmax, exit loop; otherwise, set i ← j and
continue within loop.

• Outputs: The policy, d, delivered by the algorithm is computed as follows.
The action d(i) in state i is: argmaxb∈A(i) P (i, b).
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As discussed above, the artificial bound does not allow proper exploration.
One heuristic way to use a large value for P and still compute the exponential
term is to use a so-called temperature, U , where U ∈ (0, 1), in the Boltzmann
action-selection, modifying it to the following:

q(i, a) =
eP (i,a)×U∑

b∈A(i) e
P (i,b)×U

.

As a result of the above, since U is positive but much smaller than 1, the
product P (i, a)× U becomes small, even if P (, ., ) is large, thereby allowing us
to compute eP (i,a)×U . Unfortunately, there are three difficulties associated with
this: (i) technically the convergence proof requires that U is equal to 1, (ii) this
heuristic approach still limits the exploration, and (iii) using the temperature
does not resolve the problem of computer overflow with the value of the actor
itself, i.e., when P (, ., ) itself becomes too large to be stored in the computer.

3.2. Bounded Actor-Critic for Discounted-Reward MDPs

The algorithm in Gosavi [10] that we now present in brief seeks to allevi-
ate the above-mentioned difficulties; the aim is to produce boundedness in the
actor’s iterates without any projection—by using a convex combination in its
update. The algorithm’s steps would be the same as shown for the projection-
bounded algorithm with the following exceptions. Of course, the projection step
would be eliminated and the update in Equation (3) would be replaced by:

P (i, a)← (1− α)P (i, a) + α [r(i, a, j) + λV (j)] . (5)

Note that a key difference between the update above and that in the projection-
bounded algorithm is that we multiply the first P (i, a) term on the right hand
side by (1 − α), which makes the update a convex combination. Of course,
one still needs to prove mathematically that the iterates will remain bounded
with the update defined in (5); see [10] for a mathematical proof. The other
difference with the update in Equation (3) is that the term within the square
brackets in the right-hand side of Equation (5) does not contain the subtracted
term V (i).

As discussed in the introductory section, despite the mathematical bound,
unfortunately, the values of the actor using the update in Equation (5) still
become quite large in magnitude in practice, which poses problems for the ex-
ploration. We will demonstrate this issue numerically in Section 4.

We now propose a different refinement of the projection-bounded algorithm
in which we do not erase the subtracted term V (i) from the original algorithm,
while simultaneously using the notion of convex combination. This algorithm
and its extension to the average-reward SMDP, discussed in the next subsection,
are the main contributions of this paper. The main update for the actor in the
new algorithm for the discounted-reward MDP, which will henceforth be referred
to as Algorithm 1, would be:

P (i, a)← (1− α)P (i, a) + α [r(i, a, j) + λV (j)− V (i)] . (6)
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This algorithm should follow all the steps shown for the projection-bounded
algorithm with two exceptions: (i) the projection step should be skipped and
(ii) Equation (6) should replace Equation (3). Our new algorithm is shown
to have the following nice properties: (i) boundedness, (ii) the actor’s iterates,
i.e., the P (., .) terms, end up with values that have a small magnitude, and
(iii) as a result of the previous behaviours, the algorithm can explore fully. We
will prove mathematically the first property, i.e., the boundedness of the actor’s
and critic’s iterates, in the Appendix (A1). The other two properties will be
demonstrated in the section on numerical results.

3.3. Bounded Actor-Critic for Average-Reward SMDPs

For the average reward SMDP, the algorithm needs an additional update for
computing the average reward. Further, the Bellman equation is different, and
we present the main result associated to it.

Theorem 1. For an average-reward SMDP in which all Markov chains are
regular, there exists a vector V ≡ {V (1), V (2), . . . , V (|S|)} and a scalar ρ that
solve the following system of equations:

V (i) = max
a∈A(i)

r̄(i, a)− ρt̄(i, a) + |S|∑
j=1

p(i, a, j)V (j)

 for all i ∈ S. (7)

Further ρ equals ρ∗, the optimal average reward of the SMDP.

