
The Three Famous Problems of Antiquity

1. Dupilication of the cube 2. Trisection of an angle 3. Quadrature of the circle

These are all construction problems, to be done with what has come to be
known as Euclidean tools, that is, straightedge and compasses under the
following rules:

• With the straightedge a straight line of indefinite length may be drawn
through any two distinct points.

• With the compasses a circle may be drawn with any given point as
center and passing through any given second point.

To expand on the problems somewhat, the duplication of the cube means to
construct the edge of a cube having twice the volume of a given cube; the
trisection of an angle means to divide an arbitrary angle into three equal
parts; the quadrature of the circle means to construct a square having area
equal to the area of a given circle.

The importance of these problems stems from the fact that all three are
unsolvable with Euclidean tools, and that it took over 2000 years to prove
this! Also, these are the problems that seem to attract amatuer mathemati-
cians who, not believing the proofs of the impossibility of these constructions,
(probably due to ) expend much effort on “proofs” that one or more of these
is indeed possible. Trisecting the angle is the favorite. Many of these at-
tempts do produce very good approximations, but, as will be seen, cannot
be exact.

Interestingly enough, the results needed to show that the three problems are
impossible are not geometric, but rather are algebraic in nature. The two
pertinent theorems are:

Theorem A: The magnitude of any length constructible with Euclidean tools
from a given unit length is an algebraic number.

Theorem B: From a given unit length it is impossible to construct with Eu-
clidean tools a segment the magnitude of whose length is a root
of a cubic equation having rational coefficients but no rational
root.
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Notice that while Theorem A says any constructible number is algebraic,
Theorem B says not all algebraic numbers are constructible. The proofs of
these theorems will be postponed while the three famous problems are put
to rest now.

Duplication of the cube: Let the edge of the given cube be the unit of length,
and let x be the edge of the cube having twice the volume of the given cube.
Then x3 − 2 = 0. Since any rational root of this equation must have as
numerator a factor of 2 and as denominator a factor of 1 the equation has
no rational roots. Thus, according to Theorem B, x is not constructible.

Trisection of the angle: Some angles, such as 90 ◦, can be trisected, but if it
can be shown that some angle cannot be trisected, then the general trisection
problem will have been proved impossible. Here it will be shown that a 60 ◦

angle cannot be trisected. Recall the trigonometric identity

cos θ = 4 cos3
θ

3
− 3 cos

θ

3
,

and take θ = 60 ◦ and x = cos θ
3
. The identity becomes

8x3 − 6x− 1 = 0

and, as above, any rational root must have a factor of −1 as numerator and
a factor of 8 as denominator. A check of the possibilities again shows that,
by Theorem B, x is not constructible. It remains to show that the trisection
of a 60 ◦ angle is equivalent to constructing a segment of length cos 20 ◦. In
Figure 1 the radius of the circle is 1 and 6 BOA = 60 ◦. If the trisector OC
can be constructed, then so can segment OD, where D is the foot of the
perpendicular from C to OA. But OD = x.

The student should prove the following theorem on the rational roots of a
polynomial, which was used in both of the above proofs.

Theorem C: If a polynomial equation

a0x
n + a1x

n−1 + ...+ an−1x+ an = 0

with integer coefficients a0, a1, . . . , an has a reduced rational

root
b

c
, then b is a factor of an and c is a factor of a0.
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Figure 1

The quadrature of the circle: In the proof of Theorem A it will be seen that
the constructibility of a number a is equivalent to the constructibility of

√
a.

Thus, if the radius of the given circle is 1, the required square must have side√
π; but π was shown to be transcendental in the last chapter, and so cannot

be constructed, by Theorem A.

We now turn to the proofs of Theorems A and B.

Proof of Theorem A: Any Euclidean construction consists of some sequence
of the following steps:

1. drawing a straight line between two points,

2. drawing a circle with a given center and a given radius,

3. finding the intersection points of two lines, a line and a circle, or two
circles.

