Combined Therapy: Interferones, Digestive Enzymes, Immune Boosters

Ulrich D. Jentschura
Cancer Science–2020 Virtual

01 October 2020

Research Supported by NSF (2014–2020)
Abstract

The talk describes a novel ansatz for cancer treatment, based on the combined action of natural interferones, digestive enzymes used in Asian medicine, and generic immune boosters. The idea is to combine the cell-growth-inhibitor properties of natural interferones (e.g., withaferinA) with generic immune boosters (e.g., high doses of vitamin C on a level exceeding RDA by a factor of at least six, and other ingredients). As already observed by physicians in the 1800s, a natural boosting of the immune system due to influenza infections often is able to stimulate an increased immune response against cancer cells which are otherwise effectively hiding from the immune system. Similar observations had been made by Imhotep, the physician treating Pharaoh Djoser, when he deliberately infected the Pharaoh’s tumor using a pultice, following an incision, about 2600BC. The third ingredient, the digestive enzymes, serve to accelerate the convergence of the therapy, by stimulating fast removal of the killed cancer cells from the human body. One enzyme of particular effectiveness is serratiopeptidase, which is used by the Chinese silk worm in order to dispose of its cocoon with a time frame of about 15 minutes. The enzyme is routinely used with good effect in Asian medicine. The application of the therapy is recorded for a case study; results have been discussed in [U. D. Jentschura, J. Cancer Therapy 9, 156 (2018)]. The therapy ansatz could supplement established approaches based on surgery and chemotherapy, and be useful in the context of cancer prevention.
General Idea

Enzyme-Supported Immunotherapy

1. Immunotherapy
2. Interferones
3. Digestive Enzymes

(Low-cost, Self-Made Therapy)
(Worked Well in a Case Study)

Working Together

1. Vitamin C at a dose of 3000 mg per day
2A. Withaferin-A (ashwaghanda, *withania somnifera*)
2B. Kachnar (*bauhinia tormentosa*)
3. Serratiopeptidase
Timeline of Events

- Case study “on myself”
- Between 2008 and 2014, developed goiter
- 2011–2013: Disappointing results of attempted therapy: No recession of the nodules (in the left lobe) despite drainage, percutaneous ethanol injection and levothyroxine replacement therapy
- Application of 131I (iodine) (30 mCi) radiation therapy in April 2013.
- Initially diagnosed as benign, but an October 2014 biopsy was highly suspicious (trabecular groups, Hurthle cells, secondary changes typical of carcinoma)
- Palpitation in 2014 revealed a hard mass
- Taking “crazy” risks, a self-designed therapy was applied, starting in October 2014
- Palpitation revealed almost instantaneous softening
- Careful monitoring of progress while keeping thyrodeectomy as an option
- Fresh-cell therapy in 2016 and 2018
- Since 2017/2018: Observed full restoration of thyroid function
Development of the Therapy

- Combine Indian, Asian, and Western approaches

- **India:** Ayurvedic therapy focuses on *Ashwaganda* (*withania somnifera*) and *Kachnar* (*bauhinia tormentosa*) for tumors. Novel perspective: Ashwaganda contains *withaferin A*, a powerful interferone.

- **Japan and Other Regions of Asia:** Digestive enzymes can be used to treat various diseases. Observation also based on pancreatic enzymes (notably, trypsin) which are known to halt the growth of the trophoblast. In Japan, serratiopeptidase is often applied.

- **USA:** Extensive use of vitamins in order to stimulate the immune system and for general health. Idea: Observation that in some cases, regression of tumors has been observed when patients were infected with influenza, and the immune system was stimulated. Also: Imhotep and Pharaoh Djoser (roughly 2500 BC). Furthermore: Linus Pauling’s anecdotal evidence. Interesting: VEPP-4M.

Details:
Idea of the Therapy

“Multidimensional” combined approach (acronym, perhaps, IID):

▶ Interferones inhibit cancer cell growth.
▶ Immunostimulants trigger an enhanced response.
▶ Digestive enzymes digest the eliminated cancer cells.

