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Abstract—Emergency responders are typically notified immedi-
ately after a major earthquake strikes. However, a time delay, called
the travel time, is usually experienced between the notification and
the arrival of the responders on the scene. The reparative work
necessary after the responders arrive takes an additional amount
of time, called the response time, depending on the nature of the
damage and the volume of resources available. In a smart city,
the restoration time, which is the sum of the travel and response
times, should be minimized. A new discrete-event-based simulation
(DEBS) model is presented in this paper to estimate the restoration
time needed to bring the situation under control after notifying
the response center. The DEBS model not only relaxes restrictive
assumptions on travel time made by the Markov chain models from
the existing literature, but it can also quantify the impact of resource
volumes on restoration times. Additionally, the DEBS model is very
useful for training purposes. The DEBS model was employed on
a case study from the state of Missouri (U.S.). The experiments
demonstrate that numerical results with the model take a short
amount of computational time and that it can be implemented on
a real-time basis in a smart-city infrastructure.

Index Terms—Earthquake, emergency management, smart city,
training.

I. INTRODUCTION

NATURAL hazards such as tornados, hurricanes, earth-
quakes, and volcanic eruptions are unavoidable and can

become disasters causing extensive property damage and deaths
of thousands of people, especially in densely inhabited areas.
While each natural hazard tends to have its own unique char-
acteristics, an earthquake generally triggers with a high prob-
ability a cascade of events from a gas leakage to a fire to a
building/structural collapse. The final outcome may also involve
flooding, especially if the affected area is near a sea or a major
waterbody and if a tsunami is triggered or a dam or levee failure
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occurs. In this century itself, several major earthquakes have
occurred, including the 2008 earthquake in Wenchuan, China,
the 2009 L’Aquila earthquake in Italy, the 2010 earthquake in
Chile, the earthquake in Haiti in 2010, the earthquake-tsunami
in Japan in 2011, the 2011 earthquake in Christchurch, New
Zealand, and the earthquake in Nepal in 2015.

The severity of these recent earthquakes indicates that there is
a substantial need for developing a systematic disaster response
and restoration plan for them.

When a major earthquake occurs, disaster management au-
thorities dispatch resources, such as medical and rescue teams,
firefighters, ambulances, medicines, water, and tents, to the
affected area. Once the responders arrive on the scene, reparative
efforts are directed toward evacuating the population affected
and securing the area—thereby preventing further damage and
avoiding secondary disasters that may follow the earthquake.
Since resources are limited and must be deployed urgently, disas-
ter managers need analytical tools that can help them formulate
the best strategy for allocating resources to the affected area.
Such analytical tools are especially useful for training purposes
in which the analyst can change the volume of resources avail-
able to test its impact on the nature of the restoration plan [1].

The events that follow an earthquake are significantly different
in terms of the time needed to address them. For instance, the
four major events/incidents that are typical characteristics of
an earthquake, namely gas leakages, fires, building/structural
collapses, and flooding [2], have differences in response times,
i.e., the time it takes the responders to conduct the reparative
work described above, due to differences in the nature of the
incidents.

A gas leakage can often be contained in a shorter time interval
than a fire, while the response to a building collapse is likely to
be more time-consuming. Flooding (e.g., due to tsunami waves
or bursting of river banks) is the worst scenario in terms of
the danger it poses to human lives and usually takes the greatest
amount of time for response. Therefore, it is essential to account
for each of these four incidents in a comprehensive model.

The cascade of the associated events in a major earthquake
can be captured in stochastic models, such as the Markov chains,
Brownian motion, renewal processes, or discrete-event-based
simulation [3]. These models can help improve the understand-
ing of the magnitude of damage that can occur and determine
the volume of resources needed to bring the situation under
control, i.e., to an acceptable state in which the injured have
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been taken to hospitals, and the roads necessary for emergency
transportation have been cleared of debris. In the literature,
work of this nature is often called restoration, which can take
a few days, while reconstructing all the damaged buildings and
structures is usually called recovery [4], which can take several
years. The ability of stochastic models to accurately predict the
restoration time, i.e., the time it takes from when the response
center is notified until the situation is under control, depends on
the input parameters considered as well as the quality of data
available.

Recent advances in information and communication tech-
nologies have enabled the development of so-called smart and
connected cities, or simply smart cities, in which information
from sensors can be gathered and shared on a real-time basis to
improve the quality of services. Smart cities are now a reality [5],
and a study of the recent literature indicates that data gathered
from sensors placed in strategic areas within smart cities help
make them more livable and sustainable [6], [7], as well as
reduce risk within the associated population [8]. Daniel and
Doran [9] proposed the development of computer-based tools
for the successful integration of real-time data from sensors
into decision-making protocols for smart cities in order to en-
hance the coordination that must occur in between the different
decision-makers and thereby improve the quality of life. For
example, after an earthquake occurs in a smart city, gas lines
and nuclear reactors could be automatically shut down, and
readiness levels of fire/ambulance services could also be imme-
diately raised. This requires a coordinated plan from emergency
management personnel and city administration that necessitates
using a broad announcement to the affected population (e.g.,
via cell phone text messages and radio announcements) for
avoidance of hazardous roadways, as well as redirecting traffic
through safer areas [10]. Sensors for detecting smoke, fire,
and vibrations that are placed strategically in smart cities can
ideally provide statistical data related to the dynamics of events
that occur after an earthquake. This smart city data can then
be employed to simulate the events that unfold via a simu-
lation model capable of utilizing the data generated by smart
cities.