Equation (7) is the so-called Bellman optimality equation for SMDPs. The
above result leads us to the optimal solution of the average reward SMDP, since
it implies that if one can find a solution to the vector V and the scalar ρ∗, then
the following policy d is optimal, where

d(i) ∈ argmax
a∈A(i)

r̄(i, a)− ρ∗t̄(i, a) + |S|∑
j=1

p(i, a, j)V (j)

 for all i ∈ S.

In order to use the equation in our RL framework, we will need a slight
modification of the above equation, which is as follows:

V (i) = max
a∈A(i)

r̄(i, a)− ρ∗t̄(i, a) + η

|S|∑
j=1

p(i, a, j)V (j)

 , (8)

where η ∈ (0, 1) is a constant. The uniqueness of the solution of the above
equation follows directly from the theory of discounted reward MDPs [28]. The
use of η, it has been observed empirically, makes actor-critic algorithms behave
better in practice [8], i.e., makes it easier to approach the optimal solution, and
just as importantly also ensures that the values of the actor remain bounded; (we
will present a mathematical proof of boundedness in the Appendix (A2).) Our
algorithm will hence use the above equation, Equation (8), as its foundation.
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As η tends to 1, the above equation tends to the Bellman equation for SMDPs,
i.e., Equation (7). In practice, if the value of η is set close to 1, Equation
(8) behaves just like (resembles) the Bellman optimality equation for SMDPs.
Forcing a unique solution for the average reward Bellman equation is an idea that
we have borrowed from the literature: this idea has been used in the context of
policy gradients [14] to obtain superior algorithmic behavior. Further, past work
in RL for average reward SMDPs has also used this concept [37, 8]. Because
of the use of η in Equation (8), the equation is mathematically identical to the
Bellman optimality equation of a discounted reward MDP, which is known to
be a contraction map and to consequently carry a unique solution (see Prop.
1.4.1 in Vol II of [28]). This related discounted reward MDP would have an
average immediate reward function defined as w(i, a) = r̄(i, a)− ρ∗t̄(i, a) for all
(i, a) and a discount factor λ that equals η.

The main steps in the new algorithm, which will henceforth be called Algo-
rithm 2, are as follows.

Steps in the New Actor-Critic Algorithm for Average-Reward SMDPs:

• Inputs: Initialize all actor, P (., .), and critic, V (.), values to zero. Set k,
the number of iterations, to 0. Set the scalars, R, T , and ρ, to zero. Set η
to a positive value very close to 1 but strictly less than 1. Let kmax denote
the maximum number of iterations for which the algorithm is run.

• Loop until k = kmax

– Let i be the current state. Select action a with probability of

q(i, a) =
eP (i,a)∑

b∈A(i) e
P (i,b)

. (9)

Let j be the next state. Let r(i, a, j) denote the immediate reward
in the state transition and t(i, a, j) denote the time taken in the
transition.

– Actor’s update:

P (i, a)← (1− α)P (i, a) + α [r(i, a, j)− ρt(i, a, j) + ηV (j)− V (i)] .
(10)

– Critic’s update:

V (i)← (1− β)V (i) + β [r(i, a, j)− ρt(i, a, j) + ηV (j)] . (11)

– Average Reward update: Update R, T , and ρ as follows:

R← R+r(i, a, j); T ← T +t(i, a, j); ρ = (1−γ)ρ+γ[R/T ]. (12)

– Set k ← k + 1. If k = kmax, exit loop; otherwise, set i ← j and
continue within loop.
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• Outputs: The policy, d, delivered by the algorithm is computed as follows.
The action d(i) in state i is: argmaxb∈A(i) P (i, b).

We note that the Boltzmann action-selection scheme employed above and shown
via Equation (9) does not require the temperature, U , and, as will be shown
later in the next section, works effectively in the algorithm; in other words, no
temperature reduction is needed, nor is any artificial bounding required in our
algorithm.

