
Chapter 5
ANGULAR MOMENTUM AND ROTATIONS

In classical mechanics the total angular momentum ~L of an isolated system about any
…xed point is conserved. The existence of a conserved vector ~L associated with such a
system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian)
is invariant under rotations, i.e., if the coordinates and momenta of the entire system are
rotated “rigidly” about some point, the energy of the system is unchanged and, more
importantly, is the same function of the dynamical variables as it was before the rotation.
Such a circumstance would not apply, e.g., to a system lying in an externally imposed
gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated
system under rotations ultimately arises from the fact that, in the absence of external
…elds of this sort, space is isotropic; it behaves the same way in all directions.

Not surprisingly, therefore, in quantum mechanics the individual Cartesian com-
ponents Li of the total angular momentum operator ~L of an isolated system are also
constants of the motion. The di¤erent components of ~L are not, however, compatible
quantum observables. Indeed, as we will see the operators representing the components
of angular momentum along di¤erent directions do not generally commute with one an-
other. Thus, the vector operator ~L is not, strictly speaking, an observable, since it does
not have a complete basis of eigenstates (which would have to be simultaneous eigenstates
of all of its non-commuting components). This lack of commutivity often seems, at …rst
encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying
structure of the three dimensional space in which we are immersed, and has its source
in the fact that rotations in three dimensions about di¤erent axes do not commute with
one another. Indeed, it is this lack of commutivity that imparts to angular momentum
observables their rich characteristic structure and makes them quite useful, e.g., in classi-
fying the bound states of atomic, molecular, and nuclear systems containing one or more
particles, and in decomposing the scattering states of such systems into components as-
sociated with di¤erent angular momenta. Just as importantly, the existence of internal
“spin” degrees of freedom, i.e., intrinsic angular momenta associated with the internal
structure of fundamental particles, provides additional motivation for the study of angu-
lar momentum and to the general properties exhibited by dynamical quantum systems
under rotations.

5.1 Orbital Angular Momentum of One or More Particles

The classical orbital angular momentum of a single particle about a given origin is given
by the cross product

~̀= ~r £ ~p (5.1)

of its position and momentum vectors. The total angular momentum of a system of such
structureless point particles is then the vector sum

~L =
X
®

~̀
® =

X
®

~r® £ ~p® (5.2)
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of the individual angular momenta of the particles making up the collection. In quantum
mechanics, of course, dynamical variables are replaced by Hermitian operators, and so we
are led to consider the vector operator

~̀= ~R£ ~P (5.3)

or its dimensionless counterpart

~l = ~R£ ~K;=
~̀

~
; (5.4)

either of which we will refer to as an angular momentum (i.e., we will, for the rest of this
chapter, e¤ectively be working in a set of units for which ~ = 1). Now, a general vector
operator ~B can always be de…ned in terms of its operator components fBx; By; Bzg along
any three orthogonal axes. The component of ~B along any other direction, de…ned, e.g.,
by the unit vector û; is then the operator ~B ¢ û = Bxux +Byuy +Bzuz. So it is with the
operator ~l; whose components are, by de…nition, the operators

lx = Y Kz ¡ ZKy ly = ZKx ¡XKz lz = XKy ¡ Y Kx: (5.5)

The components of the cross product can also be written in a more compact form

li =
X
j;k

"ijkXjKk (5.6)

in terms of the Levi-Civita symbol

"ijk =

8<: 1 if ijk is an even permutation of 123
¡1 if ijk is an odd permutation of 123
0 otherwise

. (5.7)

Although the normal product of two Hermitian operators is itself Hermitian if
and only if they commute, this familiar rule does not extend to the cross product of two
vector operators. Indeed, even though ~R and ~K do not commute, their cross product ~l is
readily shown to be Hermitian. From (5.6),

l+i =
X
j;k

"ijkK
+
k X

+
j =

X
j;k

"ijkKkXj =
X
j;k

"ijkXjKk = li; (5.8)

where we have used the fact the components of ~R and ~K are Hermitian and that, since
"ijk = 0 if k = j; only commuting components of ~R and ~K appear in each term of the
cross product: It is also useful to de…ne the scalar operator

l2 = ~l ¢~l = l2x + l2y + l2z (5.9)

which, being the sum of the squares of Hermitian operators, is itself both Hermitian and
positive.

So the components of ~l; like those of the vector operators ~R and ~P ; are Hermitian.
We will assume that they are also observables. Unlike the components of ~R and ~P ;
however, the components of ~l along di¤erent directions do not commute with each other.
This is readily established; e.g.,

[lx; ly] = [YKz ¡ ZKy; ZKx ¡KzX]
= YKx [Kz; Z] +KyX [Z;Kz]

= i (XKy ¡ YKx) = ilz:
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The other two commutators are obtained in a similar fashion, or by a cyclic permutation
of x; y; and z; giving

[lx; ly] = ilz [ly; lz] = ilx [lz; lx] = ily; (5.10)

which can be written more compactly using the Levi-Civita symbol in either of two ways,

[li; lj ] = i
X
k

"ijklk; (5.11)

or X
i;j

"ijklilj = ilk;

the latter of which is, component-by-component, equivalent to the vector relation

~l £~l = i~l: (5.12)

These can also be used to derive the following generalizationh
~l ¢ â;~l ¢ b̂

i
= i~l ¢

³
â£ b̂

´
(5.13)

involving the components of ~l along arbitrary directions â and b̂.
It is also straightforward to compute the commutation relations between the com-

ponents of ~l and l2, i.e.,£
lj ; l

2
¤
=

X
i

£
lj ; l

2
i

¤
=
X
i

li [lj; li] +
X
i

[lj ; li] li

= i
X
i;k

("ijklilk + "ijklkli) = i
X
i;k

("ijklilk + "kjililk)

= i
X
i;k

"ijk(lilk ¡ lilk) = 0 (5.14)

where in the second line we have switched summation indices in the second sum and then
used the fact that "kji = ¡"ijk: Thus each component of ~l commutes with l2: We writeh

~l; l2
i
= 0 [li; lj ] = i

X
k

"ijklk: (5.15)

The same commutation relations are also easily shown to apply to the operator
representing the total orbital angular momentum ~L of a system of particles. For such a
system, the state space of which is the direct product of the state spaces for each particle,
the operators for one particle automatically commute with those of any other, so that

[Li; Lj ] =
X
®;¯

[li;®; lj;¯] = i
X
k

"ijk
X
®;¯

±®;¯ lk;® = i
X
k

"ijk
X
®

lk;®

= i
X
k

"ijkLk (5.16)

Similarly, from these commutation relations for the components of ~L, it can be shown
that

£
Li; L

2
¤
= 0 using the same proof as above for ~l. Thus, for each particle, and for

the total orbital angular momentum itself, we have the same characteristic commutation
relations

[Li; Lj ] = i
X
k

"ijkLk
h
~L;L2

i
= 0: (5.17)
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As we will see, these commutation relations determine to a very large extent the allowed
spectrum and structure of the eigenstates of angular momentum. It is convenient to adopt
the viewpoint, therefore, that any vector operator obeying these characteristic commuta-
tion relations represents an angular momentum of some sort. We thus generally say that
an arbitrary vector operator ~J is an angular momentum if its Cartesian components are
observables obeying the following characteristic commutation relations

[Ji; Jj ] = i
X
k

"ijkJk

h
~J; J2

i
= 0: (5.18)

It is actually possible to go considerably further than this. It can be shown,
under very general circumstances, that for every quantum system there must exist a
vector operator ~J obeying the commutation relations (5.18), the components of which
characterize the way that the quantum system transforms under rotations. This vector
operator ~J can usually, in such circumstances, be taken as a de…nition of the total angular
momentum of the associated system. Our immediate goals, therefore, are twofold. First
we will explore this underlying relationship that exists between rotations and the angular
momentum of a physical system. Then, afterwards, we will return to the commutation
relations (5.18), and use them to determine the allowed spectrum and the structure of the
eigenstates of arbitrary angular momentum observables.

