
1

Predicting Response of Risk-Seeking Systems
during Project Negotiations in a System of Systems

Abhijit Gosavi, Siddhartha Agarwal, and Cihan H. Dagli

Abstract—During project negotiations, typically, the awarding
agency seeks bids from multiple parties. Examples of this setting
include firms no longer willing to produce parts in-house or an
airport seeking contracts for renovation. Risk-seeking parties are
those that agree to work with lower budgets and under shorter
deadlines, while risk-averse parties exhibit the opposite behavior.
This setting can be found in the context of System of Systems
(SoS), where the SoS coordinator (the firm) has access to behavior
characteristics of individual systems (parties) and their current
workload from past interactions. The problem we study is for the
SoS coordinator to predict the response of the systems in terms
of budgets, deadlines, and performance targets – in advance of
obtaining the actual response. This prediction can help the SoS
negotiate the best deal. We present a quantitative model that
predicts this response. Our model employs Markov chains to
capture dynamics of the project, which would result when a bid
is won, to quantify the response. Further, our model accounts
for the risk-taking tendencies and agility of the firm. We also
analyze mathematical properties and provide numerical results
to illustrate how our model can be used in a negotiation process.

Index Terms—entrepreneurial risk; System of Systems (SoS);
project negotiations; Markov chains; budgets

I. INTRODUCTION

In this paper, we present a fully observable Markov chain
model to study the dynamics of the bidding process and the
negotiations and re-negotiations that ensue once the bidding
process starts in projects related to outsourcing work. The spe-
cific example (case study) that we focus on is one commonly
studied in System of Systems (SoS) theory, which has been
widely applied in the defense industry and where outsourcing
projects are very common. However, the model we present
here is of a general nature and will be applicable to any firm
seeking to outsource a part of its work to external agencies.
Further, in this paper, we will study risk-seeking behavior
from the parties. By risk-seeking, we mean the party has traits
linked to embracing and attracting risk. A risk-seeking agent
is hence often willing to perform a task faster and under lower
budgets than a risk-averse one. Naturally, a risk-seeking agent
accepts the dangers that come with having to meet shorter
deadlines and working with fewer resources. Clearly, there are
chances of failure for which the risk-seeking agent may face
penalties. Risk-averse agents, on the other hand, are those
that avoid dangers of the type mentioned above, and prefer
longer deadlines and greater access to resources. Naturally,
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risk-averse agents also usually have a lower probability of
winning the bid.

It is commonplace in industry to invite bids from external
agencies/parties for tasks that a firm no longer wants to carry
out itself. Often, this is driven by economic needs and the fact
that the external parties chosen, being specialists in that task,
can perform the same task more efficiently and at a lower cost.
The task can be, for instance, the production of a part for which
the manufacturing technology has recently become expensive,
or the delivery of a service, e.g., delivering packages to a
location not affordable any more to a mail carrier (e.g., UPS
or FedEx). These tasks can be viewed as “projects” in a firm.
Typically, such projects start with the firm asking for bids from
other parties (contractors), which leads to negotiations and re-
negotiations (see e.g., Fudenberg and Tirole [6]), and end with
the firm awarding the contract to one of the contractors.

Now consider a scenario in which past experience of the
firm (with performing the task) suggests that the task should
be completed in four weeks. Two contractors (systems), X and
Y , approach the firm with proposals. X is willing to complete
the project in five weeks while Y is willing to do the same
in three. Costs are roughly proportional to the duration of the
project. If everything else about the proposals is the same,
typically, the preference will be for Y because it proposes to
complete the project in a shorter duration of time and also
charges less money. However, what can really be helpful to
the firm is knowledge — in advance of the negotiations —
about estimates of project-completion times and budgets that
each system would propose. This is not only because the firm
would like to make a profitable deal in the bargaining process,
but also because variability in the project completion times can
cause delays to the firm in meeting its own deadlines.

The scenario we study is typical of what often happens
in industry, under the following assumption: The firm has
past experience of working with both systems, X and Y , and
has data or other tangible pieces of information that allow it
to estimate (i) the willingness of each system to undertake
Entrepreneurial Risk (ER) and (ii) the workload to which the
system is subjected. To be more specific, by willingness to
undertake ER, we mean how eager the party is to please the
firm and get future work from it. This willingness is often
determined by how “agile” the system is and the budget it
is willing to work under. The agility of a system can be
measured via probabilistic estimates of weekly (or fortnightly
or monthly) completion of each sub-task (phase) within the
project; such estimates are usually available to the firm from
past interactions. The budget with which a system will be
willing to work either equals the budget offered by the SoS
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or is a fraction of it. Again, based on past experience, it is
also possible for the firm to predict the value of this fraction.
The ER factor is usually a key determinant of the outcome of
a negotiation and will be hence an important consideration in
this paper. Workload, on the other hand, typically depends on
how busy the system is currently with other work, and about
this, sometimes, only partial information is available to the
firm. An exception to this is a scenario in which the systems
regularly serve as vendors to the firm and are willing to share
all their information with the firm.

