Mathematics 415                              Final Exam                         Name:_________________________

                                                            Fall 2011
A.  This is an open-book, open-notes, open-homework solutions test.  That is, while solving the problems on this examination you may refer at any time to your textbook, Royden’s Real Analysis, to the lecture notes you have taken for Math 415 this semester, or to the solutions to homework problems from this semester's course.
B.  You are to solve any four out of the six problems on this exam.  Please circle the number of each problem whose solution you want me to grade.  All problems have the same value, 75 points, so the maximum number of points you can earn on this exam is 300.
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2.  Let 
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 be a measurable real function on 
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.  Show that the following two statements are equivalent.
   (i)  There is an 
[image: image9.wmf][

]

2

0,1

fL

Î

 such that 
[image: image10.wmf](

)

(

)

(

)

0

0

x

FxftdtF

=+

ò

 for all 
[image: image11.wmf]x

 in 
[image: image12.wmf][

]

0,1

.

   (ii)  There is a positive real number 
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3.  Let 
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 denote the set of (equivalence classes of) Lebesgue measurable real functions on 
[image: image18.wmf][0,1].

  (As usual, we will say that two real measurable functions on 
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 are equivalent if they agree almost everywhere on 
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Show that 
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 is a metric on 
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 in measure.  (See page 95 for the definition of convergence in measure.)
4.  Let 
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   (a)  Show that there exists 
[image: image38.wmf](

)

1

WL

m

Î

 which takes its values in the open interval 
[image: image39.wmf](

)

0,1

.

   (b)  Assuming the existence of a function 
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 with the properties of part (a), show that
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is a positive, finite measure on 
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 and that 
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   (c)  Show that if 
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 is a nonnegative function on 
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 which is measurable with respect to 
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5.  Let 
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 be a measurable space.  Show that the set 
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 is a real vector space if we use setwise linear operations (cf. exercise 11.30 on page 275).  Furthermore, show that the total variation measure 
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 (cf. pages 274-275 for the definition of the total variation measure) can be used to define a norm on 
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Finally, show that 
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6.  Let 
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