Important: “Use all ingredients together.”

Goal: Exponential growth \rightarrow exponential decline.

Perhaps analogous:

ICAM protocol for COVID–19:

▶ I: Immunostimulants
▶ C: Corticosteroids
▶ A: Anticoagulants
▶ M: Macrolides
Extensive self-experimentation between October 2014 and February 2016 may indicate the following adapted dosage:

- An immune booster vitamin C, enteric coated) was administered in a dosage of 3000 mg per day. It was taken together with vitamin A and B₆–B₁₂ complex (one tablet per day each, of a generic off-the-shelf product, details were not monitored). Furthermore, *echinacea* was applied (two tablets per day, 600 mg).

- An interferone (*ashwaghanda*, extract of *withania somnifera*) which contains the interferone withaferin A, was administered in a dosage of 4 tablets per day, amounting to about 1200 mg ashwaghanda root extract per day. This was supplemented by about 2 daily tablets of kachnar (*bauhinia tormentosa*) corresponding to about 600 mg of bark extract per day.

- Digestive enzymes (*Serratiopeptidase*) in a dose of 360 000 SPU per day, corresponding to 3 tablets each with 120 000 SPU.
Observations

- Almost immediate **softening** of the mass in 2014.
- Reduction from about 80 ml to about 12 ml within 18 months.
- Tumor became soft, all cancer markers were determined as negative under a repeat biopsy (April 2016), and the entire left thyroid lobe became unsuspicious under ultrasound imaging.
- For amusement: Won local half marathon in 2017.
- For amusement: Zermatt marathon in 2018 in less than five hours,
- Since fall 2018, cannot palpate the mass any more.
- Therapy was continued with reduced dosage, for prevention. (Roughly 1/4 of the therapeutic dose.)
Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity

Bu Young Choi¹ and Bong-Woo Kim²

¹Department of Pharmaceutical Science and Engineering, Seowon University, Cheongju, Korea
²Department of Cosmetic Science and Technology, Seowon University, Cheongju, Korea

Correspondence to: Bong-Woo Kim, Department of Cosmetic Science and Technology, Seowon University, 377-3 Musimseo-ro, Seowon-gu, Cheongju 28674, Korea, Tel: +82-43-299-8493, Fax: +82-43-299-8470, E-mail: kbw@seowon.ac.kr, ORCID: Bong-Woo Kim, http://orcid.org/0000-0001-8767-9519

Received 2015 Aug 5; Revised 2015 Aug 18; Accepted 2015 Aug 18.

Copyright © 2015 Korean Society of Cancer Prevention

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been cited by other articles in PMC.
Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action

In-Chul Lee¹ and By Young Choi²,*

Ge Zhang, Academic Editor

¹Department of Cosmetic science, Seowon University, Cheongju, Chungbuk 361-742, Korea; íc9418@seowon.ac.kr
²Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea
*Correspondence: bychoi@seowon.ac.kr; Tel.: +82-43-299-8411

Received 2016 Jan 18; Accepted 2016 Feb 17.

Copyright © 2016 by the authors; licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

This article has been cited by other articles in PMC.
Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation.

Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P, Liu Y, Tighiouart M, Vertino PM, Harvey RD, Garcia A, Marcus AI.

Abstract

Withaferin A (WFA) is purified from the plant Withania somnifera and inhibits the vimentin cytoskeleton. Vimentin overexpression in cancer correlates with metastatic disease, induction of epithelial to mesenchymal transition and reduced patient survival. As vimentin functions in cell motility, we wanted to test the hypothesis that WFA inhibits cancer metastasis by disrupting vimentin function. These data showed that WFA had weak cytotoxic and apoptotic activity at concentrations less than or equal to 500 nM, but retained potent anti-invasive activity at these low doses. Imaging of breast cancer cell lines revealed that WFA induces perinuclear vimentin...
Ashwagandha (Withania somnifera): Role in Safeguarding Health, Immumomodulatory Effects, Combating Infections and Therapeutic Applications: A Review