This paper presents a new discrete-event-based simulation
(DEBS) model that estimates the time needed to bring the
situation under control (restoration time) for a given volume
of resources under a variety of scenarios that can occur after an
earthquake. The DEBS model 1) explicitly takes into account
the time it takes to reach the affected area and the volumes
of resources; and 2) accounts for all four major earthquake
incidents enumerated above (gas leakages, fires, building col-
lapsing, and floods). In addition, the DEBS model allows for
exploring the relationship between the volume of resources and
the expected restoration times, which can be used to optimize the
volume of resources and study the differences that would result
in the response from different emergency management centers.
Finally, the simulation nature of the DEBS model makes it
more easily implementable within a real-time smart city system
in comparison to the computationally unwieldy Markov chain
models of the past, discussed in the next section, which also do
not consider the volumes of resources.

Fig. 1. Scheme for how the DEBS model would be utilized by the emergency
management response center in a real-time basis in a smart city setting.

Fig. 1 is a schematic that demonstrates the DEBS model
and how it can be employed in a real-time basis in a smart
city setting. The sensors placed in strategic areas in smart city
would feed data into the DEBS model, which could then be
used to optimize the volume of resources needed and deliver a
response and restoration plan that would enable the emergency
management center to dispatch resources in appropriate volumes
to the affected area.

The rest of this paper is organized as follows. Section II pro-
vides a background for this work, including a literature review.
Section III formulates the problem. The numerical model and
the experimental results are discussed in Section IV. Section V
concludes this paper.

II. BACKGROUND

One of the first models in the literature for emergency
resources deployment via Markov chains was presented by
Swersey [11], who applied a Markovian decision model to
determine the number of units to dispatch after a fire. Study of
the relationships between incidents such as fire, explosions, and
toxic release as domino-effects, whose connecting probabilities
can also be explicitly modeled, was presented by Delvosalle [12]
and Khan and Abbasi [13] in the context of chemical processes.
Domino effects are those phenomena that lead a system from a
primary incident to a secondary incident, which has a magnitude
that is the same as or higher (i.e., worse in terms of the danger
it poses to the population affected) than the primary incident.
Clini et al. [14] proposed mechanisms to model domino effects
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in industrial accidents. The study by Sekizawa et al. [15] is one of
the first works to apply this concept for estimating the probability
of fire after an earthquake. More recent models, such as those by
Wei et al. [16] and Ghosh and Gosavi [10], have sought to build
on these past works in terms of 1) using Markov chains as the
underlying model and 2) employing probabilities for the domino
effects (domino probabilities) that occur in the aftermath of an
earthquake. Kammouh et al. [17] collected data regarding the
damage, measured as downtime, caused by 32 different earth-
quakes to different infrastructures such as power plants, water
systems, gas stations, and telecommunication systems with the
purpose of developing restoration curves. The magnitude of the
earthquake, as well as the level of development of the affected
countries (considered as either developed or developing), was
taken into account. Chang [18] studied an urban transportation-
planning problem and developed a performance metric for the
accessibility of an area in a post-earthquake scenario, but the
work is not focused on measuring the restoration time or
the domino effects. Nonetheless, these studies [17], [18] are use-
ful references for future integration of urban data into simulation
models for smart cities.

Past work closest to this research includes the studies by
Fiedrich et al. [19], Wei et al. [16], and Ghosh and Gosavi [10].
Fiedrich et al. [19] used a combinatorial optimization model for
resource allocation, but the focus of their work was on estimating
the number of casualties, rather than on estimating the expected
restoration time. Wei et al. [16] modeled a two-state Markov
chain for the 2008 Wenchuan earthquake, but their model did not
account for building collapse or flooding. Ghosh and Gosavi [10]
used a model based on Markov chains for all four incidents, but
because of the underlying semi-Markov process employed, some
restrictive assumptions about the system were needed in terms of
how its states evolve while the responders travel to the affected
location. Those assumptions may introduce an inaccuracy in the
estimation of the restoration times. In contrast, discrete-event
simulation [20] is more flexible than Markov chains, which
require the memoryless (Markovian) property to hold between
state transitions; a property that is not always guaranteed in
real-world settings and is an assumption often made to generate
tractable mathematical models for estimating the response and
restoration times.

