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Target problem

Consider the 2D second order parabolic equation

ut −∇ · (c∇u) = f , in Ω×[0,T ],

u = g , on ∂Ω×[0,T ],

u = u0, at t = 0 and in Ω.

where Ω is a 2D domain, [0,T ] is the time interval, f (x , y , t)
and c(x , y , t) are given functions on Ω×[0,T ], g(x , y , t) is a
given function on ∂Ω×[0,T ], u0(x , y) is given function on Ω
at t = 0, and u(x , y , t) is the unknown function.
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Weak formulation

First, multiply a function v(x , y) on both sides of the original
equation,

ut −∇ · (c∇u) = f in Ω

⇒ utv −∇ · (c∇u)v = fv in Ω

⇒
∫

Ω
utv dxdy −

∫
Ω
∇ · (c∇u)v dxdy =

∫
Ω

fv dxdy .

u(x , y , t) is called a trail function and v(x , y) is called a test
function.
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Weak formulation

Second, using Green’s formula (divergence theory, integration
by parts in multi-dimension)∫

Ω
∇ · (c∇u)v dxdy =

∫
∂Ω

(c∇u · ~n) v ds −
∫

Ω
c∇u · ∇v dxdy ,

we obtain∫
Ω

utv dxdy +

∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds

=

∫
Ω

fv dxdy .
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Weak formulation

Since the solution on the domain boundary ∂Ω are given by
u(x , y , t) = g(x , y , t), then we can choose the test function
v(x , y) such that v = 0 on ∂Ω.

Hence ∫
Ω

utv dxdy +

∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

What spaces should u and v belong to? Sobolev spaces! (See
Chapter 3)

Define

H1(0,T ; H1(Ω)) = {v(t, ·), ∂v

∂t
(t, ·) ∈ H1(Ω), ∀t ∈ [0,T ]}.
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Weak formulation

Weak formulation: find u ∈ H1(0,T ; H1(Ω)) such that∫
Ω

utv dxdy +

∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

for any v ∈ H1
0 (Ω).

Let a(u, v) =
∫

Ω c∇u · ∇vdxdy and (f , v) =
∫

Ω fvdxdy .

Weak formulation: find u ∈ H1(0,T ; H1(Ω)) such that

(ut , v) + a(u, v) = (f , v)

for any v ∈ H1
0 (Ω).
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Galerkin formulation

Consider a finite element space Uh ⊂ H1(Ω). Define Uh0 to
be the space which consists of the functions of Uh with value
0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ H1(0,T ; Uh)
such that

(uht , vh) + a(uh, vh) = (f , vh)

⇔
∫

Ω
uht vh dxdy +

∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh0.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Here Uh = span{φj}Nb
j=1 is chosen to be a finite element space

where {φj}Nb
j=1 are the global finite element basis functions.

10 / 89



Weak formulation Semi-discretization Full discretization More Discussion Second order hyperbolic equation

Galerkin formulation

For an easier implementation, we consider the Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
uh ∈ H1(0,T ; Uh) such that

(uht , vh) + a(uh, vh) = (f , vh)

⇔
∫

Ω
uht vh dxdy +

∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh.
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Discretization formulation

Recall the following definitions from Chapter 2:

N: number of mesh elements.

Nm: number of mesh nodes.

En (n = 1, · · · ,N): mesh elements.

Zk (k = 1, · · · ,Nm): mesh nodes.

Nl : number of local mesh nodes in a mesh element.

P:information matrix consisting of the coordinates of all mesh
nodes.

T : information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.

12 / 89



Weak formulation Semi-discretization Full discretization More Discussion Second order hyperbolic equation

Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Nlb: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

Nb: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

Xj (j = 1, · · · ,Nb): finite element nodes.

Pb: information matrix consisting of the coordinates of all
finite element nodes.

Tb: information matrix consisting of the global node indices
of the finite element nodes of all the mesh elements.
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Discretization formulation

Since uh ∈ H1(0,T ; Uh) and Uh = span{φj}Nb
j=1, then

uh(x , y , t) =

Nb∑
j=1

uj(t)φj(x , y)

for some coefficients uj(t) (j = 1, · · · ,Nb).

If we can set up a linear algebraic system for

uj(t) (j = 1, · · · ,Nb)

and solve it, then we can obtain the finite element solution uh.
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Discretization formulation

Therefore, we choose vh = φi (i = 1, · · · ,Nb). Then

∫
Ω

 Nb∑
j=1

uj(t)φj


t

φi dxdy +

∫
Ω

c∇

 Nb∑
j=1

uj(t)φj

 · ∇φi dxdy

=

∫
Ω

f φi dxdy , i = 1, · · · ,Nb

⇒
Nb∑
j=1

u′j (t)

[∫
Ω

φjφi dxdy

]
+

Nb∑
j=1

uj(t)

[∫
Ω

c∇φj · ∇φi dxdy

]
=

∫
Ω

f φi dxdy , i = 1, · · · ,Nb.

Here the basis functions φi (i = 1, · · · ,Nb) depend on (x , y)
only. But the given functions c and f may depend on t and
(x , y).
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Matrix formulation

Define the stiffness matrix

A(t) = [aij ]
Nb
i,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i,j=1

.