4. Numerical Results

This section is divided into two subsections. The first subsection is devoted
to results on small MDPs to demonstrate important properties of our new al-
gorithm, while the second provides results via the airline case study.

4.1. Small MDPs

Algorithm 1, i.e., the new bounded actor-critic algorithm whose actor update
is defined in Equation (6), was run for 4 different discounted reward MDPs
consisting of two states each and two actions allowed in each state. Cases have
been taken from [10]. The data for each case is as follows, where TPMa denotes
the TPM for action a and TRMa denotes the TRM for action a. Note that the
element in the ith row and jth column of TPMa equals p(i, a, j). Similarly, the
element in the ith row and jth column of TRMa equals r(i, a, j).
Case 1:

TPM1 =

[
0.7 0.3
0.4 0.6

]
;TPM2 =

[
0.9 0.1
0.2 0.8

]
;

TRM1 =

[
6 −5
7 12

]
;TRM2 =

[
10 17
−14 13

]
.

For the remaining cases, only those inputs where the problem differs from Case
1 are listed. Case 2: r(1, 1, 2) = 5; r(2, 2, 1) = 14; Case 3: r(1, 2, 1) = 12;
Case 4: r(1, 1, 1) = 16. Also, λ = 0.8 for all cases.

The algorithm was run for a maximum of 10,000 iterations with the following
learning rates: α = (log(k + 1))/(k + 1), β = 150/(300 + k). The optimal
policy for each case was obtained using Q-value iteration [3] and is denoted as
< a1, a2 >, where a1 denotes the optimal action in state 1 and a2 denotes the
optimal action in state 2. Table 1 shows the optimal policy, d∗, and the optimal
value function, V ∗(.)—both obtained from value iteration. The table also shows
the value function, V (.), obtained from the actor-critic algorithm for discounted
reward MDPs, where the actor-update defined in Equation (6) is employed. It
can easily be seen that the value functions produced by the actor-critic are very
close to the optimal values produced from value iteration.

Table 2 shows the actor’s values from the actor-critic with the update in
Equation (6), as well as the policy produced by the algorithm, d; this policy can
be derived by examining the actor’s values and finding the action that produces
the largest values for each state. For example, in Case 1, P (1, 1) = −8.389 and
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P (1, 2) = −0.004 implying that action 2 is better in state 1 because P (1, 2) >
P (1, 1). Similarly, in state 2, P (2, 1) = −0.020 > P (2, 2) = −3.497 meaning
that action 1 is better in state 2, which produces a policy of < 2, 1 >; this
matches the optimal policy produced from value iteration (See Table 1). Thus,
it is clear from the table that the actor-critic algorithm produces the optimal
policy in all 4 cases. Very importantly, the actor’s values, P (i, a), are of a
significantly small magnitude in all cases.

In contrast, to the small magnitude actor’s values produced above, see Table
3 for results from using on the same cases where the actor’s update followed
Equation (5), which is from [10]; the table also shows the policy generated by
the algorithm, which matches with the optimal one in each case. What is more
interesting is that the actor’s values in Table 3 have significantly larger absolute
values than those in Table 2, which are from the proposed new algorithm;
the maximum absolute value for the actor in Table 2 is 10.73, while minimum
absolute value in Table 3 for the actor is 38.17. It is interesting to note that
though this algorithm, based on Equation (5), also generated the optimal policy,
our simulations showed that a large magnitude of the actor’s values did not
permit the thorough exploration of the state space that was observed with the
previous algorithm (Algorithm 1).

