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1 MIS Technique

The MIS technique constructs a Markov Chain where each transition between
different states is caused by the failure of one component of the overall system.
A system of n components will have m ≤ 2n possible states. When m = 2n,
each state represents one of the possible permutations of failed components.
If m < 2n, one or more of the states is a superstate representing multiple
permutations of failed components. State S0 is the ‘perfect’ state where every
component of the system is functional. We define state Sm−1 to be the only
state where the system has failed. Sm−1 is an absorbing state, since reliability
does not consider the ability of the system to recover from failure. States S1

through Sm−2 indicate that the system is functional, but degraded. All the
states must be mutually exclusive and collectively exhaustive.

This technique determines system reliability by sequentially considering the
effect of each component on the system’s state distribution. This is represented
as taking n steps through a Markov Chain having random variables Y0, · · · , Yn

where state Yl contains the state probability distribution after l steps. The
transition probability matrix for each step, Pl, has elements

pij(l) = Pr(Yl = Sj |Yl−1 = Si)

In other words, given that the system consisting of components 1 through
l − 1 is in state Sj , the system consisting of components 1 through l will be in
state Si with probability pij(l). It is this conditional probability that allows us
to evaluate total system reliability based on component reliability: in general,
pij(l) is only dependent on the reliability of component l.

Note that since the failure state Sm−1 is absorbing, pm−1m−1(l) = 1 for all
l.

The Chapman-Kolmogorov equation for DTMCs states that if pik(s) is the
probability of reaching state k from state i in s steps and pkj(t) is the probability
of reaching state j from k in t steps, then

pij(s + t) =
∑
k

pik(s)pkj(t)

1



We can apply this equation to derive that the n-step transition probability
matrix is

∏n
l=1 Pl [1].

Because we are usually interested in the reliability of the perfect system, we
define the initial state probability vector:

Π0 = [1, 0, 0, · · · , 0]
T

Finally, to calculate reliability, we need to sum the probabilities of being in
each functional state in the system containing components 1 through n. (We can
simply sum the probabilities of each state because they are mutually exclusive
and collectively exhaustive.) We define which states are functional with the
vector u where ui = 1 if Si is a functional state and ui = 0 otherwise. Since
Sm−1 is the only failed state,

u = [1, 1, · · · , 1, 0]

Putting all this together:

R = ΠT
0 ∗

n∏
l=1

Pl ∗ u

2 Detailed MIS Example

We will use the two-line example from the Reliability Metrics section of the
paper [2], with line reliability pL = 1− qL and both lines in parallel (i.e. failure
only if both lines fail).

We define the system states as shown in Table 1 (this is the m = 2n case).

Table 1: Binary Matrix

Components

States l1 l2

S0 1 1

S1 1 0

S2 0 1

S3 0 0

Π0 = [1, 0, 0, 0]
T

u = [1, 1, 1, 0]
T

We choose values for pij(l) to reflect that functional components can remain
functional or fail, but failed components cannot recover from failure:
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Pl1 =


pL 0 qL 0
0 pL 0 qL
0 0 1 0
0 0 0 1



Pl2 =


pL qL 0 0
0 1 0 0
0 0 pL qL
0 0 0 1


This gives

R = ΠT
0 ∗ Pl1 ∗ Pl2 ∗ u = p2L + 2pLqL

We can draw the Markov Chain corresponding to this structure as shown in
Figure 1.

S0 S1 S2 S3

p00(l1)

p02(l1)

p11(l1)

p13(l1)

p22(l1) p33(l1)

p00(l2)

p01(l2)

p11(l2) p22(l2)

p23(l2)

p33(l2)

Figure 1: Two-Line MIS Markov Chain

3 IEEE 9-bus MIS Explanation

Let l1, l2, l3 be the three lines that cause cascading failure when they fail, and
l4 - l9 be the remaining lines.

In order to simplify the calculations, we will collect several system states
into superstates as shown in Table 2 (the m < 2n case). S0 is a fully functional
system, S1 is a system with one non-cascading line failure, S2 is the unreachable
case where one line that causes cascading failure fails without cascading, and S3

is the failure state where more than one line has failed. Since S2 is unreachable,
we could remove it entirely from the calculations, but we will leave it in for
completeness.

We let

u = [1, 1, 0, 0]
T

(Note that it does not matter if u[2] is 1 or 0.)
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Table 2: IEEE 9-bus states
Components

Superstates States l1 l2 l3 l4 · · · l9

S0 s0 1 1 1 1 · · · 1

S1 s1 1 1 1 0 · · · 1
...

s6 1 1 1 1 · · · 0

S2 s7 0 1 1 1 · · · 1

s8 1 0 1 1 · · · 1

s9 1 1 0 1 · · · 1

S3

...

Π0 = [1, 0, 0, 0]
T

Because we have combined several states into superstates, lines l1, l2, and l3
share the same transition matrix, as do lines l4 through l9:

Pl1,2,3 =


pL 0 0 qL
0 pL 0 qL
0 0 0 1
0 0 0 1



Pl4−9
=


pL qL 0 0
0 pL 0 qL
0 0 0 1
0 0 0 1


Resulting in

R = ΠT
0 ∗ P 3

l1,2,3 ∗ P
6
l4−9
∗ u = p9L + 6p8LqL
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