Henson et al. [21] presented an activity-based model that is
similar to a DEBS model but at a higher level from the modeling
perspective and less detailed. Mishra et al. [22] presented a
recent survey of simulation-based models like the DEBS model
for disaster management. Mueller et al. [23] and Shi et al. [24]
presented case studies of simulation-based modeling of disaster
scenarios from India and China, respectively. However, these
models did not study the restoration times needed for the analysis
in this paper. The study by Alem et al. [25] was one of the first
to measure restoration times, referred to as “lead times” in that
work. Erdelj et al. [26] studied restoration times in the context
of search and rescue, while Aros and Gibbons [27] made direct
reference to disaster “response times,” consistent with the study
in this paper.

In summary, a study of the literature indicates a clear need for
simulation-based models that can make realistic assumptions

TABLE I
DEFINITION OF EACH STATE MODELED IN THE SYSTEM

Note: States numbered 2 through 8 are the primary states, while states numbered 9 through
15 are the secondary states.

about travel times and resource volumes and deliver results
that can be integrated online in a real-world, smart-city setting.
This paper seeks to fill this gap via the DEBS model, which is
explained in the next section.

III. PROBLEM FORMULATION

In this section, the underlying problem is formulated via
the DEBS model. First, Section III-A presents the mechanism
for state transitions that are experienced in the post-earthquake
scenario. Then, Section III-B presents the DEBS model, which
implements the state-transition mechanism.

A. State Transitions

The four basic incidents that the model will track are: Fire
(F), Gas Leakage (G), Building Collapse (BC), and Flooding
(FL). The so-called state is a combination of one or more of
these incidents. The different states that the system can visit are
defined in Table I. It should be noted that although the basic
incidents considered in this work are the major incidents that
are expected during an earthquake [2], other incidents (such as
mudslides) are also possible depending on the area considered.
The DEBS model presented in this work can be modified to
incorporate additional incidents as applicable.

The system initiates in the stable state, where the system is
assumed to be fully functional. When an earthquake occurs, the
system evolves immediately in a probabilistic manner to any
of the states numbered from 2 through 8 (see Table I). These
states are herein referred to as the primary states. Then, after
the system enters a primary state, the emergency management
response center is contacted, and a decision is made regarding the
volume of resources to dispatch to the affected area. Thereafter,
the response center sends resources to the affected area. The
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Fig. 2. Depiction of the different states visited by the system in the DEBS
model. Note that the risk set is a union of the set of primary and secondary
states, i.e., {2, 3, …, 15} in Table I.

resources arrive at the affected area after an amount of time
called the travel time. By the time the resources arrive at the
affected area, the system either remains in its own state (which
is a primary state), or it transitions to one of the other primary
states, or it advances to a worse condition (state). In the DEBS
model, the worse conditions will be referred to as secondary
states and will be represented by states numbered from 9 through
15 in Table I. The union of the set of primary states and the set of
secondary states is called the risk set. Hence, the risk set is a finite
set consisting of states numbered 2 through 15, and it contains
all the states that pose danger to the population concerned. After
the responders arrive, they bring the situation under control, i.e.,
the system returns from one of the states in the risk set to the
stable state, after an amount of time called the response time,
RT, which depends on the state in which the responders find
the system when they arrive at the scene and on the volume of
resources available.

It is worth noting that each of the states defined can be
considered as either primary or secondary depending on the
nature of the incidents contained in it. As an example, in Table I,
states containing one or more of the three basic incidents,
fire, gas leakage, and building collapse, are considered to be
primary states, whereas states containing the flooding incident
are considered to be secondary states. In general, a given state
could be defined as a secondary state instead of a primary state
if it results from a sequence of events (in the case of flooding, for
example, a gradual levee failure followed by the progressively
increasing flow of water to the area under study), which requires
that a certain amount of time has elapsed before all the incidents
in that secondary state appear. Determination of whether each
state is primary or secondary should be made considering the
characteristics of the area under study [28]. The DEBS model
and the associated states can be easily altered accordingly.

Fig. 2 depicts the probabilistic transitions between the dif-
ferent types of states (stable, primary, and secondary) that can

Fig. 3. Computerized timeline within the DEBS model, where one cycle is
triggered by the earthquake shock and ends when the situation is brought under
control (stable state).

occur in the DEBS model as well as the risk set. It is important
to note that, like the Markov chain models, the DEBS model
involves state transitions, however these transitions do not need
to satisfy the rigid Markovian property, providing significantly
higher flexibility to the analyst in the process.

B. DEBS Model

The DEBS model is formulated to estimate the time needed to
bring the situation under control under 1) a given set of resources
and 2) the knowledge of the travel and response times when the
response center is notified. Fig. 3 illustrates the DEBS model in
which the different events associated to the earthquake, e.g.,
the earthquake shock, arrival of the emergency management
personnel, etc., are tracked on a computerized timeline utilizing
discrete-event simulation modeling [20].