Table 1: Value function obtained from actor critic and from DP, as well as the optimal policy

Case d∗ V (1) V (2) V ∗(1) V ∗(2)

1 < 2, 1 > 52.93 51.67 53.03 51.86
2 < 2, 2 > 55.38 61.16 55.77 61.45
3 < 2, 1 > 60.80 56.59 60.83 56.66
4 < 1, 1 > 49.90 49.35 48.97 49.36

Table 2: The actor’s values using actor update in Equation (6) and the resulting policy

Case d P (1, 1) P (1, 2) P (2, 1) P (2, 2)

1 < 2, 1 > −8.389 −0.004 −0.020 −3.497
2 < 2, 2, > −3.887 −0.029 −2.045 −0.036
3 < 2, 1 > −10.730 −0.001 −0.001 −3.552
4 < 1, 1 > 0.070 −7.744 0.022 −1.605

4.2. Airline Revenue Management

We now present numerical results from an elaborate experimentation on a
large-scale airline system, using the average reward SMDP actor-critic algo-
rithm, i.e., Algorithm 2, proposed in this paper. Much of this data employed
here is from an airline industry, but it has been masked and slightly modified
without changing the basic structure to avoid identification.
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Table 3: Actor’s values from the actor update in Equation (5) and the resulting policy

Case d P (1, 1) P (1, 2) P (2, 1) P (2, 2)

1 < 2, 1 > 43.95 53.00 52.07 39.48
2 < 2, 2 > 50.11 55.81 48.40 61.71
3 < 2, 1 > 49.32 60.81 56.70 43.08
4 < 1, 1 > 48.87 38.17 49.03 38.75

Input Parameters: The fare structure for each case is given by

FS = (f1, f2, f3, . . . , fn, b),

where fi is the fare of the ith fare class and b is the bumping cost. As stated
before, a lower value of i stands for a lower revenue fare class. Two sets of
systems (cases) were created for the experimentation: systems with four fare
classes and systems with six fare classes. Part of this dataset was obtained
from a real airline company, where it was made available at the 2017 INFORMS
conference, but the dataset was masked to hide the identity of the airline, i.e.,
some numbers were modified without altering the basic structure of the dataset.
In every case, the booking horizon was assumed to be 100 days long, and, for
the arrivals, a homogeneous Poisson process with a rate of Λ = 1.4 passengers
per day was used; the plane was assumed to have a total capacity of 100 seats.
The Poisson process for each fare class will hence be an independent process,
whose rate should be equal to ΛPr(i), where Pr(i) denotes the probability that
the arrival belongs to the ith class. The so-called cancellation probability for
each fare class is essentially the probability with which a traveler in that given
fare class cancels the ticket. When a cancelation occurs, it is scheduled using
a uniform distribution between the time of arrival and the time of flight de-
parture. Tables 4 and 5 provide much of the data for input parameters needed
in our experimentation. Finally, the tuning parameters of the algorithm were
determined as follows. The value of θ in the algorithm update had to be de-
termined separately for each individual case, based on careful experimentation,
to produce the best possible policy, and these values are presented in the table
that shows the outputs from our experimentation. A value of 0.999999 was used
for η in the actor-critic algorithm, which was also determined after suitable ex-
perimentation. After significant experimentation, the following step-sizes were
found to be most suitable for the three updates in the algorithm:

α =
15000

300000 + k
; β =

10000

300000 + 3k
; γ =

10000

300000 + 10k
.

Experimentation and Algorithm Performance: The performance for both
the actor-critic algorithm and EMSR-b was measured in terms of the average
reward, ρ, whose unit is dollars per day. The algorithm was tested on ten
cases for each of the four-fare systems and for each of the six-fare systems.
Booking limits were first computed from the EMSR-b heuristic, via a MATLAB
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Table 4: Input parameters for the 4- and 6-fare systems

Case Fares (4-Fare System) Fares (6-Fare System)
1 75, 200, 400, 550 101, 127, 153, 179, 293, 419
2 80, 200, 400, 500 94, 112, 142, 160, 271, 395
3 75, 150, 300, 550 111, 131, 153, 185, 293, 426
4 80, 150, 400, 550 127, 143, 167, 199, 320, 462
5 70, 150, 350, 550 105, 135, 143, 179, 284, 411
6 125, 180, 225, 400 90, 105, 139, 156, 261, 388
7 100, 175, 250, 400 108, 127, 155, 191, 295, 431
8 100, 150, 200, 450 76, 98, 123, 162, 247, 400
9 119, 139, 239, 430 87, 115, 162, 185, 278, 410
10 145, 209, 280, 350 115, 134, 165, 184, 302, 430