Define the mass matrix

M = [mij ]
Nb
i,j=1 =

[∫
Ω

φjφi dxdy

]Nb

i,j=1

.

Define the load vector

~b(t) = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Define the unknown vector

~X (t) = [uj(t)]Nb
j=1.

Then we obtain the system

M ~X ′(t) + A(t)~X (t) = ~b(t).
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Matrix formulation

At a given time t, the assembly of the stiffness matrix A(t)
and the load vector ~b(t) is the same as that of the A and b in
Chapter 3. But the given time t needs to be incorporated into
the code.

In some simulation, the functions c in the given parabolic
equation may not depend on t. In this case, the stiffness
matrix A(t) is actually independent of t, hence can be
generated before the time marching in exactly the same way
as the A in Chapter 3.

Similarly, the functions f in the given parabolic equation may
not depend on t in some simulation. In this case, the load
vector ~b(t) is actually independent of t, hence can be
generated before the time marching in exactly the same way
as the ~b in Chapter 3.
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Assembly of the mass matrix

Any observation for the mass matrix

M = [mij ]
Nb
i ,j=1 =

[∫
Ω
φjφi dxdy

]Nb

i ,j=1

?

Following the same procedure for A from∫
Ω

c∇φj · ∇φi dxdy

to ∫
En

c∇ψnα · ∇ψnβ dxdy

in Chapter 3, we can also get∫
En

ψnαψnβ dxdy

(
from

∫
Ω
φjφi dxdy

)
.

Just use Algorithm I-3 with r = s = p = q = 0 and c = 1!
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Assembly of a time-independent matrix

Recall Algorithm I-3 from Chapter 3:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

c ∂
r+sψnα

∂x r∂y s
∂p+qψnβ

∂xp∂yq dxdy ;
Add r to A(Tb(β, n),Tb(α, n)).

END
END

END
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Assembly of a time-dependent matrix

Algorithm I-5:

Specify a value for the time t based on the input time;

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

c(t)∂
r+sψnα

∂x r∂y s
∂p+qψnβ

∂xp∂yq dxdy ;
Add r to A(Tb(β, n),Tb(α, n)).

END
END

END
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Assembly of the stiffness matrix

First, we call Algorithm I-5 with r = p = 1, s = q = 0, and
c(x , y , t) to obtain A1(t).

Second, we call Algorithm I-5 with r = p = 0, s = q = 1, and
c(x , y , t) to obtain A2(t).

Then the stiffness matrix A(t) = A1(t) + A2(t).

If c does not depend on t, then this part is exactly the same
as the assembly of the stiffness matrix with Algorithm I-3 in
Chapter 3.
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Assembly of a time-independent vector

Recall Algorithm II-3 from Chapter 3:

Initialize the matrix: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

f
∂p+qψnβ

∂xp∂yq dxdy ;
b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;

END
END
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Assembly of a time-dependent vector

Algorithm II-5:

Specify a value for the time t based on the input time;

Initialize the vector: b = sparse(Nb, 1);

Compute the integrals and assemble them into b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫
En

f (t)
∂p+qψnβ

∂xp∂yq dxdy ;
b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;

END
END
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Assembly of the load vector

We call Algorithm II-5 with p = q = 0 and f (x , y , t) to obtain
b(t).

If f does not depend on t, then this part is exactly the same
as the assembly of the load vector with Algorithm II-3 in
Chapter 3.
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Time-dependent Dirichlet boundary condition

Since Algorithm III Chapter 3 is time-independent, it is not
suitable for the time-dependent Dirichlet boundary condition in
this chapter. Therefore, we will use the following Algorithm III-2:

Specify a value for the time t based on the input time;

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
If boundarynodes(1, k) shows Dirichlet condition, then

i = boundarynodes(2, k);
Ā(i , :) = 0;
Ā(i , i) = 1;
b̄(i) = g(Pb(:, i), t);

ENDIF
END

25 / 89



Weak formulation Semi-discretization Full discretization More Discussion Second order hyperbolic equation

Outline

1 Weak formulation

2 Semi-discretization

3 Full discretization

4 More Discussion

5 Second order hyperbolic equation

26 / 89



Weak formulation Semi-discretization Full discretization More Discussion Second order hyperbolic equation

Observation

Any observation for the system

M ~X ′(t) + A(t)~X (t) = ~b(t)?

System of ordinary differential equations (ODEs)!

How to solve it?

Finite difference (FD) method!
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Review of finite difference method for a first order ODE

Basic idea:

Consider the IVP

y ′(t) = f (t, y(t)) (a ≤ t ≤ b), y(a) = ga

given the initial value ga.

Assume that we have a uniform partition of [a, b] into J
elements with mesh size h.

The mesh nodes are tj = a + jh, j = 0, 1, · · · , J.

Assume yj is the numerical solution of y(tj).

Then the initial condition implies: y0 = y(a) = ga.

A straightforward discretization of f (t, y(t)) at tj is f (tj , yj).

How about the discretization of y ′(t) at tj?