Fig. 3 (DEBS model) can be explained as follows. The system
starts in a stable state. When the earthquake shock occurs, a
decision is made regarding the volume of resources to dispatch
from the response center. The decision-making process takes
a finite amount of time, which is due to the time spent in
communication between the different authorities at the affected
site and the response center; in a real-time implementation, this
time would also include the time needed to run the simulation
model and obtain the optimized outputs. Then, a finite amount of
time elapses during which the responders travel to the affected
site (corresponding to the travel time). After the responders
reach the affected site, reparative work begins and ends with
the restoration of the site to a working condition (stable state).
Thus, this stage corresponds to the response time. The cycle
ends here, and a new earthquake is simulated. The restoration
time, which is the sum of the travel time and the response time,
is computed for each earthquake. The DEBS model seeks to
estimate the mean of the restoration time.

The notation used in the DEBS model is described as follows.
1) F: the basic incident of Fire.
2) G: the basic incident of Gas Leakage.
3) BC: the basic incident of Building Collapse.
4) FL: the basic incident of Flooding.
5) Stable state: the state where the system is yet to expe-

rience the shock, and also the state to which the system
returns after the restoration is complete.
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6) Primary states: states to which the system transitions
from the stable state; primary states considered in
the model are numbered 1 through 8 and defined in
Table I.

7) Secondary states: states to which the system transitions
from the primary state that are worse than primary state;
secondary states considered in the model are numbered
9 through 15 and defined in Table I.

8) Risk set: union of the sets of primary states and secondary
states.

9) S: state.
10) U(S): the set of incidents contained in state S.
11) i: index for a primary state in the system.
12) j: index for a state in the risk set in the system.
13) PR(i): probability of transitioning from the stable state

to the ith state in the system; note that PR denotes the
vector that contains these probabilities.

14) DP(i, j): probability of transitioning from primary state
i to a state in the risk state j; note that DP denotes the
matrix that contains these probabilities, which are also
called domino probabilities.

15) TT (ω(m)): travel time associated to the mth sample
earthquake.

16) d: incident, which could be either a fire, gas leakage,
building collapse, or flooding.

17) RT(d): response time for incident d.
18) RTc(S): response time for state S.
19) ReT: restoration time, which is a random variable whose

mean value is computed via the DEBS model.
20) X: volume of resources.
21) Y: travel-time scenario.
The DEBS model can be formally described as follows. The

input variables to the DEBS model are as follows:
1) the probabilities of transitions of states, i.e., the vector PR

and the matrix DP;
2) the (statistical) distribution of the travel times, TTs;
3) the response times, RTs, for each incident;
4) the volume of resources, X;
5) the travel time scenario Y.
The output from the DEBS model is the mean value of the

restoration time (ReT). This computation requires (1)–(3) that
are defined below. As a roadmap for the calculations in the rest
of this section, note that the mean value of ReT will be estimated
within the simulator using (3), which in turn will require, inside
the simulator, the computation of RT(d) and RTc(S) that are
defined in (1) and (2), respectively.

RT(d): The response times for each incident are detailed
in Table II. For the dth incident, the response time, RT(d),
represents the time in hours needed to bring the situation related
to the dth incident under control when that incident is present in
the system. The response time for any state is hence a function of
all the incidents that occur in the affected area, i.e., associated to
the current state of the system. Furthermore, the response time
should also be a function of the volume of resources sent to
bring the situation under control. Hence, the following model,
inspired by a similar model by Shabtay and Steiner [32], was

TABLE II
RESPONSE TIMES (RT(d)) ASSOCIATED WITH EACH BASIC INCIDENT, d

Note: X denotes the level of resources.

used to determine the response time for the dth incident:

RT(d) = A+
B

X
(1)

where A > 0 is a fixed minimum part of the response time, and
B/X denotes the variable part of the response time in which
X is the level of resources taking values from a set of positive
integers; B > 0. This model was validated via a personal in-
terview with a Fire Marshal [33]. The interview revealed that
emergency responders use multiple layers, called “alarms.” The
least volume of resources, corresponding to X = 1, is allocated
to the so-called “first” alarm. The response time associated to the
first alarm would equal the maximum response time, RTmax.
When the situation escalates, the second alarm is placed, and
if it escalates further, the third alarm is placed. In this way,
the marshal in charge can request an increasing volume of
resources. When an earthquake occurs, it was learned [33] that
the maximum possible volume of resources at disposal would
be used to save lives. As the volume of resources X approaches
infinity, the response time reaches the minimum response time,
RTmin. This value would be nonzero since beyond a certain
point, increasing the volume of resources does not improve the
response due to redundancy of resources and other factors. For
example, the interview [33] revealed that no more than two
firetrucks can be useful for one building in many areas of inner
cities, where population density is high, because the design of
the buildings restricts entry to more than two firetruck-water
systems.