Table 5: Other input parameters: Canc. denotes cancellation and Pen. denotes penalty

Parameter 4-Fare systems 6-Fare Systems
Arrival Probabilities 0.6, 0.25, 0.09, 0.06 0.3, 0.3, 0.13, 0.13, 0.09

0.06
Canc. Probabilities 0.1, 0.2, 0.2, 0.4 0.1, 0.1, 0.1, 0.2, 0.2, 0.4
Canc. Pen. (Cases 1:5) 70, 50, 30, 10 70, 50, 50, 30, 10, 0
Canc. Pen. (Cases 6:10) 100, 90, 60, 40 70, 50, 50, 30, 10, 0
Bumping Pen. 200 250
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program. These limits were then used within the system simulator, again with 8
replications for each case, to evaluate the performance of the EMSR-b heuristic;
the average value of average reward from these replications was denoted by
ρEMSR−b. Tables 6 and 7 provide the EMSR-b booking limits returned for
the 4-fare and 6-fare systems, respectively, where BL(i) represents the booking
limit of the ith fare class. Results of using the actor-critic algorithm, as well
as EMSR-b, for the 4-fare systems and 6-fare systems, are shown in Tables 8
and 9 respectively. The learning phase of the actor-critic algorithm was run for
approximately 1000 flights and took at most 130 seconds on a 64-bit, 2.5 GHz
windows operating system in MATLAB. The learning phase helped determine
the policy generated by the algorithm. Then the simulator was re-run with the
fixed policy (also called frozen policy) for 8 replications with 200 flights per
replication; the resulting average reward was shown as ρActor−Critic in Tables 8
and 9. Numerical improvement of the actor-critic algorithm over EMSR-b was
defined as:

IMP =
ρActor−Critic − ρEMSR−b

ρEMSR−b
× 100%.

This improvement was also shown in Tables 8 and 9. As can be seen from the
tables, the actor-critic algorithm outperforms EMSR-b; a t-test was performed
to determine if the results delivered from the actor critic differ from those of
EMSR-b with 95% confidence in a statistical sense, and, in every case, a statis-
tical difference was shown to exist. The improvement has ranged from 1.35%
to 4.36%. It is to be noted that EMSR-b is widely used in the industry, where
even a 1% improvement can lead to increased profits of millions of dollars in a
single year. Figures 1:4 show the plots and the nature of the learning that oc-
curs in some sample cases; each “iteration” shown on the x-axis of these figures
actually equals 1000 iterations of the algorithm. Note that these figures display
the so-called learning curves of reinforcement learning. Each learning curve can
be unique, where the algorithm learns with trial and error. It is not uncommon
for the algorithm to learn a policy that produces high rewards in the short run
and yet dip to a lower reward after some time, but recover later to a better
policy; Figure 2, which is for Case 7 of the 4-fare systems, shows such behavior.
However, in the other three cases (see Figures 1, 3, and 4), the algorithm shows
gradually improving or stable behavior in the limit.

5. Conclusion

While the actor-critic algorithm predates the more popular Q-Learning al-
gorithm, one drawback of the actor critic that has perhaps prevented its ap-
plications in large-scale problems is the unboundedness of the actor’s values.
There are two significant difficulties associated to the unboundedness: (i) the
values can become too large in magnitude causing a computer overflow and (ii)
the large values usually cause insufficient exploration of the state space when
used in conjunction with the popular Boltzmann action-selection scheme. Two
mechanisms suggested in the literature to circumvent these difficulties are: (i) an
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Table 6: EMSE-b booking limits for the 4-fare systems.

Case BL(1) BL(2) BL(3) BL(4)
1 68 107 122 129
2 69 108 123 129
3 68 107 122 129
4 69 106 122 129
5 69 106 122 129
6 74 109 121 129
7 72 109 122 129
8 73 108 120 129
9 75 107 121 129
10 75 110 123 129

Table 7: EMSR-b booking limits for the 6-fare systems.