System 1 System 2 System 3

System 4 System n

SoS Coordinator

Fig. 1. SoS and the interacting systems via a coordinator

Under the conditions described above, the firm is often inter-
ested in gaging how the individual systems (contractors) will
respond in the bidding process. This framework of decision-
making can be studied under the general umbrella of System
of Systems (SoS), where each individual contractor is viewed
as a system, and the firm is the coordinator of the SoS [1].
See Figure 1 for a pictorial representation of this framework.
The SoS coordinator works together with the other systems,
who may or may not be working with each other; typically
negotiations and renegotiations occur between the SoS coor-
dinator and the individual systems. In the negotiation process,
the SoS coordinator often attempts to second guess what bids
the systems will provide. This is because there is incomplete
information, and the firm wishes to use bargaining that occurs
within the negotiation and re-negotiation processes to its own
advantage. To be more specific with respect to the problem
we study, the SoS controller provides inputs to each system
in regards to budgets, performance targets (deliverables), and
deadlines. Each system considers the offer and returns to the
coordinator with its own budget requirements, the performance
targets that it can meet, and the deadline by which it can
deliver. We provide a model that will allow the firm (SoS
coordinator) to estimate what bids it can get from the systems

— depending on the information it has gathered about their
risk and workload. The bids will thus have three descriptive
qualifiers: (a) performance (deliverables), (b) budget, and (c)
deadline.

Just as the firm has partial information about the systems,
each system in turn does not have perfect information about
the level of funding (the budget) the firm can provide. Hence,
the system guesses estimates of this budget in its own calcu-
lations. In the real world, negotiations frequently occur under
such conditions, where both parties are playing a guessing
game (obviously an intelligent one rather than one based on
wild guesses) rooted in estimates they have about each other.
As such, in the negotiation process, it is helpful for a firm
to predict what budget, for example, the system responds
with; the system’s desired budget in turn depends on what
the system’s guess of the budget of the SoS to be. The main
ideas underlying the negotiation modeling that we study in
this paper are shown via Figure 2.
Entrepreneurial Risk and its Role in Business: As stated
above, a risk-seeking system is often willing to perform the
same tasks faster and at budgets lower than those required by
the competition. It can achieve this via a variety of internal
mechanisms, such as a novel business plan that results in
lower manufacturing costs, lower holding costs, and/or lower
shipping costs. A well-known example of this includes Dell’s
entry into the personal computer business in the early part of
the century via a bold initiative of shipping computers by air
to the customers’ doorstep [8]. It was able to achieve that —
even at a discount price initially — because it did not own
expensive warehouses or retail stores, and customers had to
order the product online; in other words, its business model
dramatically shrank inventory storage costs and was thereby
able to pass on the reduced costs to customers in the form
of discount prices and rapid delivery. Another example is that
of Southwest Airlines which gradually captured a significant
portion of the domestic market in the U.S. by offering discount
fares. Southwest Airlines did not run on the hub-and-spoke
model, saved significant amounts of money by flying through
smaller airports, and passed on the profit margins from the
reduced costs to customers as discounts. Even to this day,
Southwest, unlike its competition (network airlines), can afford
to allow each customer two free bags because of its novel
business model which is said to have produced the so-called
“Southwest effect”[16]. In the business world, it is the ability
to take on risky initiatives that produce lower costs and lead
times that determines the success of many firms. It is in the
process of negotiating contracts that the role of these risky
initiatives comes into play and determines the final outcomes.
Literature Review: The notion of ER and the impact on
budgets which the entrepreneur is willing to work under has
been studied in economic theory for many years. Steinhaus
[14] originally considered a related problem in the context of
division of labor. Recently, ER has also been studied in the
literature (see [9] and the references therein) as a productivity
(agility) indicator and a willingness to work under lower
budgets. Recently, authors of books have started publishing on
their own, bypassing publishers, and are selling books online
to a variety of sellers (systems), e.g., amazon.com, Barnes and
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Noble, etc. This is an interesting phenomenon where the ER of
amazon.com (system in this context) is helping the SoS (author
in this context) succeed [20]. Most airports face renovation
projects, and governments spend money on transportation in-
frastructure projects from time to time; many of these projects
result in contracts offered to private companies, which can
be studied via the SoS paradigm. The SoS paradigm is also
studied in the defence setting [5] and multi-agent systems that
have been studied widely in the recent past (see [2], [17], and
[3]). An example of a multi-agent setting can be found in a
wireless service network that uses different “cells” at different
points of time to minimize the probability of dropped calls,
where each cell can be viewed as a system (automaton), and
the controller is aware of how much each cell is loaded and
its capabilities [7].

