
Mathematics 325 Final Exam 
Fall 201 0 

The last two pages of this exam consist of a table of Fourier transforms and some convergence theorems - 
for Fourier series. Furthermore, you may find the following formulas useful on this exam. 

' dz 2 
l a + h c o s ( r )  o 

= kCtan[E tan[:)) if a2 > b2 and - z  < x < n 

1 .(33 pts.) Classify the partial differential equation u,  + 2uJ, - 3u, + ur + 224, = 0 as hyperbolic, 

elliptic, parabolic, or none of these. If it is possible, find the general solution of this partial differential 
equation in the xy - plane. If it is not possible, please explain why this is so. 

2.(34 pts.) (a) Use Fourier transform methods to derive the formula 
1 ' "+I-' 

u ( x , ~ )  = -1 f (s,r)dsdr 
2 0 .r-(l-r) 

for a solution to the inhomogeneous wave equation in the xt -plane, 

U,,-U, =f (x , t ) ,  
i satisfying homogeneous initial conditions: u (x, 0) = 0 = u, (x, 0) for -m < x < co 

(b) Compute a solution to u,, - u, = xt in the xt -plane which satisfies homogeneous initial conditions. 

(c) Is the solution to the problem in part (b) unique? Justify your answer. 

3.(33 pts.) Solve u, -uxx = 0 in the upper half-plane -a < x < co, 0 < t < m, subject to the initial 

condition u (x, 0) = c-"' for -a < x < m . 

4.(34 pts.) The material in a thin circular disk of unit radius has reached a steady-state temperature 
distribution. The material is held at 100 degrees Centigrade on the top half of the disk's edge and at 0 
degrees Centigrade on the bottom half of its edge. 
(a) Write the partjal differential equation and boundary condition(s) governing the steady-state 
temperature function of the material. 
(b) Write a formula for the steady-state temperature function of the material. 
(c) What is the steady-state temperature of the material at the center of the disk? Justify your answer. 
(d) What is the steady-state temperature of the material at a general point in the disk? (You must 
evaluate any integral expressions for credit on this part of the problem.) 
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5.(33 pts.) (a) Show that the Fourier sine series b,, sin (nn0) of f (Q) = 46'(1- 6') on 10, I ]  is 

32 sin ( (2k  - 1 ) i i ~ )  
48 ( i -8 )  = -C 3 , ( 2 k  -1)' 

(b) Show that the Fourier sine series of j converges uniformly to / on the interval [0,1]. 



1 
(c) Use the results of the previous parts of this problem to find the sum of the s e r i e s z  

,=I (2k  - I ) ~  

6.(33 pts.) Solve v2u = 0 in the unit cube 0 < x < 1, 0 < y  < 1 ,  0 < z < 1,  given that 

u(x , y , l )=16v(1 -x ) ( l - y )  for O < x < l ,  O < y < l ,  

and that u satisfies homogeneous Dirichlet boundary conditions on the other five faces of the cube. 
(You may find the results of problem 5 useful.) 



A Brief Table of Fourier Transforms 

1 if - b < x < b ,  

0 otherwise. 

1 i f c < x < d ,  

0 otherwise. 

if O < x < b ,  

D. 2b-x i f b < x < 2 b ,  C otherwise. 

if x >0,  

otherwise. 

em if b < x < c ,  

0 otherwise. 

e'" if - h < x < b ,  

0 otherwise. 

elM if c < x < d ,  

0 otherwise. 

sin (a) 
J. 

X ((7 > 0) 



Convergence Theorems 

Consider the eigenvalue problem 

(1) X" ( x )  + AX (x) = 0 in a < x  < b with any symmetric boundary conditions 

and let Q = {x, , X, , X, , ...) be the complete orthogonal set of eigenhnctions for (1). Let f be any 

absolutely integrable function defined on a 5 x  5 b  . Consider the Fourier series for f with respect to 
cD : 

m 

where 

Theorem 2. (Uniform Convergence) If 
(i) f ( x ) ,  f' ( x ) ,  and f" ( x )  exist and are continuous for a < x < b and 

(ii) f satisfies the given symmetric boundary conditions, 

then the Fourier series of f converges uniformly to f on [a ,  b] 

Theorem 3. ( L~ - Convergence) If 

then the Fourier series of f converges to f in the mean-square sense in (a ,  . b) . . 

Theorem 4. (Pointwise Convergence of Classical Fourier Series) 
(i) If f is a continuous function on a 5 x  5 b and f f  is piecewise continuous on a  < x  I b  , then the 

classical Fourier series (full, sine, or cosine) at x  converges pointwise to f (x) in the open interval 

a < x < b .  
(ii) If f is a piecewise continuous function on a  I x  I b and f '  is piecewise continuous on 

a 5 x  I b  , then the classical Fourier series (full, sine, or cosine) converges pointwise at every point 
x  in (-ro,ro). The sum of the Fourier series is 

for all x  in the open interval ( a ,  b )  . 

Theorem 4 oo. If f is a function of period 21 on the real line for which f and f f  are piecewise 

continuous, then the classical f i l l  Fourier series converges to 
f ( x + ) + f  ( x - )  

for every real x 
2 













.- (4) Let 2 -  y-0  * -#% && for 'J- -PI p ~ ~ l f ) .  % 
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k c .  1-Y - (w*tl*) u(r;e)= 7T- (- 
\+r 1-7 

-0 A 4 , c .  



0 'xx + M rr + a,a = 0 if ~ L X L I ,  O C Y <  I ,  0<2<1)  

86 U(X,O,B) = = L ( Y , I ~ )  if O L X C I ,  0 4 2 ~ 1 ,  

0-0 ~ ( O , Y I ~ ) "  0 = u(i,y,%) 'I$ o s y  6 1 ,  06  t4, 

@-@ ~ ( F , ~ , O ) = D  "4 k (%, r ,~ )= Ibn  u( - X 1 -y )  if 0 4 x 6  1/06 Y L_( 
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