Chapter 1, Section 4

2. \[\text{Area} = \text{length} \times \text{width} \]
 \[= w \times 2w \]
 \[A = 2w^2 \]

6. \[\text{Suppose length of fence} = F. \]
 \[F = 2l + 2w. \]
 \[\text{We know Area} = 3600 \text{m}^2 = lw, \text{ so} \]
 \[l = \frac{3600}{w}. \text{ Substitute to get} \]
 \[F = \frac{7200}{w} + 2w \]

<table>
<thead>
<tr>
<th>(w)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>40</td>
<td>260</td>
</tr>
<tr>
<td>60</td>
<td>240</td>
</tr>
<tr>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>100</td>
<td>272</td>
</tr>
</tbody>
</table>

Looks like \(F \) is smallest if \(w = 60 \). Then \(l = \frac{3600}{60} = 60 \).

The dimensions of approximately \(60 \text{m} \times 60 \text{m} \) should require the smallest amount of fencing.

8. \[\text{Volume} = 1500 \text{ in}^3 = b^2 \cdot h. \text{ Find surface area} \]
 \[\text{in terms of} \ b. \]
 \[\text{SA} = b^2 + b^2 + bh + bh + bh + bh \]
 \[\text{SA} = 2b^2 + 4bh \]
 \[\text{Need to eliminate} \ h. \ h = \frac{1500}{b^2}. \text{ Substitute.} \]
 \[\text{SA} = 2b^2 + 4b(\frac{1500}{b^2}) \]
 \[\text{SA} = 2b^2 + \frac{6000}{b} \]
Chapter 1, Section 4

Cost for side = 0.02 cents/in^2.
Cost for top & bottom = 0.04 cents/in^2.
Volume = $4\pi r^2 h$.

If we cut open the can, we can lay it flat like this:

Cost = 0.02 (area of rectangle) + 0.04(2)(area of one circle).

We need the length of the rectangle, which is actually the circumference of the circle.

\[l = 2\pi r. \]

Cost = 0.02(2\pi r)(h) + 0.08(\pi r^2).

We want to eliminate h so cost is only in terms of r.

We know Volume = $4\pi = \pi r^2 h$, so \(h = \frac{4}{r^2} \).

Cost = 0.04 \pi r (\frac{4}{r^2}) + 0.08 \pi r^2

Cost = 0.16 \pi / r + 0.08 \pi r^2

15. Population grows at a rate proportional to size of population.
rate of growth \(r = kp \) where \(k \) is constant and \(p \) is the population size.

17. \(t = \) temp of object. \(r = \) rate temp changes. \(a = \) temperature of surrounding medium (this is called the ambient temp).
\(r = k (t-a) \)
(This particular relationship is called "Newton's Law of Cooling").
Chapter 1, Section 4

35. \(S(p) = 4p + 200 \), \(D(p) = -3p + 480 \). Equilibrium is where \(S(p) = D(p) \), so solve \(4p + 200 = -3p + 480 \).

\[7p = 280 \]
\[p = 40. \]

When \(p = 40 \), \(S(40) = 360 \) units and \(D(40) = 360 \).

(Not a coincidence! The idea of equilibrium means \(S = D \).)

38. At a speed of 72 kph, after 40 minutes, our hero has a lead of

\[40 \text{ min} \times \frac{1 \text{ hour}}{60 \text{ min}} \times \frac{72 \text{ km}}{1 \text{ hour}} = 48 \text{ kilometers}. \]

Total distance is 83.8 km, so he still must travel 35.8 km.

This will take him \(35.8 \text{ km} \times \frac{1 \text{ hour}}{72 \text{ km}} = 0.4972 \) hours.

The pursuers have to travel 83.8 km at 168 kph, which will take them \(83.8 \text{ km} \times \frac{1 \text{ hour}}{168 \text{ km}} \approx 0.4988 \) hours.

When our hero reaches the border, the bad guys are just barely behind him, so he gets away.

44. Let \(x \) = # checks written per month. Cost at bank 1 is \(C_1 = 12 + 0.10x \), and at bank 2 is \(C_2 = 10 + 0.14x \).

1st bank is better if \(12 + 10x < 10 + 14x \)

\[2 < 0.04x \]
\[50 < x. \]

1st bank is better if you write more than 50 checks per month.

If you write less than 50 and bank 2 is better.
Chapter 1, Section 5

1. \(\lim_{x \to a} f(x) = b\)
2. \(\lim_{x \to a} f(x) = b\)
3. \(\lim_{x \to a} f(x) = b\)
4. \(\lim_{x \to a} f(x) \) does not exist
5. \(\lim_{x \to a} f(x) \) does not exist
6. \(\lim_{x \to a} f(x) = b\)

10. \(\lim_{x \to 0} (1-5x^3) = \lim_{x \to 0} 1 - 5(\lim_{x \to 0} x)^3\) since it's a polynomial.

\[= 1 - 5(0) = 1.\]

\[\lim_{x \to 1} \frac{2x+3}{x+1} = \frac{2+3}{1+1} = \frac{5}{2}\]

18. \(\lim_{x \to 3} \frac{9-x^2}{x-3} = \lim_{x \to 3} \frac{(3-x)(3+x)}{x-3} = \lim_{x \to 3} -(3+x) = -6\)

