You have 50 minutes to complete this test. You must *show all work* to receive full credit. Work any 7 of the following 8 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 14 points, and you get 2 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Suppose $f(x) = \frac{x^2}{x^2 - 4}$. Find all intervals where f(x) is concave up and where it is concave down (interval notation, please). List the inflection points.

$$f'(x) = \frac{(2x)(x^2-4)-(x^2)(2x)}{(x^2-4)^2} = \frac{2x^3-8x-2x^3}{(x^2-4)^2} = \frac{-8x}{(x^2-4)^2}$$

$$f''(x) = \frac{(-8)(x^2-4)^2+8x(2)(x^2-4)(2x)}{(x^2-4)^4} = \frac{-8x^2+32+32x^2}{(x^2-4)^3}$$

$$= \frac{24x^2+32}{(x^2-4)^3}$$

$$= \frac{2x^3-8x-2x^3}{(x^2-4)^2} = \frac{-8x}{(x^2-4)^2}$$

$$= \frac{-8x}{(x^2-4)^3}$$

$$= \frac{-8x}{(x$$

2. For the following functions, find all horizontal and vertical asymptotes (remember that an asymptote is a LINE, not a number). If there are no asymptotes, say so.

a)
$$f(x) = \frac{6x^2 - 11x - 2}{3x^2 - 5x - 2} = \frac{(6x + 1)(x - 2)}{(3x + 1)(x - 2)}$$

$$f(x) = \frac{1}{(x^2 + 1)}$$

$$f(x) = \frac{1}$$

- 3. Suppose that at price p, demand for a certain product is given by $q(p) = \frac{(p-100)^2}{2}.$
 - a) Find the price elasticity of demand when price is \$20. Is demand elastic or inelastic at this price?

E(p) =
$$\frac{p}{q} \cdot g' = \frac{p}{(p-100)^2} \cdot (p-100) = \frac{2p}{p-100}$$

E(20) = $\frac{40}{-80} = \frac{-1}{2}$

- | E(20) = 1/2 41, demand is inelastic when p = 20.
- b) Give an example of a product in the correct price range that might behave as described in (a).

c) If the price of \$20 decreases by 10%, describe how demand will change.

4. Determine where the function $f(x) = x^3 - 9x^2 + 24x - 19$ is increasing and where it is decreasing, and where it is concave up and concave down. Find all extrema and inflection points. Then sketch the graph.

$$f'(x) = 3x^{2} - 18x + 24$$

$$= 3(x^{2} - 6x + 8)$$

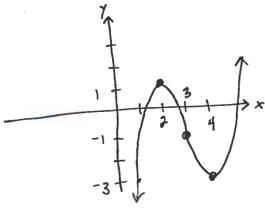
$$= 3(x - 2)(x - 4)$$

$$\frac{CN: X=7.4}{\underbrace{\oplus}_{2} \underbrace{\ominus}_{4} \underbrace{\oplus}_{4} f'}$$

$$f''(x) = 6x - 18$$

$$= 6(x - 3)$$

$$\xrightarrow{\bigcirc} + + \rightarrow f''$$



5. Find all absolute extrema of $f(x) = \frac{x}{x^2 + 1}$ on the interval [0, 2].

$$f'(x) = \frac{(1)(x^2+1)-(x)(2x)}{(x^2+1)^2} = \frac{x^2+1-2x^2}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2}$$

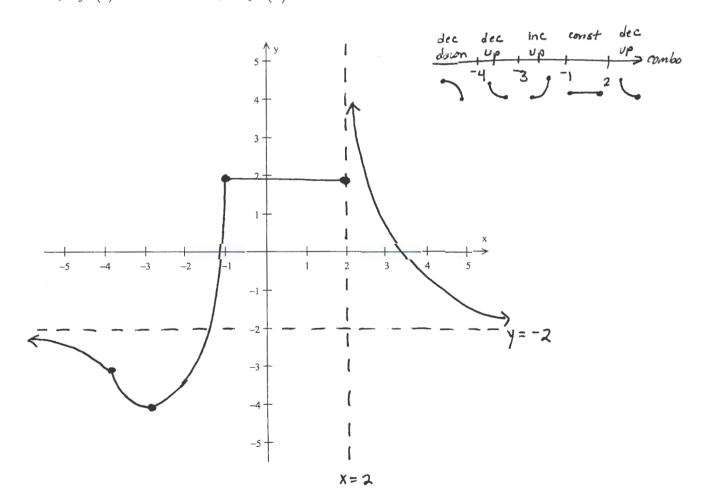
$$f(2) = \frac{2}{5}$$

6. Sketch the graph of a function f(x) so that all conditions below are satisfied. Be sure your graph is big enough so I can see it and it is properly labeled.

a)
$$\lim_{x \to -\infty} f(x) = -2$$
, $\lim_{x \to 2^+} f(x) = \infty$, and $f(x)$ is defined for all x . HA $y = -2$, $VA = 2$ (on eight)

b)
$$f'(x) < 0$$
 when $x < -3$ and when $x > 2$, $f'(x) = 0$ when $-1 < x < 2$, and $f'(x) > 0$ when $-3 < x < -1$.

c) f''(x) < 0 when x < -4, but f''(x) > 0 when -4 < x < -1 and when x > 2.



7. In a factory, the output Q is given by the equation $Q = 60K^{\frac{1}{3}}L^{\frac{2}{3}}$ units, where K is the capital investment in thousands of dollars, and L is the size of the labor force in worker hours. If output is kept constant, at what rate is capital investment changing at a time when K = 8, L = 1000, and L is increasing at the rate of 25 worker hours per week?

Forker hours per week?

$$\frac{dQ}{dt} = 60 \left[\frac{1}{3} x^{-2/3} \right]^{2/3} \frac{dk}{dt} + \frac{2}{3} x^{1/3} \right]^{-1/3} \frac{dL}{dt}$$

$$\frac{dQ}{dt} = \frac{20 L^{2/3}}{x^{2/3}} \frac{dk}{dt} + \frac{40 k^{1/3}}{L^{1/3}} \frac{dL}{dt}$$

$$0 = 20 \frac{(1000)^{2/3}}{8^{2/3}} \frac{dk}{dt} + \frac{40 \left(8 \right)^{1/3}}{(1000)^{1/3}} (25)$$

$$0 = 20 \frac{(100)}{4} \cdot \frac{dk}{dt} + \frac{40}{10} \frac{(2)}{10} (25)$$

$$0 = 500 \frac{dk}{dt} + 200$$

$$\frac{dk}{dt} = -2/5$$
To keep output the same, capital investment should be changing at a rate of -2/5 thousand dollars per week (or \$400 per week decrease)

Ars. Jones runs a small insurance company that sells policies for a large firm.

8. Mrs. Jones runs a small insurance company that sells policies for a large firm. Mrs. Jones does not sell policies herself, but she is paid a commission of \$50 for each policy sold by her employees. When she employs m salespeople, her company will sell q policies each week, where $q = m^3 - 12m^2 + 60m$. She pays her employees \$750 per week, and her weekly fixed costs are \$2500. Her office can accommodate at most 7 employees. How many employees should she have in order to maximize her weekly profit?