Taylor’s expansion!
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Review of finite difference method for a first order ODE

Theorem

Suppose that f (x) is a (n + 1)th differentiable function on [a, b]
and x0 ∈ [a, b]. Then for any x ∈ [a, b], we have the following
Taylor’s expansion of f (x) at x0:

f (x) = Pn(x) + Rn(x),

where

Pn(x) =
n∑

k=0

1

k!
f (k)(x0)(x − x0)k

= f (x0) + f ′(x0)(x − x0) +
1

2!
f ′′(x0)(x − x0)2 + · · ·

+
1

n!
f (n)(x0)(x − x0)n,
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Review of finite difference method for a first order ODE

Theorem (Continued)

Rn =
1

(n + 1)!
f (n+1)(ξ)(x − x0)n+1

for some ξ ∈ [x0, x ] (Lagrange form of the remainder) ,

or

Rn =
1

n!

∫ x

x0

f (n+1)(s)(x − s)n ds

(Integral form of the remainder) .
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Review of finite difference method for a first order ODE

Pick n = 3 in the Taylor’s expansion:

f (x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)2

+
1

6
f ′′′(x0)(x − x0)3 +

1

24
f (4)(ξ)(x − x0)4.

Replace x by x + h and x0 by x :

f (x + h) = f (x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + O

(
h4
)
.

We first consider the discretization of the first derivative
f ′(x). Then

f ′(x) =
f (x + h)− f (x)

h
− 1

2
f ′′(x)h − 1

6
f ′′′(x)h2 − O

(
h3
)

=
f (x + h)− f (x)

h
+ O (h).
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Review of finite difference method for a first order ODE

Assume that we have a uniform partition of [a, b] into J
elements with mesh size h.

The mesh nodes are tj = a + jh, j = 0, 1, · · · , J.

Then

f ′(tj) =
f (tj + h)− f (tj)

h
+ O (h)

=
f (tj+1)− f (tj)

h
+ O (h)

≈
fj+1 − fj

h
, j = 0, 1, · · · , J − 1.

Here fj is the approximation of f (tj). This is called forward
difference.
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Review of finite difference method for a first order ODE

Recall the Taylor’s expansion with n = 3:

f (x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)2

+
1

6
f ′′′(x0)(x − x0)3 +

1

24
f (4)(ξ)(x − x0)4.

Replace x by x − h and x0 by x :

f (x − h) = f (x)− f ′(x)h +
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + O

(
h4
)
.

Then

f ′(x) =
f (x)− f (x − h)

h
+

1

2
f ′′(x)h − 1

6
f ′′′(x)h2 + O

(
h3
)

=
f (x)− f (x − h)

h
+ O (h).
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Review of finite difference method for a first order ODE

Consider the same partition as above.

Then

f ′(tj) =
f (tj)− f (tj − h)

h
+ O (h)

=
f (tj)− f (tj−1)

h
+ O (h)

≈
fj − fj−1

h
, j = 1, · · · , J.

This is called backward difference.
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Review of finite difference method for a first order ODE

Observation: Both of the forward and backward difference
schemes are of first order.

Is it possible to construct a higher order difference scheme for
f ′(xj)? Yes!

Recall

f (x + h) = f (x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + O

(
h4
)
,

f (x − h) = f (x)− f ′(x)h +
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + O

(
h4
)
.

Subtract the second equation from the first one:

f (x + h)− f (x − h) = 2f ′(x)h +
1

3
f ′′′(x)h3 + O

(
h4
)
.
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Review of finite difference method for a first order ODE

Then

f ′(x) =
f (x + h)− f (x − h)

2h
− 1

12
f ′′′(x)h2 + O

(
h3
)

=
f (x + h)− f (x − h)

2h
+ O

(
h2
)
.

This is second order!

Hence

f ′(tj) =
f (tj + h)− f (tj − h)

2h
+ O

(
h2
)

=
f (tj+1)− f (tj−1)

2h
+ O

(
h2
)

≈ fj+1 − fj−1

2h
, j = 1, · · · , J − 1.

This is called centered difference.
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Review of finite difference method for a first order ODE

Hence we obtain the following difference schemes:

Forward difference for y ′(tj) ≈
yj+1−yj

h .

Backward difference for y ′(tj) ≈
yj−yj−1

h .

Centered difference for y ′(tj) ≈
yj+1−yj−1

2h .
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Review of finite difference method for a first order ODE

Forward Euler scheme:

y ′(t) = f (t, y(t))

⇒ y ′(tj) = f (tj , y(tj)), j = 0, · · · , J − 1

⇒
y(tj+1)− y(tj)

h
+ O(h) = f (tj , y(tj)), j = 0, · · · , J − 1

⇒
yj+1 − yj

h
= f (tj , yj), j = 0, · · · , J − 1

⇒ yj+1 = yj + h · f (tj , yj), j = 0, · · · , J − 1,

y0 = y(a) = ga.
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Review of finite difference method for a first order ODE

Backward Euler scheme:

y ′(t) = f (t, y(t))

⇒ y ′(tj) = f (tj , y(tj)), j = 1, · · · , J

⇒
y(tj)− y(tj−1)

h
+ O(h) = f (tj , y(tj)), j = 1, · · · , J

⇒
yj − yj−1

h
= f (tj , yj), j = 1, · · · , J

⇒
yj+1 − yj

h
= f (tj+1, yj+1), j = 0, · · · , J − 1

⇒ yj+1 = yj + h · f (tj+1, yj+1), j = 0, · · · , J − 1,

y0 = y(a).
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Review of finite difference method for a first order ODE