Case BL(1) BL(2) BL(3) BL(4) BL(5) BL(6)
1 25 67 86 103 116 122
2 26 67 86 103 116 122
3 26 68 86 103 116 122
4 27 68 86 103 116 122
5 26 68 85 103 116 122
6 26 66 86 103 116 122
7 26 67 86 103 116 122
8 24 66 85 103 116 122
9 24 66 86 103 116 122
10 27 67 86 103 117 122

Table 8: Outputs with the actor critic and EMSR-b on the 4-fare systems.

Case ρEMSR−b ρActor−Critic θ IMP (%)
1 163.79 ± 0.515 168.01 ± 1.454 1400 2.58
2 163.53 ± 0.365 167.52 ± 0.895 1200 2.44
3 138.56 ± 0.241 141.81 ± 1.195 1500 2.35
4 152.06 ± 0.417 157.83 ± 0.958 1900 3.8
5 140.24 ± 0.350 146.33 ± 0.438 1500 4.34
6 170.18 ± 0.403 173.81 ± 0.530 1800 2.13
7 154.68 ± 0.427 161.42 ± 0.489 1500 4.36
8 144.55 ± 0.651 149.20 ± 0.447 1000 3.22
9 157.01 ± 0.446 162.24 ± 0.253 1100 3.34
10 195.25 ± 0.421 199.16 ± 0.365 1700 2
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Table 9: Outputs with the actor critic and EMSR-b on the 6-fare systems.

Case ρEMSR−b ρActor−Critic θ IMP (%)
1 156.86 ± 0.260 160.28 ± 0.716 1200 2.18
2 141.16 ± 0.362 144.03 ± 0.692 1800 2.03
3 161.08 ± 0.360 164.68 ± 0.751 1600 2.23
4 177.89 ± 0.324 181.01 ± 0.665 1200 1.75
5 157.09 ± 0.231 161.06 ± 0.335 1000 2.53
6 135.55 ± 0.350 140.50 ± 0.514 1400 3.65
7 160.84 ± 0.295 163.01 ± 0.412 1600 1.35
8 128.02 ± 0.438 130.63 ± 0.395 1300 2.04
9 150.41 ± 0.426 152.84 ± 0.832 1800 1.62
10 166.01 ± 0.394 170.11 ± 0.585 1200 2.47
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Figure 1: The figure shows the run-time behavior of the algorithm for Case 1 of 4-fare systems.
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Figure 2: The figure shows the run-time behavior of the algorithm for Case 7 of 4-fare systems.
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Figure 3: The figure shows the run-time behavior of the algorithm for Case 2 of 6-fare systems.
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Figure 4: The figure shows the run-time behavior of the algorithm for Case 8 of 6-fare systems.

awkward projection that forces the values to be bounded and (ii) a temperature-
reduction scheme; unfortunately, both of these mechanisms can still lead to poor
solutions due to the insufficient exploration that they deliver. A key contribu-
tion of this paper was to develop a new update in which the actor’s iterates were
not only bounded, but also remained small in magnitude without any artificial
projection or temperature reduction; further it should be noted that this led to
a superior exploration of the state space.

We developed two algorithms for two different performance metrics: one
for the discounted reward MDP and the second for the average reward SMDP.
Both performance metrics are of interest in industry; the first is used widely
in computer science, while the second is more popular in management science.
Numerical tests were performed with both algorithms: the discounted reward
MDP algorithm was tested on small instances, where the optimal policy was
known, while the average reward SMDP was tested on a large-scale test-bed
from the domain of airline revenue management with industrial data. In both
types of tests, the algorithm showed encouraging empirical behavior, generat-
ing the optimal solution on the small MDPs in the discounted reward case and
outperforming a well-known industrial heuristic in the large-scale tests with the
average reward SMDPs. We also proved boundedness of the iterates mathemati-
cally for both algorithms, but a full-blown convergence analysis of the algorithms
is beyond the scope of this paper. In future work, we will pursue such a con-
vergence analysis for both algorithms developed here and develop an extension
of the first algorithm to discounted reward SMDPs. We also seek to develop
model-based reinforcement learning actor-critics (see [9] for an earlier attempt),
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which have the potential to be more robust than their model-free counterparts
[38]. An additional future direction would be to test these algorithms on con-
junction with deep learning architectures that are currently gaining significant
interest in the field of artificial intelligence.
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APPENDIX