5.2 Rotation of Physical Systems

A rotation R of a physical system is a distance preserving mapping of R3 onto itself
that leaves a single point O; and the handedness of coordinate systems invariant. This
de…nition excludes, e.g., re‡ections and other “improper” transformations, which always
invert coordinate systems. There are two di¤erent, but essentially equivalent ways of
mathematically describing rotations. An active rotation of a physical system is one in
which all position and velocity vectors of particles in the system are rotated about the
…xed point O; while the coordinate system used to describe the system is left unchanged.
A passive rotation, by contrast, is one in which the coordinate axes are rotated, but
the physical vectors of the system are left alone. In either case the result, generally, is
a change in the Cartesian components of any vector in the system with respect to the
coordinate axes used to represent them. It is important to note, however, that a clockwise
active rotation of a physical system about a given axis is equivalent in terms of the change
it produces on the coordinates of a vector to a counterclockwise passive rotation about
the same axis.

There are also two di¤erent methods commonly adopted for indicating speci…c
rotations, each requiring three independent parameters. One method speci…es particular
rotations through the use of the so-called Euler angles introduced in the study of rigid
bodies. Thus, e.g., R(®; ¯; °) would indicate the rotation equivalent to the three separate
rotations de…ned by the Euler angles (®; ¯; °):

Alternatively, we can indicate a rotation by choosing a speci…c rotation axis,
described by a unit vector û (de…ned, e.g., through its polar angles µ and Á), and a
rotation angle ®: Thus, a rotation about û through an angle ® (positive or negative,
according to the right-hand-rule applied to û) would be written Rû(®): We will, in what
follows, make more use of this latter approach than we will of the Euler angles.

Independent of their means of speci…cation, the rotations about a speci…ed point
O in three dimensions form a group, referred to as the three-dimensional rotation group.
Recall that a set G of elements R1; R2; ¢ ¢ ¢ ; that is closed under an associative binary
operation,

RiRj = Rk 2 G for all Ri; Rj 2 G; (5.19)
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is said to form a group if (i) there exists inG an identity element 1 such that R1 = 1R = R
for all R in G and (ii) there is in G; for each R; an inverse element R¡1; such that
RR¡1=R¡1R = 1.

For the rotation group fRû(®)g the product of any two rotations is just the
rotation obtained by performing each rotation in sequence, i.e., Rû(®)Rû0(®

0) corresponds
to a rotation of the physical system through an angle ®0 about û0; followed by a rotation
through ® about û: The identity rotation corresponds to the limiting case of a rotation of
® = 0 about any axis (i.e., the identity mapping). The inverse of Rû(®) is the rotation

R¡1
û (®) = Rû(¡®) =R¡û(®); (5.20)

that rotates the system in the opposite direction about the same axis.
It is readily veri…ed that, in three dimensions, the product of two rotations gen-

erally depends upon the order in which they are taken. That is, in most cases,

Rû(®)Rû0(®
0) 6= Rû0(®

0)Rû(®): (5.21)

The rotation group, therefore, is said to be a noncommutative or non-Abelian group.
There are, however, certain subsets of the rotation group that form commutative

subgroups (subsets of the original group that are themselves closed under the same
binary operation). For example, the set of rotations fRû(®) j …xed ûg about any single
…xed axis forms an Abelian subgroup of the 3D rotation group, since the product of two
rotations in the plane perpendicular to û corresponds to a single rotation in that plane
through an angle equal to the (commutative) sum of the individual rotation angles,

Rû(®)Rû(¯) = Rû(®+ ¯) =Rû(¯)Rû(®): (5.22)

The subgroups of this type are all isomorphic to one another. Each one forms a realization
of what is referred to for obvious reasons as the two dimensional rotation group.

Another commutative subgroup comprises the set of in…nitesimal rotations.
A rotation Rû(±®) is said to be in…nitesimal if the associated rotation angle ±® is an
in…nitesimal (it being understood that quantities of order ±2® are always to be neglected
with respect to quantities of order ±®). The e¤ect of an in…nitesimal rotation on a physical
quantity of the system is to change it, at most, by an in…nitesimal amount. The general
properties of such rotations are perhaps most easily demonstrated by considering their
e¤ect on normal vectors of R3.

The e¤ect of an arbitrary rotation R on a vector ~v of R3 is to transform it into
a new vector

~v0 = R [~v] : (5.23)

Because rotations preserves the relative orientations and lengths of all vectors in the
system, it also preserves the basic linear relationships of the vector space itself, i.e.,

R [~v1 + ~v2] =R [~v1] +R [~v2] : (5.24)

Thus, the e¤ect of any rotation R on vectors in the R3 can be described through the
action of an associated linear operator AR; such that

R [~v] = ~v0 = AR~v: (5.25)

This linear relationship can be expressed in any Cartesian coordinate system in component
form

v0i =
X
j

Aijvj (5.26)
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A systematic study of rotations reveals that the 3 £ 3 matrix A representing the linear
operator AR must be real, orthogonal, and unimodular, i.e.

Aij = A
¤
ij ATA = AAT = 1 det(A) = 1: (5.27)

We will denote by Aû(®) the linear operator (or any matrix representation thereof, de-
pending upon the context) representing the rotation Rû(®). The rotations Rû(®) and the
orthogonal, unimodular matrices Aû(®) representing their e¤ect on vectors with respect
to a given coordinate system are in a one-to-one correspondence. We say, therefore, that
the set of matrices fAû(®)g forms a representation of the 3D rotation group. The group
formed by the matrices themselves is referred to as SO3, which indicates the group of “spe-
cial” orthogonal 3£ 3 matrices (special in that it excludes those orthogonal matrices that
have determinant of ¡1; i.e., it excludes re‡ections and other improper transformations).
In this group, the matrix representing the identity rotation is, of course, the identity
matrix, while rotations about the three Cartesian axes are e¤ected by the matrices

Ax(µ) =

0@ 1 0 0
0 cos µ ¡ sin µ
0 sin µ cos µ

1A Ay(µ) =

0@ cos µ 0 sin µ
0 1 0

¡ sin µ 0 cos µ

1A

Az(µ) =

0@ cos µ ¡ sin µ 0
sin µ cos µ 0
0 0 1

1A (5.28)

Now it is intuitively clear that the matrix associated with an in…nitesimal rotation
barely changes any vector that it acts upon and, as a result, di¤ers from the identity matrix
by an in…nitesimal amount, i.e.,

Aû(±®) = 1+ ±®Mû (5.29)

where Mû is describes a linear transformation that depends upon the rotation axis û but
is independent of the in…nitesimal rotation angle ±®: The easily computed inverse

A¡1û (±®) = Aû(¡±®) = 1¡ ±®Mû (5.30)

and the orthogonality of rotation matrices

A¡1û (±®) = A
T
û (±®) = 1+ ±®M

T
û (5.31)

leads to the requirement that the matrix

Mû = ¡MT
û (5.32)

be real and antisymmetric. Thus, under such an in…nitesimal rotation, a vector ~v is taken
onto the vector

~v0 = ~v + ±®Mû~v: (5.33)
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dv = v δα  sin θ  
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v 

Figure 1 Under an in…nitesimal rotation Rû(±®); the change d~v = ~v0 ¡ ~v in a vector ~v is
perpendicular to both û and ~v; and has magnitude jd~vj = j~vj±® sin µ.

