Mathematics 415                              Final Exam                         Name:_________________________

                                                            Fall 2013
A.  This is an open-book test.  That is, while solving the problems on this examination you may refer at any time to your textbook, Royden and Fitzpatrick’s Real Analysis.
B.  You are to solve any four out of the six problems on this exam.  Please circle the number of each problem whose solution you want me to grade.  All problems have the same value, 75 points, so the maximum number of points you can earn on this exam is 300.
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2.  Let 
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 denote the set of (equivalence classes of) measurable real functions on a finite measure space 
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  (As usual, we will say that two real measurable functions on 
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3.  By a bounded interval of real numbers we mean a set of the form 
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   (a) Show that the collection 
[image: image37.wmf]S

 of subsets of 
[image: image38.wmf]´

RR

 that are products of bounded intervals of real numbers forms a semiring.

   (b) Define a set function 
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  Justify your answer.
   (c) Define a set function 
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  Justify your answer without quoting results outside Chapter 17 of Royden and Fitzpatrick.

     Problems 4 through 6 on this exam are interconnected and refer to the group 
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 consisting of the points in the interval [0,1) with “wrap around” addition.  That is, the sum of 
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 otherwise.  (For those of you who are familiar with group theory, 
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 is the additive quotient group 
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)  Lebesgue measure on 
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 is the usual Lebesgue measure of the real line restricted to the interval [0,1).  When working any of the problems 4 through 6, you may assume the truth of the results from any preceding problem.  For example, in working problem 6 you may assume the truth of the results in problems 4 and 5.
4.  If 
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  The sum of any finite number of sets is defined similarly.  A set 
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   Show that every subset 
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 with positive Lebesgue measure is a basis.  
(Hint:  Recall that we proved earlier in the course that if 
[image: image77.wmf]E

 has positive Lebesgue measure then  
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 contains an open interval about zero.  The same proof techniques show that if 
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 contains a nonempty open interval. You may assume the truth of this result.)

5.  A character 
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  Show that any measurable character of 
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6.  Let 
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Show that 
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