A1. Algorithm for Discounted Reward MDPs (Algorithm 1): we now analyze
the boundedness of the iterates in Algorithm 1. The main idea underlying
the proof follows from [10], but since the algorithm here is actually different,
we present the complete proof. We first show that the critic’s values remain
bounded. The boundedness of the actor’s values can then be shown from the
boundedness of the critic’s value.

Let V k denote the vector of values computed by the critic and P k denote
the same by the actor in the kth iteration. Technically, P (., .) is a matrix, but
we can map it into a one-dimensional vector.

Theorem 2. The sequence {V k, P k}∞k=1 in Algorithm 1 remains bounded.

Proof The proof will be presented through two lemmas. The first lemma will
prove that the vector of iterates V k remain bounded, and it will be needed to
prove the second lemma, which will show that the vector of iterates P k will also
remain bounded.

Lemma 1. The sequence {V k}∞k=1 in Algorithm 1 remains bounded.

Proof We claim that for every state i:

|V k(i)| ≤M(1 + λ+ λ2 + · · ·+ λk), (13)

in which M is a positive finite number defined as follows:

M = max

{
rmax,max

i∈S
|V 1(i)|

}
, (14)

where rmax = max
i,j∈S,a∈A(i)

|r(i, a, j)|. (15)
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Since r(., ., ) is bounded, rmax must be bounded. Since we start with finite
values for V , then M too must be bounded. Then, from the above claim (13),
boundedness follows since if k →∞,

lim sup
k→∞

|V k(i)| ≤M 1

1− λ

for all i ∈ S, since 0 ≤ λ < 1. We now prove our claim in (13) via induction.
The V -value of only one state is updated in a given iteration in asynchronous

updating, while the other V -values remain un-updated. Hence, in the kth iter-
ation of the asynchronous algorithm, the update for V k(i) is either according
to Case 1 or Case 2.
Case 1: The state is updated in the kth iteration: V k+1(i) = (1 − β)V k(i) +
β
[
r(i, a, j) + λV k(j)

]
.

Case 2: The state is not updated in the kth iteration: V k+1(i) = V k(i).
Now, if the update is carried out as in Case 1:

|V 2(i)| ≤ (1− β)|V 1(i)|+ β|r(i, a, j) + λV 1(j)|
≤ (1− β)M + βM + βλM (from (15) and (14))

≤ (1− β)M + βM + λM =M(1 + λ) (since β ≤ 1)

Now, if the update is carried out as in Case 2: |V 2(i)| = |V 1(i)| ≤ M ≤
M(1 + λ). From the above, our claim in (13) is true for k = 1. Now assuming
that the claim is true when k = m, we have that for all i ∈ S.

|V m(i)| ≤M(1 + λ+ λ2 + · · ·+ λm). (16)

Now, if the update is carried out as in Case 1:

|V m+1(i)| ≤ (1− β)|V m(i)|+ β|r(i, a, j) + λV m(j)|
≤ (1− β)M(1 + λ+ λ2 + · · ·+ λm) + βM

+ βλM(1 + λ+ λ2 + · · ·+ λm) (from (16))

= M(1 + λ+ λ2 + · · ·+ λm)− βM(1 + λ+ λ2 + · · ·+ λm)

+ βM + βM(λ+ λ2 + · · ·+ λm+1)

= M(1 + λ+ λ2 + · · ·+ λm) + βMλm+1

≤ M(1 + λ+ λ2 + · · ·+ λm) +Mλm+1

= M(1 + λ+ λ2 + · · ·+ λm + λm+1).