Ruchi Tiwari, Sandip Chakraborty, Mani Saminathan, Kuldeep Dhama and Shoor Vir Singh

1Department of Veterinary Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhyay Pashu Chikitsa Vishwa Vidyalaya Evam Go-Anusandhan Sansthan, Mathura (U.P.), 281001, India

2Department of Animal Resources Development, Pt. Nehru Complex, Agartala, Pin-799006, India

3Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.), 243122, Uttar Pradesh, India

4Laboratory of Microbiology, Animal Health Division, Central Institute for Research on Goats (CIRG), Makhdoom, PO-Parah, Dist. Mathura, Pin, 281122, India

Abstract: Ashwagandha (Withania somnifera) is a well known herb possessing several health benefits. The steroidal lactones (withanolides) obtained from its roots have been implicated in a wide range of therapeutic activities and maintaining general health: Immunomodulation, combating infectious agents, anti-cancer and anti-epileptic, memory enhancer, to promote good physical and mental health, mood elevator, diuretic, general tonic and rejuvenator, stress reliever, cardiorespiratory endurance enhancer, anti-ageing, anti-oxidant, hypoglycaemic, hypcholesterolemic and in common an effective adaptogen. Steroidal alkaloids and lactones are the active constituents of the plant. Withanolides as per theory occupies the receptor sites in the cell membrane thereby preventing the attachment and subsequent exertion of the effect of actual hormone. Withanolides have got analgesic and anti-inflammatory activity due to cyclooxygenase-2 inhibition property. Ashwagandha enhances nitric oxide synthetase activity of the macrophages, which in turn increases the microbial killing power of these immune cells thereby enhancing the Cell Mediated Immune (CMI) response. A glycoprotein Glycowithanolides (WS3) commonly known as *W. somnifera* glycoprotein is responsible for antimicrobial activity. Milk supplemented with Ashwagandha has been reported to increase total proteins and body weight and the plant alone helps in inducing tolerance and dependence. Its anti-stress and radiosensitization action; beneficial effects on cardiovascular system and sexual behavior; curative properties against neurodegenerative diseases and poisoning due to toxins and chemicals (including snake venom) has made this plant a treasure of nature. Thus the plant is an important component of many polyherbal preparations. Important for researchers and scientists is that biotechnologically advanced techniques; novel disciplines of bioinformatics and genomics can help in identifying and generating bioactive principles of the plant. All these salient health applications of this herb in biomedicine and veterinary sciences are discussed in this review focusing its potent role in maintaining sound health, immunomodulatory effects, combating infections, therapeutic usages and other beneficial applications.

Key words: Ashwagandha, indian ginseng, ayurveda, health, beneficial application, immunomodulation, treatment, therapy, memory enhancer, anticancer
Substantial contribution of extrinsic risk factors to cancer development

Song Wu¹,², Scott Powers¹,²,³, Wei Zhu¹,² & Yusuf A. Hannun²,³,⁴,⁵

Recent research has highlighted a strong correlation between tissue-specific cancer risk and the lifetime number of tissue-specific stem-cell divisions. Whether such correlation implies a high unavoidable intrinsic cancer risk has become a key public health debate with the dissemination of the 'bad luck' hypothesis. Here we provide evidence that intrinsic risk factors contribute only modestly (less than ~10–30% of lifetime risk) to cancer development. First, we demonstrate that the correlation between stem-cell division and cancer risk does not distinguish between the effects of intrinsic and extrinsic factors. We then show that intrinsic risk is better estimated by the lower bound risk controlling for total stem-cell divisions. Finally, we show that the rates of endogenous mutation accumulation by intrinsic processes are not sufficient to account for the observed cancer risks. Collectively, we conclude that cancer risk is heavily influenced by extrinsic factors. These results are important for strategizing cancer prevention, research and public health.
Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2002 May;18(2):159-61.

[Effect of taurine on thyroid hormone and second messenger in myocardium of rats after exhaustive exercise].

[Article in Chinese]
Zhang J¹, Huang SH, Chen BM.