The maximum and minimum response times can be ob-
tained as follows: RTmax = A+B; and RTmin = A. Thus,
B = RTmax − RTmin. In practice, these equations could be
modified to improve the estimates if more data are available.

A key aspect to such models in the literature is that the
response time should be a decreasing function of the volume
of resources. This is a property that can easily be verified for
the model above by taking the first derivative of the response
time with respect to X, which yields − B

X2 that can easily be
shown to be strictly less than zero. It should also be noted that
Monma et al. [34] employed the same properties in constructing
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the function in their study of government tasks, although the
value of A is usually set to 0 in that case. Since the DEBS model
involves tasks related to emergency management, regardless of
how large the volume of available resources is assumed to be, the
RT(.) will never equal zero, and so a positive term A was added to
right-hand side of (1) above; this was confirmed via the personal
interview [33]. This implies that there is a finite lower limit on
the response time of each incident and hence naturally on the
restoration time as well.
RTc(S): The combined response time associated to a state S

will be defined as follows:

RTc (S) =
∑

d∈U(S)

RT(d)φ (2)

where φ denotes a correction factor such that φ ≥ 1 and U(S)
denotes the set of basic incidents associated to state S. The
correction factor accounts for the fact that the combined response
time for a given state may exceed the sum of the individual
response times of each incident contained in the state.

ReT: In the discussion that follows, the expression underlying
the DEBS model used to determine the restoration time is
presented. It should be noted that since the state transitions
are probabilistic, each earthquake simulated will also display
randomness in terms of the states it visits. A probability triple
(Ω, ℱ, P) is considered, where Ω denotes the universal set of all
possible earthquakes, ℱ denotes the sigma field of subsets of Ω,
and P is a probability space on (Ω, ℱ). Using the DEBS model,
random samples ω(1), ω(2), …, of earthquakes are generated
from the measurable space. Then, from the strong law of large
numbers, with probability 1, the mean restoration time, ReT, can
be estimated as follows:

E [ReT ] = lim
k→∞

1

k

k∑

m=1

[TT (ω (m)) + RTc (ω (m))] (3)

where E[.] denotes the expectation operator, k denotes the
number of earthquakes simulated, TT(ω(m)) denotes the travel
time in the mth sample earthquake, and RTc(ω(m)) denotes the
response time associated to the state in which the responders
find the system upon arrival in the mth sample earthquake. In
practice, to use a formulation such as the one shown in (3), a
large value for the sample size k is needed.

IV. MODEL SETUP AND EXPERIMENTAL RESULTS

In this section, numerical experimentation is conducted using
the DEBS model considering a case study and two different
scenarios. Section IV-A presents the numerical data used for the
inputs of the model, and Section IV-B discusses the outputs.

A. Model Setup

This section provides details on the numerical values of the
input variables needed in the DEBS model for the case study. In
particular, the inputs for the DEBS model are: the transition
probability vector (PR), the travel times (TTs), the domino
probabilities (DPs), and the response times (RT). Estimation
of the PR vector and the DP matrix require consultations with

Fig. 4. Map of the most congested roads in inner St. Louis, Missouri, U.S.
metropolitan area [29].

Fig. 5. Locations of the fire departments in the inner St. Louis, Missouri, U.S.
metropolitan area [30].

subject matter experts and data collected from the area under
study.

The case study considered in this paper is based on data from
the St. Louis, Missouri, U.S. region, where the probability of
flooding due to an earthquake is rather low. Therefore, first, a
low-probability flooding scenario is presented along with input
data relevant for this region. Then, to illustrate the flexibility
of the model, a second scenario is presented in which a higher
probability of flooding is considered.
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Fig. 6. Map of the St. Louis metropolitan area showing that one of the areas
most susceptible to flooding is the area near the bridge that connects St. Louis
to Centreville in Illinois [31].

As an example, Figs. 4–6 show the nature of data that would
need to be gathered to estimate the travel times in the metropoli-
tan area of St. Louis, Missouri, U.S., which is in close proximity
(approximately 240 km) to the New Madrid Seismic Zone
(NMSZ). In particular, Fig. 4 shows the busiest roads linking to
the bridges over the Mississippi River that connect St. Louis to
the neighboring state of Illinois. These bridges would be critical
locations for smart city sensors since a significant amount of
traffic flows through these bridges. Fig. 5 shows the locations
of the local fire departments in the St. Louis metropolitan area.
Finally, Fig. 6 shows the flood zones in the same area. Identifying
flood zones would be imperative in developing a smart response
to a disaster, which relies on data gathered from strategically
placed sensors. An interesting feature of the area shown in
Figs. 4–6 is that it is in close proximity to the NMSZ, certain
roads and bridges are critical in terms of traffic flow, and the areas
surrounding these roads and bridges are susceptible to flooding.