But an equivalent description of such an in…nitesimal transformation on a vector
can be determined through simple geometrical arguments. The vector ~v0 obtained by
rotating the vector ~v about û through an in…nitesimal angle ±® is easily veri…ed from Fig.
(1) to be given by the expression

~v0 = ~v + ±® (û£ ~v) (5.34)

or, in component form

v0i = vi + ±®
X
j;k

"ijkujvk (5.35)

A straightforward comparison of (5.33) and (5.34) reveals that, for these to be consistent,
the matrix Mû must have matrix elements of the form Mik =

P
j "ijkuj ; i.e.,

Mû =

0@ 0 ¡uz uy
uz 0 ¡ux
¡uy ux 0

1A ; (5.36)

where ux; uy; and uz are the components (i.e., direction cosines) of the unit vector û. Note
that we can write (5.36) in the form

Mû =
X
i

uiMi = uxMx + uyMy + uzMz (5.37)

where the three matricesMi that characterize rotations about the three di¤erent Cartesian
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axes are given by

Mx =

0@ 0 0 0
0 0 ¡1
0 1 0

1A My =

0@ 0 0 1
0 0 0
¡1 0 0

1A Mz =

0@ 0 ¡1 0
1 0 0
0 0 0

1A : (5.38)

Returning to the point that motivated our discussion of in…nitesimal rotations,
we note that

Aû(±®)Aû0(±®
0) = (1+ ±®Mû) (1+ ±®

0Mû0)

= 1+ ±®Mû + ±®
0Mû0 = Aû0(±®)Aû(±®

0); (5.39)

which shows that, to lowest order, a product of in…nitesimal rotations always commutes.
This last expression also reveals that in…nitesimal rotations have a particularly simple
combination law, i.e., to multiply two or more in…nitesimal rotations simply add up the
parts corresponding to the deviation of each one from the identity matrix. This rule,
and the structure (5.37) of the matrices Mû implies the following important theorem:
an in…nitesimal rotation Aû(±®) about an arbitrary axis û can always be built up as a
product of three in…nitesimal rotations about any three orthogonal axes, i.e.,

Aû(±®) = 1+ ±®Mû

= 1+ ±®uxMx + ±®uyMy + ±®uzMz

which implies that
Aû(±®) = Ax(ux±®)Ay(uy±®)Az(uz±®): (5.40)

Since this last property only involves products, it must be a group property associated with
the group SO3 of rotation matrices fAû(®)g ; i.e., a property shared by the in…nitesimal
rotations that they represent, i.e.,

Rû(±®) = Rx(ux±®)Ry(uy±®)Rz(uz±®): (5.41)

We will use this group relation associated with in…nitesimal rotations in determining their
e¤ect on quantum mechanical systems.

5.3 Rotations in Quantum Mechanics

Any quantum system, no matter how complicated, can be characterized by a set of ob-
servables and by a state vector jÃi; which is an element of an associated Hilbert space.
A rotation performed on a quantum mechanical system will generally result in a trans-
formation of the state vector and to a similar transformation of the observables of the
system. To make this a bit more concrete, it is useful to imagine an experiment set up
on a rotatable table. The quantum system to be experimentally interrogated is described
by some initial suitably-normalized state vector jÃi: The experimental apparatus might
be arranged to measure, e.g., the component of the momentum of the system along a
particular direction. Imagine, now, that the table containing both the system and the
experimental apparatus is rotated about a vertical axis in such a way that the quantum
system “moves” rigidly with the table (i.e., so that an observer sitting on the table could
distinguish no change in the system). After such a rotation, the system will generally
be in a new state jÃ0i; normalized in the same way as it was before the rotation. More-
over, the apparatus that has rotated with the table will now be set up to measure the
momentum along a di¤erent direction, as measured by a set of coordinate axes …xed in
the laboratory..
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Such a transformation clearly describes a mapping of the quantum mechanical
state space onto itself in a way that preserves the relationships of vectors in that space,
i.e., it describes a unitary transformation. Not surprisingly, therefore, the e¤ect of any
rotationR on a quantum system can quite generally be characterized by a unitary operator
UR; i.e.,

jÃ0i = R [jÃi] = URjÃi: (5.42)

Moreover, the transformation experienced under such a rotation by observables of the
system must have the property that the mean value and statistical distribution of an
observable Q taken with respect to the original state jÃi will be the same as the mean
value and distribution of the rotated observable Q0 = R [Q] taken with respect to the
rotated state jÃ0i; i.e.,

hÃjQjÃi = hÃ0jQ0jÃ0i = hÃjU+RQ0URjÃi (5.43)

From (5.43) we deduce the relationship

Q0 = R [Q] = URQU+R : (5.44)

Thus, the observable Q0 is obtained through a unitary transformation of the unrotated
observable Q using the same unitary operator that is needed to describe the change in the
state vector. Consistent with our previous notation, we will denote by Uû(®) the unitary
transformation describing the e¤ect on a quantum system of a rotation Rû(®) about û
through angle ®.

Just as the 3 £ 3 matrices fAû(®)g form a representation of the rotation group
fRû(®)g, so do the set of unitary operators fUû(®)g and so also do the set of matrices
representing these operators with respect to any given ONB for the state space. Also,
as with the case of normal vectors in R3; an in…nitesimal rotation on a quantum system
will produce an in…nitesimal change in the state vector jÃi: Thus, the unitary operator
Uû(±®) describing such an in…nitesimal rotation will di¤er from the identity operator by
an in…nitesimal, i.e.,

Uû(±®) = 1+ ±® M̂û (5.45)

where M̂u is now a linear operator, de…ned not on R3 but on the Hilbert space of the
quantum system under consideration, that depends on û but is independent of ±®. Similar
to our previous calculation, the easily computed inverse

U¡1û (±®) = Uû(¡±®) = 1¡ ±® M̂û (5.46)

and the unitarity of these operators (U¡1 = U+) leads to the result that, now, M̂û =
¡M̂+

û is anti-Hermitian. There exists, therefore, for each quantum system, an Hermitian
operator Jû = iM̂û; such that

Uû(±®) = 1¡ i±®Jû: (5.47)

The Hermitian operator Jû is referred to as the generator of in…nitesimal rotations
about the axis û: Evidently, there is a di¤erent operator Jû characterizing rotations about
each direction in space. Fortunately, as it turns out, all of these di¤erent operators Jû
can be expressed as a simple combination of any three operators Jx; Jy; and Jz describing
rotations about a given set of coordinate axes. This economy of expression arises from the
combination rule (5.41) obeyed by in…nitesimal rotations, which implies a corresponding
rule

Uû(±®) = Ux(ux±®)Uy(uy±®)Uz(uz±®)
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for the unitary operators that represent them in Hilbert space. Using (5.47), this funda-
mental relation implies that

Uû(±®) = (1¡ i±®uxJx)(1¡ i±®uyJy)(1¡ i±®uzJz)
= 1¡i±® (uxJx + uyJy + iuzJz): (5.48)

Implicit in the form of Eq. (5.48) is the existence of a vector operator ~J , with Hermitian
components Jx; Jy; and Jz that generate in…nitesimal rotations about the corresponding
coordinate axes, and in terms of which an arbitrary in…nitesimal rotation can be expressed
in the form