There is a significant body of literature on the topic of
managing risk in the enterprise context; see Choi et al. [4]
for a detailed survey. Risk management is naturally of strong
interest in banking ([19]) and vendor selection in supply chains
([13]). But our paper differs from the viewpoint adopted in
much of the literature cited above, where risk is viewed as
undesirable and something to be minimized. On the contrary,
in our setting, the ability to take on risk is actually a desir-
able characteristic within the enterprise—a trait that can lead
entrepreneurs to success and one that is especially relevant
to systems engineering when numerous systems interact with
each other. In the context of related work on negotiations and
projects, we need to discuss three papers. Murtoaro and Kujala
[10] state that although the firm and the systems (contractors)
face numerous difficulties in the negotiation of projects, the
topic of quantitative models for project negotiations has not
attracted much research interest in the literature. They also
point out that what one witnesses in the real world is a
“recurring continuum of negotiations;” however, no model is
presented by them to capture in a numeric form the reaction
of a system in the negotiation process. Miller et al. [9]
discuss enterprise risk from the perspective of budgets and
productivity, but the scope of their work does not extend to
the problem studied here. And finally, the pioneering work
of Fudenberg and Tirole [6] does lay the foundation for the
theory of negotiations and re-negotiations, but does not apply
it to the domain that we cover here.
Contributions of this paper: This paper seeks to present, to
the best of our knowledge for the first time, a model for the
negotiation process — based on partial information about an
individual system and the system’s guessed estimates about
the SoS. In particular, the goal is to predict how the system
will react to a given set of three variables, namely, a budget,
performance requirements, and deadlines, from the SoS, when
the SoS invites negotiations for a project. The reaction of the
system will also be in terms of these three variables that
it returns with to the SoS. The associated model that we
develop will use a guessed estimate of system characteristics,
namely the ER parameter, and the value of the workload,
as well as the total budget of the SoS, as estimated by the
system. Further, our model will be based on a fully observable
Markov chain, which can be constructed on the basis of the
workload and the weekly agility parameters of the system.
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Fig. 2. The negotiation modeling process involving the SoS and the individual
systems

The model serves as an alternative to simulation modeling,
which generally consumes more time to run and may require
additional input data. Finally, our model seeks to link ER
to behavior in project negotiations, which we also believe
is a new contribution that will stimulate further research in
modeling risk of SoS behavior.

The rest of this paper is organized as follows. Section
II presents the underlying Markov chain model. Section III
analyzes key mathematical properties of the model that provide
useful insights for the negotiation modeling, while Section
IV performs numerical experiments with the Markov chain
model to illustrate its usefulness. Section V ends this paper
with conclusions and topics for future research.

II. A MARKOV CHAIN MODEL

The workload assigned by the SoS to each system will be
assumed to be a project that takes a random amount of time to
complete. The internal phases of this project will be modeled
as the states of a Markov chain. Since information about the
phase of the project is known with certainty, we have a fully
observable Markov chain. The notion of modeling transitions
from one phase to another until the system is absorbed into
an absorbing state can be found in marketing management
literature [11]. The goal is to exploit the mathematics of
the Markov chain to estimate the expected (mean/average)
duration of the project and the funds needed by the system.
Via an absorbing Markov chain model, the expected duration
is estimated. An upper limit on the duration is also computed
assuming that the system is loaded to its full capacity. The
willingness to cooperate, which seeks to encapsulate the idea
of how eager the system at hand will be willing to take on
the new task, given its own workload, is then estimated. This
willingness to cooperate allows us to compute the deadline to
which the system will agree as well as the budget expectations
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that the system will have. A system prone to taking ER will
accept a lower budget in order to obtain the contract while
one that is averse to ER will require higher budgets.

We begin by formally presenting key assumptions about our
model.

1) The internal phases can be modeled as states of a
Markov chain such that the transitions from one phase
to another satisfy the Markovian property.

2) The SoS under consideration is a closed one, i.e., each
system interacts only with other systems with the SoS.

3) The transition probability matrix of the underlying
Markov chain is static.