1) Low Flooding-Probability Scenario: The following inputs
are from low flooding-probability conditions, typical of many
cities in the U.S., and apply to the case study from the St. Louis
region. The following values were used for the PR vector and
the DP matrix.

PR(i) denotes the probability of going from the stable state
to the primary state i. The following values were used for the
elements of the PR vector:

PR =

[
1

4
,
1

4
,

1

16
,
1

4
,

1

16
,

1

16
,

1

16

]
. (4)

The values above are representative of a generic scenario
in which each of the three primary incidents, F, G, and BC,
occur with a probability of 1/4. For the probability of states
with combinations, a lower probability of 1/16 was used. These
probabilities can be easily changed in the DEBS model based
on past experience within an area and/or on the basis of data
provided by subject matter experts.
DP(i, j) in the model denotes the probability of transitioning

from primary state i to a state j in the risk set. In other words, i
denotes a state to which the system transitions when the response

center is notified (i.e., a primary state), which indicates that
i belongs to the set, {2, . . . , 8}, and j belongs to the risk set,
{2, . . . , 15}. All states are numbered and defined in Table I.

To construct the DP matrix in this numerical experimentation,
a generic scenario was used in which the probability of remain-
ing in the same state was assumed to be 10%, i.e.,DP(i, i) = 0.1
for all i. The transitions to other states were assumed to follow
a pattern in which the transitions of higher likelihood were
assigned higher probabilities. Thus, for instance, from State
3 (F), the transition probability to State 4 (F and G) and to
State 7 (F and BC) were assigned equal values of 0.35, but the
transition probability to State 8 (F, G, and BC) was assigned a
lower value of 0.1. Also, any transitions to states involving FL
were assigned lower values, since flooding was considered the
least likely event. But as in the case of the PR vector, it should
be noted that these values would depend on the area under study
and can easily be changed in the DEBS model. Furthermore,
it is very beneficial for training purposes to have emergency
response models where input data can be changed at will to
conduct what-if-analyses [1].

In what follows, all values of DP(.,.) not specified below were
set equal to zero. Also, naturally, the sum of the values from any
given state should equal 1, i.e.,

∑
j DP(i, j) = 1 for every i.

1) From State 2: DP(2, 2) = 0.1;DP(2, 4) = 0.9.
2) From State 3: DP(3, 3) = 0.1;DP(3, 4) = 0.35;DP(3, 7)

= 0.35;DP(3, 8) = 0.1;DP(3, 10) = 0.1.
3) From State 4: DP(4, 4) = 0.1;DP(4, 8) = 0.5;DP(4, 11)

= 0.2;DP(4, 15) = 0.2.
4) From State 5: DP(5, 5) = 0.1;DP(5, 6) = 0.1;DP(5, 7)

= 0.3;DP(5, 8)=0.1;DP(5, 12) = 0.1;DP(5, 13)=0.1;
DP(5, 14) = 0.1;DP(5, 15) = 0.1.

5) From State 6: DP(6, 6) = 0.1;DP(6, 8) = 0.5;DP(6, 14)
= 0.2;DP(6, 15) = 0.2.

6) From State 7: DP(7, 7) = 0.1;DP(7, 8) = 0.5;DP(7, 14)
= 0.2;DP(7, 15) = 0.2.

7) From State 8: DP(8, 8) = 0.1;DP(8, 15) = 0.9.
Based on the personal interview [28], it was learned that each

additional incident in a given state can lead to an approximately
10% increase in the combined response time. Thus, the correc-
tion factor was taken as φ = 1.2 for two incidents, φ = 1.3 for
three incidents, and φ = 1.4 for all four incidents in the state.

The response time, RT, associated with each basic incident
is a function of the level of resources, X, as shown in Table II.
For the purpose of the numerical experimentation in this study,
the values shown in Table II were based on the data by Ghosh
and Gosavi [10] and validated through a personal interview [33].
However, it should be noted that these values can be changed in
the DEBS model considering the area under study. The response
time for each state in Table I can be calculated by adding the num-
bers of hours needed for responding to each incident after the
earthquake and then applying the appropriate correction factor.
For example, in State 15, which involves Gas Leakage (G), Fire
(F), Building Collapse (BC), and Flooding (FL), the response
time for X = 2 is (7 + 21 + 35 + 120 + 5+15+25+80

2 )(1.4) =
343.7 h, where φ = 1.4. In this way, the response time for each
state in Table I is computed for any level of resources. Five
levels of resources were used in the experiments performed
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TABLE III
TRAVEL TIMES, TTs, ASSOCIATED TO DIFFERENT TRAVEL-TIME SCENARIOS, Y

with the DEBS model, where X takes values from the set
{1, 2, 3, 4, 5}. As a first attempt, it is assumed herein that
the resources deployed are appropriate to address the incidents
encountered when the responders arrive on the scene (i.e., even
if the system transitions to a different state), which may not be
the case. In addition, certain states (with certain combinations of
incidents) may require a response that is sequential rather than
simultaneous. Future work could consider these issues to further
improve the model capabilities.