Uû(±®) = 1¡ i±® ~J ¢ û = 1¡ i±®Ju (5.49)

where Ju = ~J ¢ û now represents the component of the vector operator ~J along û.
From this form that we have deduced for the unitary operators representing in…n-

itesimal rotations we can now construct the operators representing …nite rotations. Since
rotations about a …xed axis form a commutative subgroup, we can write

Uû(®+ ±®) = Uû(±®)Uû(®) = (1¡ i±®Ju)Uû(®) (5.50)

which implies that

dUû(®)

d®
= lim
±®!0

Uû(®+ ±®)¡ Uû(®)
±®

= ¡iJuUû(®): (5.51)

The solution to this equation, subject to the obvious boundary condition Uû(0) = 1; is
the unitary rotation operator

Uû(®) = exp (¡i®Ju) = exp
³
¡i® ~J ¢ ~u

´
: (5.52)

We have shown, therefore, that a description of the behavior of a quantum sys-
tem under rotations leads automatically to the identi…cation of a vector operator ~J; whose
components act as generators of in…nitesimal rotations and the exponential of which gen-
erates the unitary operators necessary to describe more general rotations of arbitrary
quantum mechanical systems. It is convenient to adopt the point of view that the vector
operator ~J whose existence we have deduced represents, by de…nition, the total angu-
lar momentum of the associated system. We will postpone until later a discussion of
how angular momentum operators for particular systems are actually identi…ed and con-
structed. In the meantime, however, to show that this point of view is at least consistent
we must demonstrate that the components of ~J satisfy the characteristic commutation
relations (5.18) that are, in fact, obeyed by the operators representing the orbital angular
momentum of a system of one or more particles.

5.4 Commutation Relations for Scalar and Vector Operators

The analysis of the last section shows that for a general quantum system there exists a
vector operator ~J; to be identi…ed with the angular momentum of the system, that is
essential for describing the e¤ect of rotations on the state vector jÃi and its observables
Q. Indeed, the results of the last section imply that a rotation Rû(®) of the physical
system will take an arbitrary observable Q onto a generally di¤erent observable

Q0 = Uû(®)QU+û (®) = e
¡i®JuQei®Ju : (5.53)

For in…nitesimal rotations Uû(±®), this transformation law takes the form

Q0 = (1¡ i±® Ju)Q(1+ i±®Ju) (5.54)
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which, to lowest nontrivial order, implies that

Q0 = Q¡ i±® [Ju;Q] : (5.55)

Now, as in classical mechanics, it is possible to classify certain types of observables of
the system according to the manner in which they transform under rotations. Thus, an
observable Q is referred to as a scalar with respect to rotations if

Q0 = Q; (5.56)

for all R: For this to be true for arbitrary rotations, we must have, from (5.53), that

Q0 = URQU+R = Q; (5.57)

which implies that URQ = QUR; or

[Q;UR] = 0: (5.58)

Thus, for Q to be a scalar it must commute with the complete set of rotation operators for
the space. A somewhat simpler expression can be obtained by considering the in…nitesimal
rotations, where from (5.55) and (5.56) we see that the condition for Q to be a scalar
reduces to the requirement that

[Ju; Q] = 0; (5.59)

for all components Ju; which implies thath
~J;Q

i
= 0: (5.60)

Thus, by de…nition, any observable that commutes with the total angular momentum of
the system is a scalar with respect to rotations.

A collection of three operators Vx; Vy; and Vz can be viewed as forming the com-
ponents of a vector operator ~V if the component of ~V along an arbitrary direction â is
Va = ~V ¢ â = P

i Viai: By construction, therefore, the operator ~J is a vector operator,
since its component along any direction is a linear combination of its three Cartesian
components with coe¢cients that are, indeed, just the associated direction cosines. Now,
after undergoing a rotation R; a device initially setup to measure the component Va of a
vector operator ~V along the direction â will now measure the component of ~V along the
rotated direction

â0 = ARâ; (5.61)

where AR is the orthogonal matrix associated with the rotation R: Thus, we can write

R [Va] = URVaU
+
R = UR(

~V ¢ â)U+R = ~V ¢ â0 = Va0 : (5.62)

Again considering in…nitesimal rotations Uû(±®); and applying (5.55), this reduces to the
relation

~V ¢ â0 = ~V ¢ â¡ i±®
h
~J ¢ û; ~V ¢ â

i
: (5.63)

But we also know that, as in (5.34), an in…nitesimal rotation Aû(±®) about û takes the
vector â onto the vector

â0 = (1+ ±®Mû) â = â+ ±® (û£ â) : (5.64)

Consistency of (5.63) and (5.64) requires that

~V ¢ â0 = ~V ¢ â+ ±® ~V ¢ (û£ â) = ~V ¢ â¡ i±®
h
~J ¢ û; ~V ¢ â

i
(5.65)
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i.e., that h
~J ¢ û; ~V ¢ â

i
= i~V ¢ (û£ â): (5.66)

Taking û and â along the ith and jth Cartesian axes, respectively, this latter relation can
be written in the form

[Ji; Vj ] = i
X
k

"ijkVk; (5.67)

or more speci…cally

[Jx; Vy] = iVz [Jy; Vz] = iVx [Jz; Vx] = iVy (5.68)

which shows that the components of any vector operator of a quantum system obey com-
mutation relations with the components of the angular momentum that are very similar
to those derived earlier for the operators associated with the orbital angular momentum,
itself. Indeed, since the operator ~J is a vector operator with respect to rotations, it must
also obey these same commutation relations, i.e.,

[Ji; Jj ] =
X
k

i"ijkJk: (5.69)

Thus, our identi…cation of the operator ~J identi…ed above as the total angular momentum
of the quantum system is entirely consistent with our earlier de…nition, in which we
identi…ed as an angular momentum any vector operator whose components obey the
characteristic commutation relations (5.18).

5.5 Relation to Orbital Angular Momentum

To make some of the ideas introduced above a bit more concrete, we show how the
generator of rotations ~J relates to the usual de…nition of angular momentum for, e.g., a
single spinless particle. This is most easily done by working in the position representation.
For example, let Ã(~r) = h~rjÃi be the wave function associated with an arbitrary state
jÃi of a single spinless particle. Under a rotation R; the ket jÃi is taken onto a new
ket jÃ0i = URjÃi described by a di¤erent wave function Ã0(~r) = h~rjÃ0i: The new wave
function Ã0, obtained from the original by rotation, has the property that the value of the
unrotated wavefunction Ã at the point ~r must be the same as the value of the rotated
wave function Ã0 at the rotated point ~r0 = AR~r: This relationship can be written in several
ways, e.g.,

Ã(~r) = Ã0(~r0) = Ã0(AR~r) (5.70)

which can be evaluated at the point A¡1R ~r to obtain

Ã0(~r) = Ã(A¡1R ~r): (5.71)

Suppose that in (5.71), the rotation AR = Aû(±®) represents an in…nitesimal rotation
about the axis û through and angle ±®, for which

AR~r = ~r + ±®(û£ ~r): (5.72)

The inverse rotation A¡1R is then given by

A¡1R ~r = ~r ¡ ±® (û£ ~r) : (5.73)

Thus, under such a rotation, we can write

Ã0(~r) = Ã(A¡1R ~r) = Ã [~r ¡ ±® (û£ ~r)]
= Ã (~r)¡ ±® (û£ ~r) ¢ ~rÃ(~r) (5.74)
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where we have expanded Ã [~r ¡ ±® (û£ ~r)] about the point ~r; retaining …rst order in…ni-
tesimals. We can use the easily-proven identity

(û£ ~r) ¢ ~rÃ = û ¢ (~r £ ~r)Ã
which allows us to write

Ã0(~r) = Ã (~r)¡ ±® û ¢ (~r £ ~r)Ã(~r)