Now, if the update is carried out as in Case 2:

|V m+1(i)| = |V m(i)| ≤M(1 + λ+ λ2 + · · ·+ λm)

≤ M(1 + λ+ λ2 + · · ·+ λm + λm+1).

From the above, the claim in (13) is proved for k = m+ 1. �

Lemma 2. The sequence {P k}∞k=1 in Algorithm 1 remains bounded.
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Proof We will now show that P (., .) is bounded by P̄ where

P̄ = max

{
rmax + (λ+ 1)

M

1− λ
,max

i,a
|P 1(i, a)|

}
.

Again, we will use induction. Our claim is |P (i, a)| < P̄ for all (i, a) pairs.
From the actor update, for k = 1, for any (i, a) pair,

|P 2(i, a)| ≤ (1− α1)|P 1(i, a)|+ α1|r(i, a, j) + λV 1(j)− V (i)|

≤ (1− α1)P̄+ α1

∣∣∣∣rmax + λ
M

1− λ
+

M

1− λ

∣∣∣∣
≤ (1− α1)P̄+ α1P̄ = P̄.

Assuming the result is true for k = m, i.e., Pm(i, a) ≤ P̄, we have for any (i, a),

|Pm+1(i, a)| ≤ (1− αm)|Pm(i, a)|+ αm|r(i, a, j) + λV m(j)− V m(i)|

≤ (1− αm)P̄+ αm

∣∣∣∣rmax + λ
M

1− λ
+

M

1− λ

∣∣∣∣
≤ (1− αm)P̄+ αmP̄ = P̄.

�
Lemmas 1 and 2 together prove the result. �

A2. Algorithm for Average Reward SMDPs (Algorithm 2): We now analyze
the boundedness of iterates in the algorithm for average reward SMDPs.

Theorem 3. The sequence {V k, P k, ρk}∞k=1 in Algorithm 2 remains bounded.

Proof We will first need to show boundedness of the iterate ρ. In what follows,
we will use an enhanced notation for the iterates R, T and ρ in the actor-critic
for average-reward SMDPs, where R will be replaced by Rk to indicate its value
in the kth iteration. Similarly, T k and ρk will be used to indicate the value
of T and ρ respectively in the kth iteration. The proof follows from [8], but is
presented here for the sake of completeness.

Lemma 3. The sequence {ρk} in Algorithm 2 remains bounded.

Let
maxi,a,j |r(i, a, j)|
mini,a,j t(i, a, j)

= ρ <∞,

where we assume that t(i, a, j) > 0 always. We can show that |ρk| ≤ ρ for all
k. Since R and T are initialized to 0, |Rk| < kmaxi,a,j |r(i, a, j)| and |T k| >
kmini,a,j t(i, a, j). Since all terms in the two previous inequalities are positive,
we have that ∣∣∣∣Rk

T k

∣∣∣∣ = |Rk|
|T k|

<
maxi,a,j |r(i, a, j)|
mini,a,j t(i, a, j)

.
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Since ρ1 = 0 by assumption, we will need to first show (induction argument)
that ρ2 ≤ ρ. Now, have from the update in Equation (12)

|ρ2| ≤ (1− γ1)|ρ1|+ γ1
maxi,a,j |r(i, a, j)|
mini,a,j t(i, a, j)

= γ1ρ < ρ.

Next, we show that the result holds for k + 1:

|ρk+1| ≤ (1− γk)|ρk|+ γk
∣∣∣∣Rk

T k

∣∣∣∣
≤ (1− γk)ρ+ γk

(
maxi,a,j |r(i, a, j)|
mini,a,j t(i, a, j)

)
= (1− γk)ρ+ γkρ = ρ.

�

When rmax in Lemma 1 is redefined as follows:

where rmax = max
i,j∈S,a∈A(i)

|r(i, a, j)|+ ρ max
i,j∈S,a∈A(i)

t(i, a, j),

the rest of the proof will be similar to that of Theorem 2 and is hence skipped.
�
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