The travel time, TT, is a function of the distance from the
responding center to the affected area and also of the traffic
and infrastructure situation after the shock. According to Anas-
tassiadis and Argyroudis [35], the roadway system is sensitive
to direct damage, such as roadway and bridge failure, and to
indirect damage due to debris of collapsed buildings. As a result,
the travel times are likely to be random variables. In this case,
a random travel time, whose distribution function is assumed
to be known from past observations of traffic, was employed.
In this study, a uniform distribution for the travel time was
assumed, where the lower limit would represent the lowest value,
a, under the best traffic conditions, and the upper limit would
represent the highest value, b, under the worst traffic conditions.
The associated uniform distribution is commonly represented as
UNIF(a, b) in the simulation literature [20]. It is worth noting that
since the DEBS model is founded in discrete-event simulation,
changing these distributions to other distributions is a trivial
task. This is not the case with the Markov chain models, as a
different distribution can mean a difference in the associated
state transitions.

In this paper, five different values for the travel time were
considered, associated to five different travel-time scenarios Y,
which are shown in Table III. The first scenario, corresponding
to Y = 1, is the best case scenario in which the time taken
by the responders to arrive at the affected site is a uniformly
distributed random duration between 1 and 2 h. The remaining
four scenarios involve durations of increasing magnitude, where
the scenario in which Y = 5 is the worst-case scenario where the
time duration is uniformly distributed between 12 and 24 h.
The best-case scenario corresponds to a situation where the
affected site is closest and the only one that has to be visited.
The worst-case scenario involves a situation where the response
center is far from the affected site and is not the only affected
site. These values were chosen to test whether the model can
work robustly under a variety of travel-time scenarios. Clearly,
these values would need to be chosen depending on the local

conditions, e.g., the nature of the roads available and the nature
of the vehicles used.

2) High Flooding-Probability Scenario: In the second sce-
nario, a higher probability of flooding was considered. For these
experiments, the DP matrix was changed to account for the
higher flooding-probability, while none of the other inputs were
changed. In other words, the input vector PR(.) was chosen
as described in (4), and the input variable TT was chosen as
described in Table III.

As in the previous scenario, DP(.,.) values not defined below
were set equal to zero. The states numbered 9 through 15 involve
flooding (see Table I), and hence here, the transition probabilities
to many of these states were set to higher values than in the
low flooding-probability scenario. These higher probabilities are
indicated in bold below.

1) From State 2: DP(2, 2) = 0.1;DP(2, 4) = 0.7;DP(2, 9)
= 0.2.

2) From State 3: DP(3, 3) = 0.1;DP(3, 4) = 0.15;DP(3, 7)
= 0.15;DP(3, 8) = 0.1;DP(3, 10) = 0.5.

3) From State 4: DP(4, 4) = 0.1;DP(4, 8) = 0.3;DP(4, 11)
= 0.4;DP(4, 15) = 0.2.

4) From State 5: DP(5, 5)=0.1;DP(5, 6) = 0.1;DP(5, 7)
= 0.1;DP(5, 8)=0.1;DP(5, 12)=0.3;DP(5, 13) = 0.1;
DP(5, 14) = 0.1;DP(5, 15) = 0.1.

5) From State 6: DP(6, 6) = 0.1;DP(6, 8) = 0.25;DP
(6, 13) = 0.25;DP(6, 14) = 0.2;DP(6, 15) = 0.2.

6) From State 7: DP(7, 7) = 0.1;DP(7, 8) = 0.3;DP(7, 14)
= 0.4;DP(7, 15) = 0.2.

7) From State 8: DP(8, 8) = 0.1;DP(8, 15) = 0.9.

B. Output Data

A computer program was written in the software program
MATLAB to generate a discrete-event simulator of the system.
The software was run on a personal computer with an Intel
Pentium Processor with a speed of 2.66 GHz on a 64-bit op-
erating system. The program takes approximately 25 s to run.
Ten replications were used to estimate the restoration time. Each
replication was run for 1 000 000 h of simulated time with an
overall average of 4400 earthquakes in each replication. Equa-
tion (5) below shows the standard approach used for computing
statistical confidence intervals from the means

x̄± t α
2 , n−1,

s√
n

(5)

where x̄ denotes the sample mean of the restoration time (ReT),
s denotes the standard deviation of the samples, and n denotes
the sample size, which equals the number of replications; for
experiments performed in this study, n= 10 was used. In (5), the
component following ± denotes the half-width. As is standard,
α was assumed to equal 0.05 (i.e., a 95% confidence level was
used) [20].