Trapezoidal scheme(Crank-Nicolson scheme if it’s applied to
PDE):

yj+1 − yj
h

=
f (tj+1, yj+1) + f (tj , yj)

2
;

Two-step backward differentiation:

3yj+1 − 4yj + yj−1

2h
= f (tj+1, yj+1);

Three-step backward differentiation:

11yj+1 − 18yj + 9yj−1 − 2yj−2

6h
= f (tj+1, yj+1).
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Review of finite difference method for a first order ODE

Actually, the forward Euler scheme, backward Euler scheme,
and Crank-Nicolson scheme can be rewritten into a more
general θ−scheme:

yj+1 − yj
h

= θf (tj+1, yj+1) + (1− θ)f (tj , yj);

θ = 0: forward Euler scheme;

θ = 1: backward Euler scheme;

θ = 1
2 : Crank-Nicolson scheme.
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Temporal discretization for the ODE system

Now let’s consider the system of ODEs:

M ~X ′(t) + A(t)~X (t) = ~b(t).

Assume that we have a uniform partition of [0,T ] into Mm

elements with mesh size 4t.

The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Assume ~Xm is the numerical solution of ~X (tm).

Then the corresponding θ−scheme is

M
~Xm+1 − ~Xm

4t
+ θA(tm+1)~Xm+1 + (1− θ)A(tm)~Xm

= θ~b(tm+1) + (1− θ)~b(tm), m = 0, · · · ,Mm − 1.
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Temporal discretization for the ODE system

Then

M
~Xm+1 − ~Xm

4t
+ θA(tm+1)~Xm+1 + (1− θ)A(tm)~Xm

= θ~b(tm+1) + (1− θ)~b(tm)

⇒
[
M

4t
+ θA(tm+1)

]
~Xm+1

= θ~b(tm+1) + (1− θ)~b(tm) +
M

4t
~Xm − (1− θ)A(tm)~Xm.

Iteration scheme 1:

Ām+1~Xm+1 = ~̄bm+1, m = 0, · · · ,Mm − 1,

where

Ām+1 =
M

4t
+ θA(tm+1),

~̄bm+1 = θ~b(tm+1) + (1− θ)~b(tm) +
M

4t
~Xm − (1− θ)A(tm)~Xm.
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Temporal discretization for the ODE system

Algorithm A:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Generate the initial vector ~X 0.

Iterate in time:
FOR m = 0, · · · ,Mm − 1:

tm+1 = (m + 1)4t;
tm = m4t;
Assemble the stiffness matrices A(tm+1) and A(tm) by

using Algorithm I-5 at t = tm+1 and t = tm;
Assemble the load vectors ~b(tm+1) and ~b(tm) by using

Algorithm II-5 at t = tm+1 and t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-2 for Ām+1 and ~̄bm+1 at t = tm+1;
Solve iteration scheme 1 for ~Xm+1.
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Temporal discretization for the ODE system

Remark

The matrix A, vector ~b and boundary conditions could be
independent of the time. In this case, they can be handled before
the loop for the time iteration starts, which can dramatically save
the computational cost.
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Temporal discretization for the ODE system

If the function c is independent of the time t, then the stiffness matrix A
is independent of time t. Then

M
~Xm+1 − ~Xm

4t
+ θA~Xm+1 + (1− θ)A~Xm = θ~b(tm+1) + (1− θ)~b(tm)

⇒
(

M

4t
+ θA

)
~Xm+1 = θ~b(tm+1) + (1− θ)~b(tm) +

M

4t
~Xm − (1− θ)A~Xm.

Iteration scheme 2:

Ā~Xm+1 = ~̄bm+1, m = 0, · · · ,Mm − 1,

where

Ā =
M

4t
+ θA,

~̄bm+1 = θ~b(tm+1) + (1− θ)~b(tm) +

[
M

4t
− (1− θ)A

]
~Xm.
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Temporal discretization for the ODE system

Algorithm B:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X 0.

Iterate in time:
FOR m = 0, · · · ,Mm − 1:

tm+1 = (m + 1)4t;
tm = m4t;
Assemble the load vectors ~b(tm+1) and ~b(tm) by using

Algorithm II-5 at t = tm+1 and t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-2 for Ā and ~̄bm+1 at t = tm+1;
Solve iteration scheme 2 for ~Xm+1.

END
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Temporal discretization for the ODE system

Define ~Xm+θ = θ~Xm+1 + (1− θ)~Xm.

Then ~Xm+1 − ~Xm =
~Xm+θ−~Xm

θ
if θ 6= 0.

Hence

M
~Xm+1 − ~Xm

4t
+ θA~Xm+1 + (1− θ)A~Xm = θ~b(tm+1) + (1− θ)~b(tm)

⇒ M
~Xm+1 − ~Xm

4t
+ A

[
θ~Xm+1 + (1− θ)~Xm

]
= θ~b(tm+1) + (1− θ)~b(tm)

⇒ M
~Xm+θ − ~Xm

θ4t
+ A~Xm+θ = θ~b(tm+1) + (1− θ)~b(tm)

⇒
(

M

θ4t
+ A

)
~Xm+θ = θ~b(tm+1) + (1− θ)~b(tm) +

M ~Xm

θ4t
.
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Temporal discretization for the ODE system

Iteration scheme 3:

Āθ~Xm+θ = ~̄bm+θ, m = 0, · · · ,Mm − 1,

where

Āθ =
M

θ4t
+ A,

~̄bm+θ = θ~b(tm+1) + (1− θ)~b(tm) +
M

θ4t
~Xm.