We provide in the Appendix an alternative model that can work
when the first and the third assumptions above are relaxed,
i.e., the transitions are not Markovian. The second assumption
is somewhat restrictive in the sense that if we have systems
interacting with systems outside the SoS, those interactions
can affect the workload. However, relaxing this assumption is
beyond the scope of this work.

We now present with some notation. The following will be
the input parameters in our model.

• n: number of systems in the SoS
• i: index of the system under consideration, where i =

1, 2, . . . , n
• ki: the number of systems the ith system interacts with
• pi: performance target desired from the ith by the SoS
• Di: delivery deadline set for the ith system by the SoS
• fi: funds allocated to the ith system by the SoS
• η: ER budget parameter ∈ (0, 1], where 0 indicates

extremely willing to take ER (i.e., risk-seeking) and 1
being very risk-averse

• l and m: agility parameters, each taking values in the
interval (1,2] with 1 being very sluggish and 2 being
very agile

• β: parameter used by system to estimate the total budget
of the SoS, where β > 0

We note that agility parameters, l and m, are often measured in
the interval (0, 1] (see [15]). Our model requires that the value
be projected by linear interpolation onto the interval (1, 2],
since both of these agility parameters are used in the denomi-
nator of a term that represents a probability (see Equation (1)
below), which cannot exceed 1. The term denoting probability
in our model can exceed 1 if the agility parameter’s value is
less than 1 (and greater than 0). Since this is not an acceptable
situation, it is necessary for the agility parameter to exceed 1,
and therefore, we set the lower limit to 1, via the interval
(1, 2]. This leads to an upper limit of 2; in general, however,
any interval (a, b], where a and b are strictly positive, that
satisfies the property (b− a) = 1 will work for our model.
Obtaining values of the inputs in a real-world project:
For using our model, it will be necessary to obtain values
for the input parameters discussed above. All of the inputs
above, except for a few, depend on the project, and can be
obtained from the system under consideration. For instance,
the delivery deadline, funds allocated etc are parameters for
which the project manager has accurate data. However, the
following four parameters will need to be estimated from

past experience: η, β, and the agility parameters, l and m.
The agility parameters can be estimated from past interaction
with the system (see e.g., [15]). The ER budget parameter, η,
will depend on how the SoS views the system in question.
Again, this will depend on past interaction. A system that is
known to be unwilling to take on risk should be assigned a
value close to 1, while one that is known to be risk-seeking
should be assigned a value close to 0. Systems in between
the two extremes should be assigned values somewhere in
the middle of the range. In business deals, it is common
to make an assessment of the risk-seeking attitude of the
partner; our ER budget parameter requires a similar prior
analysis of the partner. This has also been discussed in the
literature on supply chain management in aspects other than
risks, e.g., reliability (of vendors) [13]. Further, for measuring
entrepreneurial risk, η, there is a growing body of literature
(see [9] and references therein), and like for the agility
parameters, any scale, e.g., the Likert scale, can be used to
measure it; what is necessary for use in our model is that
the value of η be mapped, via normalization, into an interval
(0, 1]. Since both agility and ER will be estimated by humans
in the negotiation process, surveys can be used to measure
these parameters, and hence, it is quite possible that a Likert
scale, which is popular in surveys, may be used to capture
the raw data on these parameters. Lastly, the value of β is
dependent on the system’s perception of how much budget
is available with the SoS. In many real-world projects, most
bidders have a good idea of how much the actual budget will
be, and hence can compute its value based on past experience.
For instance, when a bidder estimates the total budget for an
airport renovation project, he/she has a rough idea of the total
amount the airport has allocated for the project. In the past
if the airport has spent $50,000 for a similar project, but the
current advertisement from the airport says that $40,000 have
been assigned as the maximum amount that can be spent, then
β = 50, 000/40, 000 = 1.25. When no past data is available,
β should be set to 1. Finally, we must note that values of some
of these parameters may not be accurate, but in negotiations,
one must work with imperfect information, as discussed in the
Nobel-prize-winning work of [6].

The outputs that our model will generate include the fol-
lowing:

• ϕ: the willingness to cooperate
• τi: the expected duration of the project (task) that the ith

system will require
• τmax: estimate of an upper bound on the duration required

by any system for the project
• D′

i: the deadline agreed to by the ith system in the
negotiation

• p′i: the performance target agreed to by the ith system in
the negotiation

• f ′
i : the budget offered by the ith system in response to

the negotiation process

The three internal phases in the project will be assumed to
be: kickoff, mid-term review, (which can be a design review
for defense projects) and completion. In the Appendix, we
show how this model can be easily extended to projects with
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additional phases. Each of these will be considered to be states
in an absorbing Markov chain in which the absorbing state
is completion. We will assume that after unit time (e.g., one
cycle), the project will move from one state to the next with a
fixed probability that will depend on the agility of the system
as well as how loaded it is. This is typical of most projects
where each sub-task is of a duration of a cycle, which can be a
week, a fortnight, or a month. Past experience with the project
can help one estimate the probability that each phase will be
a completed in a cycle. We will refer to these probabilities as
the phase-completion probabilities, and these will be estimated
using the agility parameters. The Markov chain of the internal
system dynamics will be defined by the following transition
probability matrix:

P =

ki

ln 1− ki

ln 0

0 ki

mn 1− ki

mn
0 0 1

 (1)

where state 1 denotes the kickoff meeting, state 2 denotes the
mid-term review, and state 3 denotes the completion. Here,
the phase completion probability of the first phase (from the
kickoff to the mid-term review) will be given by (1− ki

ln ) and
the same for the second phase (from the mid-term review to
the completion) will be given by (1 − ki

mn ). Note that l and
m are the agility parameters for the first and second phase
respectively. The higher the values of the agility parameters,
the sooner the phase will be completed. Also, the lower the
value of ki, the sooner the phase will be completed. We will
explain this mathematically and via a numerical example later.
The Markov chain is depicted pictorially via Figure 3.

Fig. 3. The Markov chain model for the project

We now present the following result that allows us to
compute the expected time to complete the entire project:

Theorem 1. The expected time for completion of the project
by the ith system, τi, can be expressed in terms of l, m, ki,
and n as follows:

τi =
ln

ln− ki
+

mn

mn− ki
. (2)

Proof: Using the analysis of an absorbing Markov chain,
the expected number of transitions to reach the absorbing state
starting from state 1 can be computed as follows [12]. We
begin by eliminating the absorbing state from the transition
probability matrix, P, and the result is:

Q =

[
ki

ln 1− ki

ln

0 ki

mn

]
.

Then, if we perform the matrix operation

M = I−Q =

[
1− ki

ln
ki

ln − 1

0 1− ki

mn

]
,

where I is the identity matrix and define

c⃗ = M−1w⃗

where w⃗ is a column vector of ones, then c⃗ is a column vector
of the expected transition times from states 1 and 2 [12].
Thus, the expected transition time to absorption from state
1 (initial phase) is c(1), where c(i) denotes the ith element
of the column vector c⃗. Using matrix inversion, after some
elementary algebra, we can show that:

M−1 =
1

(1− ki

ln )(1−
ki

mn )

[
1− ki

mn 1− ki

ln

0 1− ki

ln

]

=

[ 1

1− ki
ln

1

1− ki
mn

0 1

1− ki
mn

]
.

Then,

c⃗ =

[ 1

1− ki
ln

1

1− ki
mn

0 1

1− ki
mn

][
1
1

]
=

[ 1

1− ki
ln

+ 1

1− ki
mn

1

1− ki
mn

]
,

which implies that τi = c(1) = 1

1− ki
ln

+ 1

1− ki
mn

= ln
ln−ki

+
mn

mn−ki
.

a) Computing the willingness to cooperate: Setting ki =
n and searching over all feasible values for l and m, one
can obtain an upper bound on the expected number of cycles
needed for completion. This is because setting ki = n
indicates that the system has the highest possible workload,
i.e., it is interacting with all the other systems. This upper
bound captures the longest amount of time the project can
take to complete. But the upper bound may even be higher
than the one obtained in this process, and an estimate may
be available from past experience. We will assume that an
estimate of this upper bound, denoted by τmax, is available to
us. For the ith system, the willingness to cooperate can then
be computed as the following probability:

ϕ = 1− τi
τmax

. (3)

Note that this probability will equal 1 when the project takes
the least amount of time to complete (theoretically zero) and
will equal 0 when the project takes the longest amount of time
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needed for completion (τmax). The willingness to cooperate is
indirectly a measure of the risk-seeking ability of the system.
As shown below, out model hinges on computing this crucial
parameter. Intuition suggests that the willingness to cooperate
should decline as the project duration increases. Further, the
willingness to cooperate should depend on how agile the
system is and how loaded it is with respect to interaction with
the other systems. We shall make these notions mathematically
precise later.

b) Deadline accepted by system and performance: Typ-
ically, the willingness to cooperate and the actual project
completion time together determine the deadline by which the
system will be able to produce the project deliverables. Hence,
we propose the following relationship for the deadline that the
system will return with:

D′
i = max

{
Di

ϕ
, τi

}
. (4)

Further, the actual performance of the system will be given as

p′i = ϕ pi (5)

which is a fraction of the maximum performance that can be
expected from the system.