Further, every construction problem involves certain given geometric ele-
ments a, b, c, . . . and requires that certain other elements x, y, z, . . . be found.
The conditions of the problem make it possible to set up one or more equa-
tions whose solutions allow the unknown elements to be expressed in terms
of the given ones. At this point the student should show that, given seg-
ments of length a, b, and 1, segments of length a + b, a − b, ab, a

b
and
√
a

can be constructed. These turn out to be the basic operations. Assume
that a coordinate system and a unit length are given, and that all the given
elements in the construction are represented by rational numbers. Since the
sum, difference, product, and quotient (dividing by 0 is of course excluded)
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of two rational numbers is another rational number, the rational numbers
form a closed set under the 4 arithmetic operations. Any set which is closed
with respect to these 4 fundamental operations is called a field, and the field
of rational numbers will be denoted by Q0. If two points P1(x1, y1) and
P2(x2, y2) in Q0 ×Q0 are given, then the equation of the line through them
is (y2 − y1)x+ (x1 − x2)y + (x2y1 − x1y2) = 0 or

ax+ by + c = 0.

Clearly, a, b, and c are rational. The equation of a circle with rational radius
r and center (h, k) ∈ Q0 ×Q0 is x2 + y2 − 2hx− 2ky + h2 + k2 − r2 = 0 or

x2 + y2 + dx+ ey + f = 0

where d, e, and f are rational. Now, finding the intersection of two lines
involves arithmetic operations on the coefficients of the variables, and finding
the intersection of two circles or of a circle and a line involves the extraction
of square roots in addition to the 4 arithmetic operations. Thus, a proposed
Euclidean construction is possible if and only if the numbers which define the
desired elements can be derived from the given elements by a finite number
of arithmetic operations and extractions of square roots.

If a unit length is given, then all rational numbers can be constructed, and
if k is a rational number,

√
k and a+ b

√
k can be constructed if a and b are

in Q0 (rationals). If
√
k is not in Q0 then all numbers of the form a + b

√
k

form a new field Q1. (The student should prove this.) In fact, Q1 contains
Q0 as a subfield. Next, all numbers of the form a1 + b1

√
k1 where a1 and b1

are in Q1 and k1 is also in Q1, but
√
k1 is not in Q1 also form a new field, Q2,

which contains Q1 as a subfield. In this way a sequence of fields Q0, Q1,. . . ,
Qn can be formed with the following properties:

(i) Q0 is the rationals

(ii) Qj is an extension of Qj−1, j = 1, 2, . . . , n

(iii) Every number in Qj, j = 0, 1, . . . , n is constructible

(iv) For every number constructible in a finite number of steps, there exists
an integer N such that the constructed number is in one of the fields
Q0, . . . , QN .
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Because the members of the field Qj are all roots of polynomials having
degree 2j and rational coefficients, it follows that all constructible numbers
are algebraic. This proves Theorem A.

Proof of Theorem B: Consider the general cubic with rational coefficients

x3 + px2 + qx+ r = 0

and having no rational roots. Assume that one of the roots is constructible,
say x1. Then x1 is in Qn for some integer n > 0, where Qn is one of the fields
constructed in the proof of Theorem A. Also assume that none of the roots
belong to Qj, j < n. Thus,

x1 = a+ b
√
k

where a, b, and k belong to Qn−1. Substituting x1 = a+ b
√
k into the cubic

yields s+ t
√
k, and because x1 is a root,

s = a3 + 3ab2k + pa2 + pb2k + qa+ r = 0

and
t = 3a2b+ b3k + 2pab+ qb = 0.

(The student should fill in the details.) Now if a − b
√
k is substituted into

the left side of the cubic, the left side becomes s − t
√
k and is zero. This

means that x2 = a − b
√
k is also a root of the cubic. To get the third root,

write the cubic as
(x− x1)(x− x2)(x− x3) = 0

and expand. The coefficient of x2 turns out to be −(x1 + x2 + x3) which is
equal to p. This and the fact that x1 + x2 = 2a gives

x3 = −2a− p

which means that x3 belongs to Qn−1, a contradiction. This completes the
proof of Theorem B.
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