Since ~Xm+θ = θ~Xm+1 + (1− θ)~Xm, then

~Xm+1 =
~Xm+θ − ~Xm

θ
+ ~Xm.
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Temporal discretization for the ODE system

Algorithm C :

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X 0.

Iterate in time:
FOR m = 0, · · · ,Mm − 1:

tm+1 = (m + 1)4t;
tm = m4t;
Assemble the load vectors ~b(tm+1) and ~b(tm) by using

Algorithm II-5 at t = tm+1 and t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-2 for Āθ and ~̄bm+θ at t = tm+θ;
Solve iteration scheme 3 for ~Xm+1.

END
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Numerical example

Example 1: Use the finite element method to solve the
following equation for u(x , y , t) on the domain
Ω = [0, 2]× [0, 1]:

ut −∇ · (2∇u) = −3ex+y+t , in Ω× [0, 1],

u = ex+y , at t = 0 and in Ω,

u = ey+t on x = 0,

u = e2+y+t on x = 2,

u = ex+t on y = 0,

u = ex+1+t on y = 1.

The analytic solution of this problem is u = ex+y+t , which
can be used to compute the error of the numerical solution.
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Numerical example

Let’s code for the linear and quadratic finite element method
of the 2D second order parabolic equation together!

We will use Algorithm B.

Open your Matlab!
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Numerical example

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/4 3.7039× 10−1 1.9449× 10−1 2.5875× 100

1/8 9.8704× 10−2 5.0853× 10−2 1.2865× 100

1/16 2.5483× 10−2 1.2871× 10−2 6.4214× 10−1

1/32 6.4745× 10−3 3.2279× 10−3 3.2092× 10−1

1/64 1.6318× 10−3 8.0763× 10−4 1.6044× 10−1

Table: Case 1: The numerical errors at t = 1 for linear finite element and
backward Euler scheme (θ = 1) with 4t = 4h2.

Any Observation?
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Numerical example

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm.

The backward Euler scheme has first order accuracy for
temporal discretization.

The linear finite element has second order accuracy in L2/L∞

norm and first order accuracy in H1 semi-norm for spatial
discretization.

Hence the accuracy order is expected to be O(4t + h2) in
L2/L∞ norm and O(4t + h) in H1 norm, which match the
above observation since 4t = 4h2 in case 1.
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Numerical example

Case 2: The numerical errors at t = 1 for quadratic finite
element and backward Euler scheme (θ = 1) with 4t = 8h3.

In your final exam project, you should observe third order
convergence O(h3) in L2/L∞ norm and second order
convergence O(h2) in H1 semi-norm.

The backward Euler scheme has second order accuracy for
temporal discretization.

The quadratic finite element has third order accuracy in
L2/L∞ norm and second order accuracy in H1 semi-norm for
spatial discretization.

Hence the accuracy order is expected to be O(4t + h3) in
L2/L∞ norm and O(4t + h2) in H1 norm, which match the
above observation since 4t = 8h3 in case 2.
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Numerical example

However, you will also observe much more cost in time for this
case too since 4t = 8h3 is much smaller than that of the
previous cases.

When the mesh becomes finer and finer or the problem
becomes 3D, the situation is even worse.

This is why we need temporal discretization with higher order
accuracy and efficient methods to solve linear systems.
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Numerical example

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/4 3.7039× 10−1 1.4423× 10−1 2.5748× 100

1/8 9.8704× 10−2 3.5921× 10−2 1.2845× 100

1/16 2.5483× 10−2 8.9715× 10−3 6.4187× 10−1

1/32 6.4745× 10−3 2.2423× 10−3 3.2089× 10−1

1/64 1.6318× 10−3 5.6055× 10−4 1.6044× 10−1

Table: Case 3: The numerical errors at t = 1 for linear finite element and
Crank-Nicolson scheme (θ = 1

2 ) with 4t = h.

Any Observation?
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Numerical example

Second order convergence O(h2) in L2/L∞ norm and first
order convergence O(h) in H1 semi-norm.

The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

The linear finite element has second order accuracy in L2/L∞

norm and first order accuracy in H1 semi-norm for spatial
discretization.

Hence the accuracy order is expected to be O(4t2 + h2) in
L2/L∞ norm and O(4t2 + h) in H1 norm, which match the
above observation since 4t = h in case 3.
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Numerical example

h 4t ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/4 1/8 6.1549× 10−3 2.2830× 10−3 8.3065× 10−2

1/8 1/23 8.1024× 10−4 2.8702× 10−4 2.0725× 10−2

1/16 1/64 1.0403× 10−4 3.6236× 10−5 5.1789× 10−3

1/32 1/181 1.3179× 10−5 4.5451× 10−6 1.2946× 10−3

1/64 1/512 1.6587× 10−6 5.6913× 10−7 3.2363× 10−4

Table: Case 4: The numerical errors at t = 1 for quadratic finite element
and Crank-Nicolson scheme (θ = 1

2 ) with 4t2 ≈ h3.