c) Budget and entrepreneurial risk: The system has to
guess what the total budget of the SoS is, and it will use the
following formulation for the upper limit on the budget:

B̄ = fiβ (6)

where β is an estimation parameter for the total budget of the
system. On the basis of this, a conservative estimate of the
time rate at which system can be funded will be (in units of
dollars per unit time):

ρ =
B̄

τmax
. (7)

Then, the maximum funding that the system can draw will be
given as: ρτi. A system willing to take ER will then charge a
fraction of this amount:

f ′
i = ηρτi, (8)

where η is an ER budget parameter, which equals the fraction
discussed above. Note that in the model above, we did not
use the actual budget of the SoS that it obviously has access
to; rather it uses the estimate generated by the system. This is
because the goal of the model is to predict how the system will
respond, and since the system does not have direct knowledge
of the budget, the model must use the estimate that the system
has of the budget of the SoS.

III. ANALYTICAL INSIGHTS

We now prove three key properties of the output parameters
of our model. In particular, we study analytically the impact
of the values of the agility parameters and the workload on
the willingness to cooperate as well as the budget with which
the system returns to the SoS. Intuition suggests that as the
agility increases, the willingness to cooperate should increase
and the budget should decrease. Our aim here is to make these

properties mathematically precise. Our first result is in regards
to the agility parameters. Note from Equation (3) that

∂ϕ

∂τi
= − 1

τmax
, (9)

where τmax > 0. Hence, we have that ∂ϕ
∂τi

< 0. We can now
prove the following property of the agility parameters:

Theorem 2. The willingness to cooperate is an increasing
function of the agility parameters, l and m.

Proof: We first consider the parameter l. From Equation
(2), we have that:

∂τi
∂l

= − kin

(ln− ki)2
, (10)

which combined with Equation (9) leads to:

∂ϕ

∂l
=

kin

(ln− ki)2τmax
.

Since all terms in the partial derivative are positive, we have
the result for l. Similarly, we can prove the result for m by
showing the following:

∂ϕ

∂m
=

kin

(mn− ki)2τmax
> 0.

It is clear that a firm interested in negotiating a profitable
deal needs to carefully examine the agility of the firm, since it
is a prime indicator of its willingness to take risk as well
as deliver on time. Our second result is for the workload
parameter, ki:

Theorem 3. The willingness to cooperate is a decreasing
function of the workload parameter, ki.

Proof: From Equation (2), we have that:

∂τi
∂ki

=
ln

(ln− ki)2
+

mn

(mn− ki)2
, (11)

which combined with Equation (9) leads to:

∂ϕ

∂ki
= −

(
ln

(ln− ki)2
+

mn

(mn− ki)2

)
1

τmax
< 0.

The result above confirms our intuition that a system already
burdened with work is less likely to seek work. We now show
that the budget will decrease as the agility increases.

Theorem 4. The budget, f ′
i , is a decreasing function of the

agility parameters, l and m.

Proof: We first consider the result for l. From Eqn. (8),
we have that

∂f ′
i

∂τi
= ηρ;

then applying the chain rule and from (10), we have that:

∂f ′
i

∂l
=

∂f ′
i

∂τi

∂τi
∂l

= −ηρ
kin

(ln− ki)2
.
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Since all the parameters in the right hand side of the above
are positive, we must have that f ′

i is a decreasing function of
l. Similarly, we can show that:

∂f ′
i

∂m
= −ηρ

kin

(mn− ki)2
< 0,

and we are done.
Again, the importance of the above result stems from the

insight it provides in that a firm is likely to get work at a lower
budget from a contractor if the contractor is agile, i.e., risk-
seeking. These insights further strengthen our intuition that
agility can be viewed as a dimension of risk that the system
is willing to undertake.

IV. NUMERICAL RESULTS

We now illustrate our Markov chain model via numerical
experiments. These experiments are designed to demonstrate
that the values of performance targets, deadlines, and budgets
can be computed easily in response to the same provided
by the SoS. Further, our experiments also show that these
computations can be easily incorporated into a negotiation
modelling process.

In the first set of experiments we performed, the values of
l and m were varied from 1 to 2, while the other inputs were
set to values coming from a wide range — in order to test the
robustness of our model. The inputs of our experiments are
presented in Table I, where 20 different cases are generated.
The value of τmax was set to 42 in our experiments. For each
case, the outputs were computed as follows: τi from Equation
(2), ϕ from Equation (3), f ′

i from Equation (8), D′
i from

Equation (4), and p′i from Equation (5). The outputs for the
20 cases defined in Table I are provided in Table II. It must be
noted that although we do not provide units for our outputs in
the tables, because our model is general, in practice, deadlines
and project completion times often have units of weeks,
budgets are measured in dollars, while performance targets
depend on the nature of the project. For a road construction
project, for instance, the units of project deliverables can be
in terms of miles of roads to be constructed.