= Ã (~r)¡ i±® û ¢
Ã
~r £

~r
i

!
Ã(~r) (5.75)

In Dirac notation this is equivalent to the relation

h~rjÃ0i = h~rjUû(±®)jÃi = h~rj
³
1¡ i±® û ¢ ~̀́ jÃi (5.76)

where
~̀= ~R£ ~K: (5.77)

Thus, we identify the vector operator ~J for a single spinless particle with the orbital
angular momentum operator ~̀: This allows us to write a general rotation operator for
such a particle in the form

Uû(®) = exp
³
¡i®~̀ ¢ û

´
: (5.78)

Thus the components of ~̀ form the generators of in…nitesimal rotations.
Now the state space for a collection of such particles can be considered the direct or

tensor product of the state spaces associated with each one. Since operators from di¤erent
spaces commute with each other, the unitary operator U (1)R that describes rotations of one
particle will commute with those of another. It is not di¢cult to see that under these
circumstances the operator that rotates the entire state vector jÃi is the product of the
rotation operators for each particle. Suppose, e.g., that jÃi is a direct product state, i.e.,

jÃi = jÃ1; Ã2; ¢ ¢ ¢ ; ÃNi:
Under a rotation R; the state vector jÃi is taken onto the state vector

jÃ0i = jÃ01; Ã02; ¢ ¢ ¢ ; Ã0Ni
= U

(1)
R jÃ01iU (2)R jÃ02i ¢ ¢ ¢U (N)R jÃ0Ni

= U
(1)
R U

(2)
R ¢ ¢ ¢U(N)R jÃ1; Ã2; ¢ ¢ ¢ ; ÃNi

= URjÃi
where

UR = U
(1)
R U

(2)
R ¢ ¢ ¢U (N)R

is a product of rotation operators for each part of the space, all corresponding to the same
rotation R: Because these individual operators can all be written in the same form, i.e.,

U
(¯)
R = exp

³
¡i®~̀̄ ¢ û

´
;

where ~̀̄ it the orbital angular momentum for particle ¯, it follows that the total rotation
operator for the space takes the form

UR =
Y
¯

exp
³
¡i®~̀̄ ¢ û

´
= exp

³
¡i®~L ¢ û

´
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where
~L =

X
¯

~̀̄ :

Thus, we are led naturally to the point of view that the generator of rotations for the
whole system is the sum of the generators for each part thereof, hence for a collection of
spinless particles the total angular momentum ~J coincides with the total orbital angular
momentum ~L; as we would expect.

Clearly, the generators for any composite system formed from the direct product of
other subsystems is always the sum of the generators for each subsystem being combined.
That is, for a general direct product space in which the operators ~J1; ~J2; ¢ ¢ ¢ ~JN are the
vector operators whose components are the generators of rotations for each subspace, the
corresponding generators of rotation for the combined space is obtained as a sum

~J =
NX
®=1

~J®

of those for each space, and the total rotation operator takes the form

Uû(®) = exp
³
¡i® ~J ¢ û

´
:

For particles with spin, the individual particle spaces can themselves be considered direct
products of a spatial part and a spin part. Thus for a single particle of spin ~S the generator
of rotations are the components of the vector operator ~J = ~L+ ~S; where ~L takes care of
rotations on the spatial part of the state and ~S does the same for the spin part.

5.6 Eigenstates and Eigenvalues of Angular Momentum Operators

Having explored the relationship between rotations and angular momenta, we now under-
take a systematic study of the eigenstates and eigenvalues of a vector operator ~J obeying
angular momentum commutation relations of the type that we have derived. As we will
see, the process for obtaining this information is very similar to that used to determine
the spectrum of the eigenstates of the harmonic oscillator. We consider, therefore, an
arbitrary angular momentum operator ~J whose components satisfy the relations

[Ji; Jj ] = i
X
k

"ijkJk
h
~J; J2

i
= 0: (5.79)

We note, as we did for the orbital angular momentum ~L; that, since the components
Ji do not commute with one another, ~J cannot possess an ONB of eigenstates, i.e.,
states which are simultaneous eigenstates of all three of its operator components. In fact,
one can show that the only possible eigenstates of ~J are those for which the angular
momentum is identically zero (an s-state in the language of spectroscopy). Nonetheless,
since, according to (5.79), each component of ~J commutes with J2; it is possible to
…nd an ONB of eigenstates common to J2 and to the component of ~J along any chosen
direction. Usually the component of ~J along the z-axis is chosen, because of the simple
form taken by the di¤erential operator representing that component of orbital angular
momentum in spherical coordinates. Note, however, that due to the cyclical nature of the
commutation relations, anything deduced about the spectrum and eigenstates of J2 and
Jz must also apply to the eigenstates common to J2 and to any other component of ~J:
Thus the spectrum of Jz must be the same as that of Jx; Jy; or Ju = ~J ¢ û:

We note also, that, as with l2; the operator J2 =
P
i J

2
i is Hermitian and positive

de…nite and thus its eigenvalues must be greater than or equal to zero. For the moment,
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we will ignore other quantum numbers and simply denote a common eigenstate of J2 and
Jz as jj;mi; where, by de…nition,

Jzjj;mi = mjj;mi (5.80)

J2jj;mi = j(j + 1)jj;mi: (5.81)

which implies that m is the associated eigenvalue of the operator Jz; while the label j is
intended to simply identify the corresponding eigenvalue j(j + 1) of J2: The justi…cation
for writing the eigenvalues of J2 in this fashion is only that it simpli…es the algebra and
the …nal results obtained. At this point, there is no obvious harm in expressing things
in this fashion since for real values of j the corresponding values of j(j + 1) include all
values between 0 and 1; and so any possible eigenvalue of J2 can be represented in the
form j(j + 1) for some value of j. Moreover, it is easy to show that any non-negative
value of j(j +1) can be obtained using a value of j which is itself non-negative. Without
loss of generality, therefore, we assume that j ¸ 0:We will also, in the interest of brevity,
refer to a vector jj;mi satisfying the eigenvalue equations (5.80) and (5.81) as a “vector
of angular momentum (j;m)”.

To proceed further, it is convenient to introduce the operator

J+ = Jx + iJy (5.82)

formed from the components of ~J along the x and y axes. The adjoint of J+ is the operator

J¡ = Jx ¡ iJy; (5.83)

in terms of which we can express the original operators

Jx =
1

2
(J+ + J¡) Jy =

i

2
(J¡ ¡ J+) : (5.84)

Thus, in determining the spectrum and common eigenstates of J2 and Jz ,we will …nd
it convenient to work with the set of operators

©
J+; J¡; J2; Jz

ª
rather than the set©

Jx; Jy; Jz; J
2
ª
: In the process, we will require commutation relations for the opera-

tors in this new set. We note …rst that J§; being a linear combination of Jx and Jy; must
by (5.79) commute with J2: The commutator of J§ with Jz is also readily established;
we …nd that

[Jz; J§] = [Jz; Jx]§ i [Jz; Jy] = iJy § Jx (5.85)

or
[Jz; J§] = §J§: (5.86)

Similarly, the commutator of J+ and J¡ is

[J+; J¡] = [Jx; Jx] + [iJy; Jx]¡ [Jx; iJy]¡ [iJy; iJy]
= 2Jz: (5.87)

Thus the commutation relations of interest take the form

[Jz; J§] = §J§ [J+; J¡] = 2Jz
£
J2; J§

¤
= 0 =

£
J2; Jz

¤
: (5.88)