Any Observation?
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Numerical example

Third order convergence O(h3) in L2/L∞ norm and second
order convergence O(h2) in H1 semi-norm.

The Crank-Nicolson scheme has second order accuracy for
temporal discretization.

The quadratic finite element has third order accuracy in
L2/L∞ norm and second order accuracy in H1 semi-norm for
spatial discretization.

Hence the accuracy order is expected to be O(4t2 + h3) in
L2/L∞ norm and O(4t2 + h2) in H1 norm, which match the
above observation since 4t2 ≈ h3 in case 4.
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Outline

1 Weak formulation
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Efficient methods

Forward Euler: cheap at each time iteration step, but
conditionally stable, which means that 4t must be smaller
enough.

Multi-step methods for temporal discretization: two-step
backward differentiation, three-step backward differentiation,
Runge-Kutta method......

Efficient solvers for linear systems: multi-grid, PCG,
GMRES......
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Mixed boundary conditions

The treatment of the Neumann/Robin boundary conditions is
similar to that of Chapter 3.

If the functions in the Neumann/Robin boundary conditions
are independent of time, then the same subroutines from
Chapter 3 can be used before the time iteration starts.

If the functions in the Neumann/Robin boundary conditions
depend on time, then the same algorithms as those in Chapter
3 can be used at each time iteration step. But the time needs
to be specified in these algorithms.
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Mixed boundary conditions

Consider

ut −∇ · (c∇u) = f in Ω×[0,T ],

∇u · ~n = p on ΓN×[0,T ],

∇u · ~n + ru = q on ΓR×[0,T ],

u = g on ΓD×[0,T ],

u = u0, at t = 0 and in Ω

where ΓN , ΓR ⊂ ∂Ω and ΓD = ∂Ω/(ΓN ∪ ΓR).

Recall ∫
Ω

utv dxdy +

∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds

=

∫
Ω

fv dxdy .
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Mixed boundary conditions

Since the solution on ΓD = ∂Ω/(ΓN ∪ ΓR) is given by u = g ,
then we can choose the test function v such that v = 0 on
∂Ω/(ΓN ∪ ΓR).

Hence, similar to the treatment of the mixed boundary
condition in Chapter 3, the weak formulation is to find
u ∈ H1(0,T ; H1(Ω)) such that∫

Ω
utv dxdy +

∫
Ω

c∇u · ∇v dxdy+

∫
ΓR

cruv ds

=

∫
Ω

fv dxdy+

∫
ΓN

cpv ds +

∫
ΓR

cqv ds

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

Code? Combine all of the subroutines for
Dirichlet/Neumann/Robin boundary conditions.
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Non-isotropic second order parabolic equation with mixed
boundary conditions

Consider

ut −∇ · (c∇u) = f in Ω×[0,T ],

c∇u · ~n = p on ΓN×[0,T ],

c∇u · ~n + ru = q on ΓR×[0,T ],

u = g on ΓD×[0,T ],

u = u0, at t = 0 and in Ω

where ΓN , ΓR ⊂ ∂Ω, ΓD = ∂Ω/(ΓN ∪ ΓR), and

c =

(
c11 c12

c21 c22

)
.

The treatment of the non-isotropic equation is similar to that
of Chapter 3.
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Another format of full discretization

Recall the Galerkin formulation of the semi-discretization
(without considering the Dirichlet boundary condition, which
will be handled later): find uh ∈ H1(0,T ; Uh) such that

(uht , vh) + a(uh, vh) = (f , vh)

⇔
∫

Ω
uht vh dxdy +

∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh.

Instead of obtaining the matrix formulation from this
semi-discretization and proposing the full discretization based
on the matrix formulation, we can first present the full
discretization based on this semi-discretization and then
obtain the matrix formulation for the full discretization.
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Another format of full discretization

Assume that we have a uniform partition of [0,T ] into Mm

elements with mesh size 4t.

The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Let um
h denote the numerical solution at tm.

Then we consider the full discretization (without considering
the Dirichlet boundary condition, which will be handled later):
for m = 0, · · · ,Mm − 1, find um+1

h ∈ Uh such that(
um+1
h − um

h

4t
, vh

)
+ θa(um+1

h , vh) + (1− θ)a(um
h , vh)

= θ(f (tm+1), vh) + (1− θ)(f (tm), vh),

for any vh ∈ Uh.
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Another format of full discretization

That is, for m = 0, · · · ,Mm − 1, find um+1
h ∈ Uh such that∫

Ω

um+1
h − um

h

4t
vh dxdy

+θ

∫
Ω

c∇um+1
h · ∇vh dxdy + (1− θ)

∫
Ω

c∇um
h · ∇vh dxdy

= θ

∫
Ω

f (tm+1)vh dxdy + (1− θ)

∫
Ω

f (tm)vh dxdy ,

for any vh ∈ Uh.
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Another format of full discretization

Hence, for m = 0, · · · ,Mm − 1, find um+1
h ∈ Uh such that∫

Ω

um+1
h

4t
vh dxdy + θ

∫
Ω

c(tm+1)∇um+1
h · ∇vh dxdy

= θ

∫
Ω

f (tm+1)vh dxdy + (1− θ)

∫
Ω

f (tm)vh dxdy

+

∫
Ω

um
h

4t
vh dxdy − (1− θ)

∫
Ω

c(tm)∇um
h · ∇vh dxdy

for any vh ∈ Uh.
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Another format of full discretization

Since um+1
h ∈ Uh and Uh = span{φj}Nb

j=1, then

um+1
h (x , y) =

Nb∑
j=1

um+1
j φj(x , y)

for some coefficients um+1
j (j = 1, · · · ,Nb).