We provide details of one specific randomly chosen nu-
merical example, namely Case 17, as a vehicle to illustrate
our model. There is nothing special about this case, and the
results can be worked out for every other case in an analogous
manner. As mentioned above, the inputs for the model are
given in Table I and τmax = 42. Using Equation (2), we have
that

τi =
(1.8)(7)

(1.8)(7)− 5
+

(1.2)(7)

(1.2)(7)− 5
= 4.13,

which can be verified as the entry for τi for Case 17 in Table
II. We will similarly verify all other outputs shown in Table II
for this case. Since fi = 32 and β = 4 (both values are from
Table I), via Equation (6), we have that

B̄ = (32)(4) = 128;

since τmax = 42, we then have from Equation (7) that

ρ =
128

42
= 3.05.

To compute f ′
i , we use Equation (8):

f ′
i = ηρτi = (0.6)(3.05)(4.13) = 7.55.

Also,

D′
i = max

{
16

0.9
, 4.13

}
= 17.74.

And finally,
p′i = (0.9)(29) = 26.1.

TABLE I
INPUTS FOR OUR NUMERICAL EXPERIMENTS

Case l m n ki η β pi fi Di

1 1.1 1.1 8 6 0.3 2 30 21 10
2 1.2 1.2 12 10 0.5 5 25 45 20
3 1.3 1.3 16 9 0.7 7 16 23 12
4 1.4 1.4 14 9 0.9 3 14 34 15
5 1.5 1.5 13 10 0.2 4 28 21 12
6 1.6 1.6 21 7 0.8 5 32 60 14
7 1.7 1.7 22 5 0.3 6 33 34 12
8 1.8 1.8 9 7 0.8 3 27 23 16
9 1.9 1.9 10 8 0.2 2 28 25 12
10 1.1 1.9 11 10 0.4 3 31 35 6
11 1.2 1.8 17 4 0.6 7 36 32 15
12 1.3 1.7 15 3 0.7 6 32 29 10
13 1.4 1.6 12 5 0.5 2 33 20 11
14 1.5 1.5 15 4 0.2 5 23 40 12
15 1.6 1.4 17 7 0.9 4 27 53 14
16 1.7 1.3 11 8 0.4 7 26 54 15
17 1.8 1.2 7 5 0.6 4 29 32 16
18 1.9 1.1 9 3 0.3 5 25 30 17
19 1.1 1.1 15 7 0.5 3 29 29 12
20 1.1 1.1 20 9 0.8 6 34 25 11

TABLE II
RESULTS OF OUR NUMERICAL EXPERIMENTS

Case τi ϕ ρ f ′
i p′i D′

i
1 6.29 0.85 1.00 1.89 25.51 11.76
2 6.55 0.84 5.36 17.53 21.10 23.69
3 3.53 0.92 3.83 9.46 14.66 13.10
4 3.70 0.91 2.43 8.08 12.76 16.45
5 4.11 0.90 2.00 1.64 25.26 13.30
6 2.53 0.94 7.14 14.44 30.08 14.90
7 2.31 0.95 4.86 3.36 31.19 12.70
8 3.52 0.92 1.64 4.63 24.73 17.46
9 3.45 0.92 1.19 0.82 25.70 13.08
10 7.68 0.82 2.50 7.68 25.33 7.68
11 2.39 0.94 5.33 7.66 33.95 15.91
12 2.32 0.94 4.14 6.71 30.24 10.58
13 2.78 0.93 0.95 1.32 30.81 11.78
14 2.43 0.94 4.76 2.31 21.67 12.74
15 2.76 0.93 5.05 12.55 25.22 14.99
16 4.02 0.90 9.00 14.46 23.51 16.59
17 4.13 0.90 3.05 7.55 26.10 17.74
18 2.65 0.94 3.57 2.84 23.42 18.14
19 3.47 0.92 2.07 3.60 26.60 13.08
20 3.38 0.92 3.57 9.67 31.26 11.96