It will also be necessary in what follows to express the operator J2 in terms of the new
“components” fJ+; J¡; Jzg rather than the old components fJx; Jy; Jzg : To this end we
note that J2 ¡ J2z = J2x + J2y ; and so

J+J¡ = (Jx + iJy) (Jx ¡ iJy) = J2x + J2y ¡ i [Jx; Jy]
= J2x + J

2
y + Jz = J

2 ¡ Jz(Jz ¡ 1) (5.89)
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and

J¡J+ = (Jx ¡ iJy) (Jx + iJy) = J2x + J2y + i [Jx; Jy]
= J2x + J

2
y ¡ Jz = J2 ¡ Jz(Jz + 1): (5.90)

These two results imply the relation

J2 =
1

2
[J+J¡ + J¡J+] + J2z : (5.91)

With these relations we now deduce allowed values in the spectrum of J2 and
Jz. We assume, at …rst, the existence of at least one nonzero eigenvector jj;mi of J2 and
Jz with angular momentum (j;m); where, consistent with our previous discussion, the
eigenvalues of J2 satisfy the inequalities

j(j + 1) ¸ 0 j ¸ 0: (5.92)

Using this, and the commutation relations, we now prove that the eigenvalue m must lie,
for a given value of j; in the range

j ¸m ¸ ¡j: (5.93)

To show this, we consider the vectors J+jj;mi and J¡jj;mi; whose squared norms are
jjJ+jj;mijj2 = hj;mjJ¡J+jj;mi (5.94)

jjJ¡jj;mijj2 = hj;mjJ+J¡jj;mi: (5.95)

Using (5.89) and (5.90) these last two equations can be written in the form

jjJ+jj;mijj2 = hj;mjJ2 ¡ Jz(Jz + 1)jj;mi = [j(j + 1)¡m(m+ 1)] hj;mjj;mi (5.96)

jjJ¡jj;mijj2 = hj;mjJ2 ¡ Jz(Jz ¡ 1)jj;mi = [j(j + 1)¡m(m¡ 1)] hj;mjj;mi (5.97)

Now, adding and subtracting a factor of jm from each parenthetical term on the right,
these last expressions can be factored into

jjJ+jj;mijj2 = (j ¡m)(j +m+ 1)jjjj;mijj2 (5.98)

jjJ¡jj;mijj2 = (j +m)(j ¡m+ 1)jjjj;mijj2: (5.99)

For these quantities to remain positive de…nite, we must have

(j ¡m)(j +m+ 1) ¸ 0 (5.100)

and
(j +m)(j ¡m+ 1) ¸ 0: (5.101)

For positive j; the …rst inequality requires that

j ¸m and m ¸ ¡(j + 1) (5.102)

and the second that
m ¸ ¡j and j + 1 ¸ m: (5.103)

All four inequalities are satis…ed if and only if

j ¸m ¸ ¡j; (5.104)
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which shows, as required, that the eigenvalue m of Jz must lie between §j.
Having narrowed the range for the eigenvalues of Jz; we now show that the vector

J+jj;mi vanishes if and only if m = j; and that otherwise J+jj;mi is an eigenvector of J2
and Jz with angular momentum (j;m+ 1); i.e., it is associated with the same eigenvalue
j(j + 1) of J2; but is associated with an eigenvalue of Jz increased by one, as a result of
the action of J+.

To show the …rst half of the statement, we note from (5.98), that

jjJ+jj;mijj = (j ¡m)(j +m+ 1)jjjj;mijj2: (5.105)

Given the bounds onm; it follows that J+jj;mi vanishes if and only ifm = j: To prove the
second part, we use the commutation relation [Jz; J+] = J+ to write JzJ+ = J+Jz + J+
and thus

JzJ+jj;mi = (J+Jz + J+)jj;mi = (m+ 1)J+jj;mi; (5.106)

showing that J+jj;mi is an eigenvector of Jz with eigenvalue m + 1: Also, because
[J2; J+] = 0;

J2J+jj;mi = J+J2jj;mi = j(j + 1)J+jj;mi (5.107)

showing that if m 6= j; then the vector J+jj;mi is an eigenvector of J2 with eigenvalue
j(j + 1):

In a similar fashion, using (5.99) we …nd that

jjJ¡jj;mijj = (j +m)(j ¡m+ 1)jjjj;mijj2: (5.108)

Given the bounds onm; this proves that the vector J¡jj;mi vanishes if and only ifm = ¡j;
while the commutation relations [Jz; J¡] = ¡J¡ and [J2; J¡] = 0 imply that

JzJ¡jj;mi = (J¡Jz ¡ Jz)jj;mi = (m¡ 1)J¡jj;mi (5.109)

J2J¡jj;mi = J¡J2jj;mi = j(j + 1)J¡jj;mi: (5.110)

Thus, when m 6= ¡j; the vector J¡jj;mi is an eigenvector of J2 and Jz with angular
momentum (j;m¡ 1):

Thus, J+ is referred to as the raising operator, since it acts to increase the com-
ponent of angular momentum along the z-axis by one unit and J¡ is referred to as the
lowering operator. Neither operator has any e¤ect on the total angular momentum of the
system, as represented by the quantum number j labeling the eigenvalues of J2:

We now proceed to restrict even further the spectra of J2 and Jz: We note, e.g.,
from our preceding analysis that, given any vector jj;mi of angular momentum (j;m) we
can produce a sequence

J+jj;mi; J2+jj;mi; J3+jj;mi; ¢ ¢ ¢ (5.111)

of mutually orthogonal eigenvectors of J2 with eigenvalue j(j + 1) and of Jz with eigen-
values

m; (m+ 1) ; (m+ 2) ; ¢ ¢ ¢ : (5.112)

This sequence must terminate, or else produce eigenvectors of Jz with eigenvalues violating
the upper bound in Eq. (5.93). Termination occurs when J+ acts on the last nonzero
vector of the sequence, Jn+jj;mi say, and takes it on to the null vector. But, as we have
shown, this can only occur if m + n = j; i.e., if Jn+jj;mi is an eigenvector of angular
momentum (j;m+ n) = (j; j): Thus, there must exist an integer n such that

n = j ¡m: (5.113)
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This, by itself, does not require that m or j be integers, only that the values of m change
by an integer amount, so that the di¤erence between m and j be an integer. But similar
arguments can be made for the sequence

J¡jj;mi; J2¡jj;mi; J3¡jj;mi; ¢ ¢ ¢ (5.114)

which will be a series of mutually orthogonal eigenvectors of J2 with eigenvalue j(j + 1)
and of Jz with eigenvalues

m; (m¡ 1); (m¡ 2); ¢ ¢ ¢ : (5.115)

Again, termination is required to now avoid producing eigenvectors of Jz with eigenvalues
violating the lower bound in Eq. (5.93). Thus, the action of J¡ on the last nonzero vector
of the sequence, Jn

0
+ jj;mi say, is to take it onto the null vector. But this only occurs if

m¡n0 = ¡j; i.e., if Jn0+ jj;mi is an eigenvector of angular momentum (j;m¡n0) = (j;¡j):
Thus there exists an integer n0 such that

n0 = j +m: (5.116)

Adding these two relations, we deduce that there exists an integer N = n+ n0 such that
2j = n+ n0 = N , or

j =
N

2
: (5.117)

Thus, j must be either an integer or a half-integer. If N is an even integer, then
j is itself an integer and must be contained in the set j 2 f0; 1; 2; ¢ ¢ ¢ g: For this situation,
the results of the proceeding analysis indicate that m must also be an integer and, for
a given integer value of j; the values m must take on each of the 2j + 1 integer values
m = 0;§1;§2; ¢ ¢ ¢§ j: In this case, j is said to be an integral value of angular momentum.