If we can set up a linear algebraic system for

um+1
j (j = 1, · · · ,Nb)

and solve it, then we can obtain the finite element solution
um+1
h .
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Another format of full discretization

Therefore, we choose vh = φi (i = 1, · · · ,Nb). Then∫
Ω

∑Nb
j=1 um+1

j φj

4t
φi dxdy

+θ

∫
Ω

c(tm+1)∇

 Nb∑
j=1

um+1
j φj

 · ∇φi dxdy

= θ

∫
Ω

f (tm+1)φi dxdy + (1− θ)

∫
Ω

f (tm)φi dxdy

+

∫
Ω

∑Nb
j=1 um

j φj

4t
φi dxdy

−(1− θ)

∫
Ω

c(tm)∇

 Nb∑
j=1

um
j φj

 · ∇φi dxdy
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Another format of full discretization

Hence

Nb∑
j=1

um+1
j

1

4t

(∫
Ω
φjφi dxdy

)

+θ

Nb∑
j=1

um+1
j

(∫
Ω

c(tm+1)∇φj · ∇φi dxdy

)
= θ

∫
Ω

f (tm+1)φi dxdy + (1− θ)

∫
Ω

f (tm)φi dxdy

+

Nb∑
j=1

um
j

1

4t

(∫
Ω
φjφi dxdy

)

−(1− θ)

Nb∑
j=1

um
j

(∫
Ω

c(tm)∇φj · ∇φi dxdy

)
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Another format of full discretization

Define the stiffness matrix

A(t) = [aij ]
Nb
i,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i,j=1

.

Define the mass matrix

M = [mij ]
Nb
i,j=1 =

[∫
Ω

φjφi dxdy

]Nb

i,j=1

.

Define the load vector

~b(t) = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Define the unknown vector

~Xm+1 = [um+1
j ]Nb

j=1.

Then we obtain the same system as in the last section:[
M

4t
+ θA(tm+1)

]
~Xm+1 = θ~b(tm+1) + (1− θ)~b(tm) +

M

4t
~Xm − (1− θ)A(tm)~Xm.

Hence the rest of the derivation and the pseudo code are the same as in
the last section.
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Weak formulation

Consider

utt −∇ · (c∇u) = f in Ω×[0,T ],

u = g on ∂Ω×[0,T ],

u = u0,
∂u

∂t
= u00 at t = 0 and in Ω.

Similar to the second order parabolic equation, one can obtain∫
Ω

uttv dxdy +

∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds

=

∫
Ω

fv dxdy .
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Weak formulation

Since the solution on the domain boundary ∂Ω are given by
u(x , y , t) = g(x , y , t), then we can choose the test function
v(x , y) such that v = 0 on ∂Ω.

Hence ∫
Ω

uttv dxdy +

∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

What spaces should u and v belong to? Sobolev spaces! (See
Chapter 3)

Define

H2(0,T ; H1(Ω)) = {v(t, ·), ∂v

∂t
(t, ·), ∂

2v

∂t2
(t, ·) ∈ H1(Ω), ∀t ∈ [0,T ]}.
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Weak formulation

Weak formulation for the second order hyperbolic equation:
find u ∈ H2(0,T ; H1(Ω)) such that∫

Ω
uttv dxdy +

∫
Ω

c∇u · ∇v dxdy =

∫
Ω

fv dxdy .

for any v ∈ H1
0 (Ω).

Let a(u, v) =
∫

Ω c∇u · ∇vdxdy and (f , v) =
∫

Ω fvdxdy .

Weak formulation: find u ∈ H2(0,T ; H1(Ω)) such that

(utt , v) + a(u, v) = (f , v)

for any v ∈ H1
0 (Ω).
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Galerkin formulation

Assume there is a finite dimensional subspace Uh ⊂ H1(Ω).
Define Uh0 to be the space which consists of the functions of
Uh with value 0 on the Dirichlet boundary.

Then the Galerkin formulation is to find uh ∈ H2(0,T ; Uh)
such that

(uhtt , vh) + a(uh, vh) = (f , vh)

⇔
∫

Ω
uhtt vh dxdy +

∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh0.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Here Uh = span{φj}Nb
j=1 is chosen to be a finite element space

where {φj}Nb
j=1 are the global finite element basis functions.
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Galerkin formulation

For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
uh ∈ H2(0,T ; Uh) such that

(uhtt , vh) + a(uh, vh) = (f , vh)

⇔
∫

Ω
uhtt vh dxdy +

∫
Ω

c∇uh · ∇vh dxdy =

∫
Ω

fvh dxdy

for any vh ∈ Uh.
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Discretization formulation

Since uh ∈ H2(0,T ; Uh) and Uh = span{φj}Nb
j=1, then

uh(x , y , t) =

Nb∑
j=1

uj(t)φj(x , y)

for some coefficients uj(t) (j = 1, · · · ,Nb).