24. \(\lim_{x \to 1} \frac{x^2+4x-5}{x^2-1} = \lim_{x \to 1} \frac{(x+5)(x-1)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{x+5}{x+1} = \frac{6}{2} = 3\)

26. \(\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x - 9)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}\)

\[= \lim_{x \to 9} \frac{1}{\sqrt{x}+3} = \frac{1}{6}\]

28. \(\lim_{x \to 5^-} \frac{\sqrt{2x-1} - 3}{x-5} = \lim_{x \to 5^-} \frac{(\sqrt{2x-1} - 3)(\sqrt{2x-1} + 3)}{(x-5)(\sqrt{2x-1} + 3)}\)

\[= \lim_{x \to 5^-} \frac{2x-1-9}{(x-5)(\sqrt{2x-1}+3)} = \lim_{x \to 5^-} \frac{2(x-5)}{(x-5)(\sqrt{2x-1}+3)}\]

\[= \lim_{x \to 5^-} \frac{2}{\sqrt{2x-1}+3} = \frac{2}{\sqrt{9}+3} = \frac{1}{3}\]
Chapter 1, Section 5

30. \(f(x) = \begin{cases} \frac{1}{x-1} & x < -1 \\ x^2 + 2x & x \geq -1 \end{cases} \)

\[\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{1}{x-1} = -\frac{1}{2} \]

\[\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (x^2 + 2x) = 1 - 2 = -1 \]

31. \[
\begin{array}{c|cccc}
\hline
x & 1 & 0.1 & 0.01 & 0.001 & 0.0001 \\
\hline
1000(1 + 0.09x)^{\frac{1}{2}} & 1090 & 1093.73 & 1094.13 & 1094.17 & 1094.17 \\
\hline
\end{array}
\]

37. \(\lim_{x \to 0} f(x) \) does not exist, keeps bouncing between 1 and -1.

38. \(\lim_{x \to 0} g(x) = 0 \) since graph gets shorter and shorter as \(x \to 0 \).
4. \(f(x) = \frac{2x-4}{3x-2} \). This is continuous at \(x = 2 \):
\(f(2) = \frac{0}{4} = 0 \),
\(\lim_{{x \to 2}} f(x) = 0 \). (The discontinuity is at \(x = \frac{2}{3} \)).

6. \(f(x) = \frac{2x+1}{3x-6} \). This is discontinuous at \(x = 2 \) since
\(f(2) = \frac{5}{6} \) and is not defined.

10. \(f(x) = \begin{cases}
 x+1 & x < 0 \\
 x-1 & x \geq 0
\end{cases} \).
\(f(0) = 0 - 1 = -1 \).
\(\lim_{{x \to 0^+}} f(x) = 0 - 1 = -1 \) \(\lim_{{x \to 0^-}} f(x) = 0 + 1 = 1 \) \text{ not continuous at } x = 0.

11. \(f(x) = \begin{cases}
 x^2 + 1 & x \leq 3 \\
 2x + 4 & x > 3
\end{cases} \).
\(f(3) = 3^2 + 1 = 10 \)
\(\lim_{{x \to 3^+}} f(x) = 2(3) + 4 = 10 \) \(\lim_{{x \to 3^-}} f(x) = 3^2 + 1 = 10 \) \text{ continuous at } x = 3.

14. \(f(x) = x^5 - x^3 \) is continuous everywhere.

18. \(f(x) = \frac{x^2 - 1}{x+1} \) is discontinuous at \(x = -1 \)

22. \(f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x-1)(x-1)}{(x-2)(x+1)} \) discontinuous at \(x = 2, -1 \).

24. \(f(x) = \begin{cases}
 x^2 & x \leq 2 \\
 9 & x > 2
\end{cases} \) Discontinuous at \(x = 2 \) :
\(\lim_{{x \to 2^-}} f(x) = 2^2 = 4 \)
\(\lim_{{x \to 2^+}} f(x) = 9 \).
Graph "breaks" at \(x = 2 \).
32. \(f(x) = x(1 + \frac{1}{x}) \) is continuous on \(0 < x < 1 \), but \(f(x) \) does not exist at \(x = 0 \). So on \(0 \leq x \leq 1 \), \(f(x) \) is discontinuous at \(x = 0 \).

35. Show that \(3\sqrt{x} = x^2 + 2x + 1 \) must have a solution on \(0 \leq x \leq 1 \). Define \(f(x) = x^2 + 2x + 1 - 3\sqrt{x} \). For original equation to have a solution, we need \(f(x) = 0 \).

\[f(0) = -1 \quad \text{and} \quad f(1) = 1 \]

Since \(-1 < 0 < 1 \), and \(f(0) = -1, \ f(1) = 1 \), using the intermediate value property there is some number \(c \) so that \(0 < c < 1 \) and \(f(c) = 0 \). (Since \(f(x) \) is continuous).

38. The minute hand of a clock moves in a continuous fashion. Since the hour hand moves much slower, there is a time when the minute hand is behind the hour hand, as well as a time when it's ahead. Since the motion is continuous, there must also be a time when the hands coincide.