We also study the impact of changing the agility parameters,
l and m, on the model outputs. The results are plotted, with
the agility parameter on the x-axis, which is the independent
variable, while the dependent variables are plotted on the y-
axis. Figures 4 and 5 demonstrate the impact of l and m on ϕ
the willingness to cooperate; in each figure, the independent
variable was varied keeping all the other inputs constant. From
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Figures 4 and 5, it is clear that as the values of the agility
parameters increase, i.e., agility itself is improved, so does
the willingness to cooperate. These figures also serve as a
numerical verification of Theorem 2. Figures 6 and 7 seek to
track the influence of the agility on the budget proposed by the
system. These figures show that a more agile (risk-seeking)
system, i.e., with a higher value for the agility parameter,
would be willing to perform at a lower budget. These figures
also numerically verify Theorem 3. Similarly, Figures 8 and 9
show that higher the agility parameter, the shorter the deadline
to which a system will agree. Finally, Figures 10 and 11
demonstrate that the performance targets also improve as the
agility parameters l and m, respectively, increase.
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Fig. 4. Impact of increasing l on ϕ

V. CONCLUSIONS

While hectic negotiations occur before contracts are
awarded and projects start, models that predict how the con-
tractors will respond are lacking in the literature [10]. This
paper presented a model based on parameters that can be
estimated for predicting how a system will respond to a given
set of budgets, performance targets and deadlines. The problem
we consider is often studied under the umbrella of a System of
Systems (SoS). The underlying principle in our model is that
values of some parameters related to the system’s behavior
(the risk-taking ability agility etc) can be obtained from
past interactions and used fruitfully in predicting behavior of
the system. We also hope that the Markov chain model we
proposed above for studying this problem can be effectively
used in the negotiations by the SoS to its own advantage. An
important feature of our model is its ability to quantify the
intention of the system to take entrepreneurial risk, which can
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Fig. 5. Impact of increasing m on ϕ
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Fig. 6. The impact on the the budget, fi, with which the system responds,
of l

manifest itself in working in a more productive/agile manner
as well as work with budgets lower than those proposed by the
SoS. We also proved analytical properties of our model that
support our intuition. Finally, we have provided a simplified
model in the Appendix which can be used when the Markov
chain property is not easy to verify.
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Fig. 7. Impact of m, another agility parameter, on the budget, fi
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Fig. 8. The deadline agreed to by the system becomes earlier as the agility
parameter, l, increases

Some directions for future research can be envisioned.
First, this model could be tested in a re-negotiation modeling
discrete-event simulation environment where the SoS returns
with a new set of deadlines, budgets, and performance param-
eters in reaction to the same offered by the system in response
to the first offer from the SoS. It may also be interesting to
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Fig. 9. The deadline agreed to by the system becomes earlier as the agility
parameter, l, increases
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Fig. 10. The graph shows the impact of l on the performance deliverable

study any potential Nash equilibrium at which the two will
eventually settle down. Another potential avenue for future
research would be to use simulation modeling, instead of
the Markov chain approach employed here, to measure the
duration of the project.
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Fig. 11. The graph shows the impact of m on the performance deliverable

APPENDIX A
RELAXING THE MARKOVIAN ASSUMPTION

We now present a short description of how the model
proposed above can be used when the transitions in the project
stages are not Markovian. When the Markovian assumption is
relaxed, it will be necessary to gather data for durations of each
phase in the project. Oftentimes, project duration activities are
modeled via the triangular distribution [18]. Let Xp denote
the transition time from the pth state to the next, and let ap
denote the minimum, bp denote the maximum, and cp denote
the mode. Then, for a project with three states, we would need
to collect data on the triangular distribution for the transition
times, i.e., for the triple (ap, cp, bp) for p = 1, 2. Then,

ϕi = 1−
∑2

p=1(ap + bp + cp)

3(b1 + b2)
;

the above expression stems from the fact that the average
value of the time to completion of the two phases, under the
triangular distribution, will be

∑2
p=1(ap + bp + cp)/3 and the

maximum value for the same will be (b1 + b2).

APPENDIX B
PROJECTS WITH MORE THAN THREE STATES

Although we do not provide a closed form for computing
the duration of a project which has more than three states
in the Markov chain (as considered above), we explain how
the duration can be computed from matrix operations: For
any absorbing Markov chain with one absorbing state (project
termination), the procedure is analogous to that discussed
above. In particular, for four states, if r is defined as the agility

parameter for the third state, the transition probability matrix
will be:

P =


ki

ln 1− ki

ln 0 0

0 ki

mn 1− ki

mn 0

0 0 ki

rn 1− ki

rn
0 0 0 1

 .

Then, like in the case of three states, one first constructs the
Q matrix by eliminating the absorbing state as follows

Q =

ki

ln 1− ki

ln 0

0 ki

mn 1− ki

mn

0 0 ki

rn

 ,

and then computes M via: M = I−Q. Defining c⃗ = M−1w⃗,
where w⃗ is a column vector of ones, we have that c(1) will
equal τi. This process can be extended to any finite number
of states.
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