If N is an odd integer, then j di¤ers from an integer by 1=2; i.e., it is contained in
the set j 2 f1=2; 3=2; 5=2; ¢ ¢ ¢ g; and is said to be half-integral (short for half-odd-integral).
For a given half-integral value of j; the values of m must then take on each of the 2j + 1
half-odd-integer values m = §1=2; ¢ ¢ ¢ ;§j.

Thus, we have deduced the values of j and m that are consistent with the com-
mutation relations (5.79). In particular, the allowed values of j that can occur are the
non-negative integers and the positive half-odd-integers. For each value of j; there are
always (at least) 2j + 1 fold mutually-orthogonal eigenvectors

fjj;mi j m = ¡j;¡j + 1; ¢ ¢ ¢ ; jg (5.118)

of J2 and Jz corresponding to the same eigenvalue j(j+1) of J2, but di¤erent eigenvalues
m of Jz (the orthogonality of the di¤erent vectors in the set follows from the fact that they
are eigenvectors of the Hermitian observable Jz corresponding to di¤erent eigenvalues.)

In any given problem involving an angular momentum ~J it must be determined
which of the allowed values of j and howmany subspaces for each such value actually occur.
All of the integer values of angular momentum do, in fact, arise in the study of the orbital
angular momentum of a single particle, or of a group of particles. Half-integral values of
angular momentum, on the other hand, are invariably found to have their source in the
half-integral angular momenta associated with the internal or spin degrees of freedom of
particles that are anti-symmetric under exchange, i.e., fermions. Bosons, by contrast, are
empirically found to have integer spins. This apparently universal relationship between
the exchange symmetry of identical particles and their spin degrees of freedom has actually
been derived under a rather broad set of assumptions using the techniques of quantum
…eld theory.
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The total angular momentum of a system of particles will generally have con-
tributions from both orbital and spin angular momenta and can be either integral or
half-integral, depending upon the number and type of particles in the system. Thus, gen-
erally speaking, there do exist di¤erent systems in which the possible values of j and m
deduced above are actually realized. In other words, there appear to be no superselection
rules in nature that further restrict the allowed values of angular momentum from those
allowed by the fundamental commutation relations.

5.7 Orthonormalization of Angular Momentum Eigenstates

We have seen in the last section that, given any eigenvector jj;mi with angular momen-
tum (j;m); it is possible to construct a set of 2j + 1 common eigenvectors of J2 and Jz
corresponding to the same value of j, but di¤erent values of m: Speci…cally, the vectors
obtained by repeated application of J+ to jj;mi will produce a set of eigenvectors of Jz
with eigenvaluesm+1;m+2; ¢ ¢ ¢ ; j; while repeated application of J¡ to jj;mi will produce
the remaining eigenvectors of Jz with eigenvalues m ¡ 1;m ¡ 2; ; ¢ ¢ ¢ ¡ j: Unfortunately,
even when the original angular momentum eigenstate jj;mi is suitably normalized, the
eigenvectors vectors obtained by application of the raising and lowering operators to this
state are not. In this section, therefore, we consider the construction of a basis of nor-
malized angular momentum eigenstates. To this end, we restrict our use of the notation
jj;mi so that it refers only to normalized states. We can then express the action of J+
on such a normalized state in the form

J+jj;mi = ¸mjj;m+ 1i (5.119)

where ¸m is a constant, and jj;m+1i represents, according to our de…nition, a normalized
state with angular momentum (j;m+1). We can determine the constant ¸m by considering
the quantity

jjJ+jj;mijj2 = hj;mjJ¡J+jj;mi = j¸mj2 (5.120)

which from the analysis following Eqs. (5.98) and (5.99), and the assumed normalization of
the state jj;mi; reduces to j¸mj2 = j(j+1)¡m(m+1): Choosing ¸m real and positive,this
implies the following relation

J+jj;mi =
p
j(j + 1)¡m(m+ 1) jj;m+ 1i (5.121)

between normalized eigenvectors of J2 and Jz di¤ering by one unit of angular momentum
along the z axis. A similar analysis applied to the operator J¡ leads to the relation

J¡jj;mi =
p
j(j + 1)¡m(m¡ 1) jj;m¡ 1i: (5.122)

These last two relations can also be written in the sometimes more convenient form

jj;m+ 1i = J+jj;mip
j(j + 1)¡m(m+ 1) (5.123)

jj;m¡ 1i = J¡jj;mip
j(j + 1)¡m(m¡ 1) : (5.124)

or

jj;m§ 1i = J§jj;mip
j(j + 1)¡m(m§ 1) : (5.125)

Now, if J2 and Jz do not comprise a complete set of commuting observables for the
space on which they are de…ned, then other commuting observables (e.g., the energy) will
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be required to form a uniquely labeled basis of orthogonal eigenstates, i.e., to distinguish
between di¤erent eigenvectors of J2 and Jz having the same angular momentum (j;m): If
we let ¿ denote the collection of quantum numbers (i.e., eigenvalues) associated with the
other observables needed along with J2 and Jz to form a complete set of observables, then
the normalized basis vectors of such a representation can be written in the form fj¿ ; j;mig :
Typically, many representations of this type are possible, since we can always form linear
combinations of vectors with the same values of j and m to generate a new basis set.
Thus, in general, basis vectors having the same values of ¿ and j; but di¤erent values
of m need not obey the relationships derived above involving the raising and lowering
operators. However, as we show below, it is always possible to construct a so-called
standard representation, in which the relationships (5.123) and (5.124) are maintained.

To construct such a standard representation, it su¢ces to work within each eigen-
subspace S(j) of J2 with …xed j; since states with di¤erent values of j are automatically
orthogonal (since J2 is Hermitian). Within any such subspace S(j) of J2, there are always
contained even smaller eigenspaces S(j;m) spanned by the vectors fj¿; j;mig of …xed j
and …xed m: We focus in particular on the subspace S(j; j) containing eigenvectors of
Jz for which m takes its highest value m = j, and denote by fj¿ ; j; jig a complete set
of normalized basis vectors for this subspace, with the index ¿ distinguishing between
di¤erent orthogonal basis vectors with angular momentum (j; j). By assumption, then,
for the states in this set,

h¿ ; j; jj¿ 0; j; ji = ±¿;¿ 0 (5.126)

For each member j¿ ; j; ji of this set, we now construct the natural sequence of 2j+1 basis
vectors by repeated application of J¡; i.e., using (5.124) we set

j¿ ; j; j ¡ 1i = J¡j¿; j; jip
j(j + 1)¡ j(j ¡ 1) =

J¡j¿ ; j; jip
2j

(5.127)

and the remaining members of the set according to the relation

j¿ ; j;m¡ 1i = J¡j¿; j;mip
j(j + 1)¡m(m¡ 1) ; (5.128)

terminating the sequence with the vector j¿ ; j;¡ji: Since the members j¿ ; j;mi of this set
(with ¿ and j …xed and m = ¡j; ¢ ¢ ¢ ; j) are eigenvectors of Jz corresponding to di¤erent
eigenvalues, they are mutually orthogonal and, by construction, properly normalized.
It is also straightforward to show that the vectors j¿ ; j;mi generated in this way from
the basis vector j¿ ; j; ji of S(j; j) are orthogonal to the vectors j¿ 0; j;mi generated from
a di¤erent basis vector j¿ 0; j; ji of S(j; j). To see this, we consider the inner product
h¿ ; j;m¡ 1j¿ 0; j;m¡ 1i and, using the adjoint of (5.128),

h¿; j;m¡ 1j = h¿ ; j;mjJ+p
j(j + 1)¡m(m¡ 1) ; (5.129)

we …nd that

h¿ ; j;m¡ 1j¿ 0; j;m¡ 1i = h¿ ; j;mjJ+J¡j¿ 0; j;mi
j(j + 1)¡m(m¡ 1) = h¿; j;mj¿

0; j;mi (5.130)

where we have used (5.99) to evaluate the matrix element of J+J¡: This shows that,
if j¿ 0; j;mi and j¿ ; j;mi are orthogonal, then so are the states generated from them by
application of J¡: Since the basis states j¿; j; ji and j¿ 0; j; ji used to start each sequence
are orthogonal, by construction, so, it follows, are any two sequences of basis vectors
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so produced, and so also are the subspaces S(¿ ; j) and S(¿ 0; j) spanned by those basis
vectors. Proceeding in this way for all values of j a standard representation of basis
vectors for the entire space is produced. Indeed, the entire space can be written as a
direct sum of the subspaces S(¿; j) so formed for each j; i.e., we can write