1) Low Flooding-Probability Scenario: The results of the
experimentation for the low flooding-probability conditions,
typical of the St. Louis region, are presented in Table IV.
The results show that for a given volume of resources, X, the
restoration time increases as the travel time between the response
center and the affected site increases (i.e., increasing value of Y).
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TABLE IV
RESULTS FROM LOW FLOODING-PROBABILITY: MEAN RESTORATION TIMES

ALONG WITH THE HALF-WIDTH OBTAINED AT 95% CONFIDENCE LEVEL

Note: The values in the table should be read as follows: ReT ± h, where ReT denotes the
sample mean of ReT, and h denotes the half-width of the confidence interval on the mean.

Fig. 7. Low flooding-probability: Restoration time versus level (volume) of
resources (X) for a given travel time scenario (Y).

Similarly, for a given value of the travel-time function, Y, the
restoration time decreases as the volume of resources, X,
increases. Figs. 7 and 8 are constructed to show this relationship
in a graphical format.

Fig. 7 clearly shows a nonlinear relationship between the level
of resources and the restoration time. Furthermore, it shows
that selecting the appropriate level of resources is a nontrivial
task that would require simulation-based analysis of the nature
performed here.

Fig. 8 shows a less nonlinear relationship between travel
time and the resulting restoration time. The figure also suggests
that selection of the appropriate response agency when multi-
ple agencies are available would require careful study of the
associated restoration times.

While the overall trends in restoration time with volume of
resources and travel time are intuitive, the graphs clearly demon-
strate a nonlinear relationship that cannot be predicted quantita-
tively without a simulation model of the nature proposed here.

Fig. 8. Low flooding-probability: Restoration time versus travel time of the
affected site from the response center (Y) for a given volume of resources (X).

Fig. 9. Low flooding-probability: Relationship between the restoration time
and the independent variables X and Y.

Hence, the proposed DEBS model would be useful for
performing what-if analyses for training purposes that can go
a long way in improving the quality of preparedness efforts of
emergency managers [1].

Fig. 9 shows a three-dimensional plot of the relationship
between X, Y, and the restoration time. Fig. 9 indicates that the
two parameters, X and Y, produce a nonlinear/nonplanar surface
for the restoration time. This result is reasonable, given that
each of the two parameters has a nonlinear relationship with
the restoration time. The interplay of these parameters and the
nonlinear/nonplanar nature of the resulting surface graph again
support the need for a simulation model of the nature proposed
here to provide quantitative predictions for the restoration time.
This relationship between X, Y, and the restoration time is
particularly important in determining which response center(s)
to select. For example, a certain response center could arrive
more quickly but with lower volumes of resources, whereas a
different response center could have a longer arrival time but
with a larger volume of resources. In this case, the results could
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TABLE V
RESULTS FROM HIGH FLOODING-PROBABILITY: MEAN RESTORATION TIMES

ALONG WITH THE HALF-WIDTH OBTAINED AT 95% CONFIDENCE LEVEL

Note: The values in the table should be read as follows: ReT ± h, where ReT . denotes the
sample mean of ReT, and h denotes the half-width of the confidence interval on the mean.

be used to determine which response center would minimize the
restoration time.

2) High Flooding-Probability Scenario: The results ob-
tained from the high flooding-probability scenario are presented
in Table V. These results show that the restoration time increases
in a statistically significant manner due to the higher flooding
probability. In the worst case, where the resource volumes
are the lowest, X = 1, and the travel times are the longest,
Y = 5, the mean restoration time increases by 13.325 h relative
to the low flooding-probability scenario. These experiments also
demonstrate the flexibility of the DEBS model, as well as its
usefulness for training purposes, in predicting the restoration
times under scenarios where the inputs are different due to
different local conditions.

V. CONCLUSION

Reaching a superior coordination of the activities that involve
the restoration needed immediately after an earthquake is a key
area of research in emergency management. However, there is
little in the literature on simulation modeling of the dynamics of
the events that occur immediately after a critical disaster such as
an earthquake. This paper sought to fill this gap in the literature
by developing a simulation model capable of estimating the time
needed to restore the area affected by an earthquake and thereby
evaluate the performance of the restoration. Furthermore, while
smart and connected cities are increasingly attracting attention in
the U.S., not only from city planners but also from an academic
perspective, the literature on developing a smart response to a
disaster is sparse. This paper attempted to make a joint con-
tribution from both the smart-living and disaster-management
aspects. The DEBS model, which can be tied to communication
technologies employed within smart city architectures, helps
pave the way for future integration of these two fields, which
is increasingly being envisaged in a nationwide attempt to make
cities smarter [36].

The numerical results presented in this paper demonstrated
the importance of the interplay of the two input parameters in

our study, i.e., the level of resources and the travel time. This
interplay is likely to be critical for future studies, especially in
the emerging domain of smart cities, where mass communication
strategies and GPS systems are expected to work in tandem with
disaster-management strategies. The DEBS model could also be
used to compare the efficacy of two or more different locations
for storing emergency resources, which is a problem that has
been studied in general in the literature [37]. Finally, future
research involving multiple centers could consider insights from
game-theoretic models [38].
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