If we can set up a linear algebraic system for

uj(t) (j = 1, · · · ,Nb)

and solve it, then we can obtain the finite element solution uh.
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Discretization formulation

Therefore, we choose vh = φi (i = 1, · · · ,Nb). Then

∫
Ω

 Nb∑
j=1

uj(t)φj


tt

φi dxdy +

∫
Ω

c∇

 Nb∑
j=1

uj(t)φj

 · ∇φi dxdy

=

∫
Ω

f φi dxdy , i = 1, · · · ,Nb

⇒
Nb∑
j=1

u′′j (t)

[∫
Ω

φjφi dxdy

]
+

Nb∑
j=1

uj(t)

[∫
Ω

c∇φj · ∇φi dxdy

]
=

∫
Ω

f φi dxdy , i = 1, · · · ,Nb.

Here the basis functions φi (i = 1, · · · ,Nb) depend on (x , y)
only. But the given functions c and f may depend on t and
(x , y).
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Matrix formulation

Define the stiffness matrix

A(t) = [aij ]
Nb
i,j=1 =

[∫
Ω

c∇φj · ∇φi dxdy

]Nb

i,j=1

.

Define the mass matrix

M = [mij ]
Nb
i,j=1 =

[∫
Ω

φjφi dxdy

]Nb

i,j=1

.

Define the load vector

~b(t) = [bi ]
Nb
i=1 =

[∫
Ω

f φi dxdy

]Nb

i=1

.

Define the unknown vector

~X (t) = [uj(t)]Nb
j=1.

Then we obtain the system

M ~X ′′(t) + A(t)~X (t) = ~b(t).
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Temporal discretization for the ODE system

Consider the centered finite difference scheme the system of
ODEs:

M ~X ′′(t) + A~X (t) = ~b(t).

Assume that we have a uniform partition of [0,T ] into Mm

elements with mesh size 4t.

The mesh nodes are tm = m4t, m = 0, 1, · · · ,Mm.

Assume ~Xm is the numerical solution of ~X (tm).

Then the centered finite difference scheme is

M
~Xm+1 − 2~Xm + ~Xm−1

4t2
+ A

~Xm+1 + 2~Xm + ~Xm−1

4

= ~b(tm), m = 1, · · · ,Mm − 1.
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Temporal discretization for the ODE system

Iteration scheme 2:

Ā~Xm+1 = ~̄bm+1, m = 1, · · · ,Mm − 1,

where

Ā =
M

4t2
+

A

4
,

~̄bm+1 = ~b(tm) +

[
2M

4t2
− A

2

]
~Xm −

[
M

4t2
+

A

4

]
~Xm−1.
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Temporal discretization for the ODE system

Algorithm B:

Generate the mesh information matrices P and T .

Assemble the mass matrix M by using Algorithm I-3.

Assemble the stiffness matrix A by using Algorithm I-3.

Generate the initial vector ~X 0 and ~X 1 based on the initial
conditions.

Iterate in time:
FOR m = 1, · · · ,Mm − 1:

tm = m4t;
Assemble the load vectors ~b(tm) by using Algorithm II-5

at t = tm;
Deal with Dirichlet boundary conditions by using

Algorithm III-2 for Ā and ~̄bm+1 at t = tm+1;
Solve iteration scheme 2 for ~Xm+1.

END
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Mixed boundary conditions for second order hyperbolic
equations

Consider

utt −∇ · (c∇u) = f in Ω×[0,T ],

∇u · ~n = p on ΓN×[0,T ],

∇u · ~n + ru = q on ΓR×[0,T ],

u = g on ΓD×[0,T ],

u = u0,
∂u

∂t
= u00, at t = 0 and in Ω.

Recall∫
Ω

uttv dxdy +

∫
Ω

c∇u · ∇v dxdy −
∫
∂Ω

(c∇u · ~n) v ds

=

∫
Ω

fv dxdy .
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Mixed boundary conditions for second order hyperbolic
equations

Since the solution on ΓD = ∂Ω/(ΓN ∪ ΓR) is given by u = g ,
then we can choose the test function v such that v = 0 on
∂Ω/(ΓN ∪ ΓR).

Hence, similar to the treatment of the mixed boundary
condition in Chapter 3, the weak formulatio is to find
u ∈ H2(0,T ; H1(Ω)) such that∫

Ω
uttv dxdy +

∫
Ω

c∇u · ∇v dxdy+

∫
ΓR

cruv ds

=

∫
Ω

fv dxdy+

∫
ΓN

cpv ds +

∫
ΓR

cqv ds

for any v ∈ H1
0D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

Code? Combine all of the subroutines for
Dirichlet/Neumann/Robin boundary conditions.
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Non-isotropic second order hyperbolic equation with mixed
boundary conditions

Consider

utt −∇ · (c∇u) = f in Ω×[0,T ],

c∇u · ~n = p on ΓN×[0,T ],

c∇u · ~n + ru = q on ΓR×[0,T ],

u = g on ΓD×[0,T ],

u = u0,
∂u

∂t
= u00, at t = 0 and in Ω.

where ΓN , ΓR ⊂ ∂Ω, ΓD = ∂Ω/(ΓN ∪ ΓR), and

c =

(
c11 c12

c21 c22

)
.

The treatment of the non-isotropic equation is similar to that
of Chapter 3.
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