Author information

Abstract
AIM: Probe into protective action of taurine against exercise-induced myocardial damage in rats after exhaustive exercise.

METHODS: Using the model of exhaustive exercise, the present study researches into effects of taurine on the content of triiodothyronine (T3) and tetraiodothyronine (T4) in serum and myocardium as well as the activity of T(4) 5′ deiodinase (T(4)5′-DI) and second messenger cAMP in myocardium of rats.
Specificity of Co-Promoting Effects of Caffeine on Thyroid Carcinogenesis in Rats Pretreated with N-Bis(2-hydroxypropyl)nitrosamine

HWA-YOUNG SON,1,2 AKIYOSHI NISHIKAWA,3 KAZUSHI OKAZAKI,3 YASUKI KITAMURA,3 KEITA KANKI,3 KYONG-YOUL LEE,1,2 TAKASHI UMEMURA,1,2 AND MASAO HIROSE1

1Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan, and 2College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea

ABSTRACT

The specificity of copromotion of effects of caffeine with known goitrogenic factors on thyroid carcinogenesis was examined in rats pretreated with N-bis(2-hydroxypropyl)nitrosamine (DHPN). Male F344 rats were divided into 8 groups, each consisting of 10 animals, and received a single sc injection of 2,800 mg/kg DHPN. From one week after the DHPN initiation, they were given basal diet, iodine deficiency (ID) diet, or 500 ppm phenobarbital (PB) solution or 1,000 ppm sulfadimethoxine (SDM) solution with or without 1,500 ppm caffeine feeding for 12 weeks. The caffeine, PB, SDM, and ID treatments significantly (p < 0.05 or 0.01) increased the relative thyroid weights, and the increases with PB or ID were further (p < 0.05 or 0.01) enhanced in combination with caffeine. SDM drastically promoted thyroid carcinogenesis in association with increased serum TSH levels regardless of the caffeine treatment. Thyroid follicular carcinomas and adenomas were more frequently observed in the additional caffeine groups than in the ID alone groups. The incidence and multiplicity of focal thyroid follicular hyperplasias in the ID-treated groups were significantly (p < 0.05 and 0.01) elevated in the case of combination with caffeine. Increases in serum TSH levels with PB or ID were also further enhanced in combination with caffeine. Serum thyroid hormone levels were significantly (p < 0.01) decreased by SDM but significantly (p < 0.05 or 0.01) increased by caffeine, PB or ID. Our results clearly indicate that dietary caffeine at a high dose of 1,500 ppm interacts with ID, but neither SDM nor PB, to promote rat thyroid carcinogenesis although the combined caffeine + PB treatment somewhat affected thyroid weights as well as thyroid hormone levels.

Keywords. Thyroid carcinogenesis; caffeine; iodine deficiency; sulfonamide; phenobarbital.
== Proof that Thyroid is Working (2018) ==
Enzyme-Supported Immunotherapy: Case Study and Possible Generalizations

Ulrich D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, MO, USA
Email: ulj@mst.edu

Received: January 31, 2018
Accepted: February 23, 2018
Published: February 26, 2018

Abstract
A combination therapy is discussed for the treatment of cancer, which has recently been applied successfully in a case study. The general approach is based on a combination of immune boosters, digestive enzymes and natural interferones. The idea is to stage a three-prong “pincer attack” on the tumor: while the immune boosters stimulate the immune system to attack cancer cells, the cytostatic properties of the interferones inhibit cancer growth, and the digestive enzymes accelerate the transport mechanism to remove the killed cancer cells from the body. The rationale of the therapy is explained, results of the case study are presented, and possible generalizations are mentioned.

Keywords
Immunotherapy, Digestive Enzymes, Natural Interferones, Active Surveillance, Withaferin A
Conclusions

- Advocate combination therapy approaches
- Remission takes time
- Doubtful if it had worked on a metastasized tumor
- Immunostimulants, Interferones, Digestive Enzymes (IID)
- Suggestive: Supplementary treatment based on the ideas formulated here, in addition to surgery and chemotherapy