S = S(j)© S(j0)© S(j00) + ¢ ¢ ¢
with a similar decomposition

S(j) = S(¿ ; j)© S(¿ 0; j)© S(¿ 00; j) + ¢ ¢ ¢
for the eigenspaces S(j) of j2. The basis vectors for this representation satisfy the obvious
orthonormality and completeness relations

h¿ 0; j0;m0j¿ ; j;mi = ±¿ 0;¿±j0;j±m0;m (5.131)X
¿;j;m

j¿ ; j;mih¿ ; j;mj = 1: (5.132)

The matrices representing the components of the angular momentum operators are easily
computed in any standard representation. In particular, it is easily veri…ed that the matrix
elements of J2 are given in any standard representation by the expression

h¿ 0; j0;m0jJ2j¿; j;mi = j(j + 1)±¿ 0;¿±j0;j±m0;m (5.133)

while the components of ~J have the following matrix elements

h¿ 0; j0;m0jJzj¿ ; j;mi = m±¿ 0;¿±j0;j±m0;m (5.134)

h¿ 0; j0;m0jJ§j¿ ; j;mi =
p
j(j + 1)¡m(m§ 1)±¿ 0;¿±j0;j±m0;m§1: (5.135)

The matrices representing the Cartesian components Jx and Jy can then be constructed
from the matrices for J+ and J¡; using relations (5.84), i.e.

h¿ 0; j0;m0jJxj¿ ; j;mi =
1

2
±¿ 0;¿±j0;j

hp
j(j + 1)¡m(m¡ 1)±m0;m¡1

+
p
j(j + 1)¡m(m+ 1)±m0;m+1

i
(5.136)

h¿ 0; j0;m0jJyj¿ ; j;mi =
i

2
±¿ 0;¿±j0;j

hp
j(j + 1)¡m(m¡ 1)±m0;m¡1

¡
p
j(j + 1)¡m(m+ 1)±m0;m+1

i
(5.137)

Clearly, the simplest possible subspace of …xed total angular momentum j is one
corresponding to j = 0; which according to the results derived above must be of dimension
2j+1 = 1: Thus, the one basis vector j¿ ; 0; 0i in such a space is a simultaneous eigenvector
of J2 and of Jz with eigenvalue j(j+1) =m = 0. Such a state, as it turns out, is also an
eigenvector of Jx and Jy (indeed of ~J itself). The 1£ 1 matrices representing J2; Jz; J§;
Jx; and J¡ in such a space are all identical to the null operator.

The next largest possible angular momentum subspace corresponds to the value
j = 1=2; which coincides with the 2j+1 = 2 dimensional spin space of electrons, protons,
and neutrons, i.e., particles of spin 1/2. In general, the full Hilbert space of a single
particle of spin s can be considered the direct product

S = Sspatial ­ Sspin (5.138)
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of the Hilbert space describing the particle’s motion through space (a space spanned,
e.g., by the position states j~ri) and a …nite dimensional space describing its internal spin
degrees of freedom. The spin space Ss of a particle of spin s is by de…nition a 2s + 1
dimensional space having as its fundamental observables the components Sx; Sy; and Sz
of a spin angular momentum vector ~S: In keeping with the analysis of Sec. (5.3), these
operators characterize the way that the spin part of the state vector transforms under
rotations and, as such, satisfy the standard angular momentum commutation relations,
i.e.,

[Si; Sj ] = i
X
k

"ijkSk: (5.139)

Thus, e.g., an ONB for the space of one such particle consists of the states j~r;msi; which
are eigenstates of the position operator ~R; the total square of the spin angular momentum
S2; and the component of spin Sz along the z-axis according to the relations

~Rj~r;msi = ~rj~r;msi (5.140)

S2j~r;msi = s(s+ 1)j~r;msi (5.141)

Szj~r;msi =msj~r;msi: (5.142)

(As is customary, in these last expressions the label s indicating the eigenvalue of S2 has
been suppressed, since for a given class of particle s does not change.) The state vector
jÃi of such a particle, when expanded in such a basis, takes the form

jÃi =
sX

ms=¡s

Z
d3r j~r;msih~r;msjÃi =

sX
ms=¡s

Z
d3r Ãms

(~r)j~r;msi (5.143)

and thus has a “wave function” with 2s + 1 components Ãms
(~r). As one would expect

from the de…nition of the direct product, operators from the spatial part of the space have
no e¤ect on the spin part and vice versa. Thus, spin and spatial operators automatically
commute with each other. In problems dealing only with the spin degrees of freedom,
therefore, it is often convenient to simply ignore the part of the space associated with the
spatial degrees of freedom (as the spin degrees of freedom are often generally ignored in
exploring the basic features of quantum mechanics in real space).

Thus, the spin space of a particle of spin s = 1=2, is spanned by two basis vectors,
often designated j+i and j¡i; with

S2j§i = 1

2

µ
1

2
+ 1

¶
j§i = 3

4
j§i (5.144)

and

Szj§i = §1
2
j§i: (5.145)

The matrices representing the di¤erent components of ~S within a standard representation
for such a space are readily computed from (5.133)-(5.137),

S2 =
3

4

µ
1 0
0 1

¶
(5.146)

Sx =
1

2

µ
0 1
1 0

¶
Sy =

1

2

µ
0 ¡i
i 0

¶
Sz =

1

2

µ
1 0
0 ¡1

¶
(5.147)
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S+ =

µ
0 1
0 0

¶
S¡ =

µ
0 0
1 0

¶
(5.148)

The Cartesian components Sx; Sy; and Sz are often expressed in terms of the so-called
Pauli ¾ matrices

¾x =

µ
0 1
1 0

¶
¾y =

µ
0 ¡i
i 0

¶
¾z =

µ
1 0
0 ¡1

¶
(5.149)

in terms of which Si = 1
2¾i. The ¾ matrices have a number of interesting properties that

follow from their relation to the angular momentum operators.

5.8 Orbital Angular Momentum Revisited

As an additional example of the occurrance of angular momentum subspaces with integral
values of j we consider again the orbital angular momentum of a single particle as de…ned
by the operator ~̀= ~R£ ~K with Cartesian components `i =

P
j;k "ijkXjKk: In the position

representation these take the form of di¤erential operators

`i = ¡i
X
j;k

"ijkxj
@

@xk
: (5.150)

As it turns out, in standard spherical coordinates (r; µ; Á); where

x = r sin µ cosÁ y = r sin µ sinÁ z = r cos µ; (5.151)

the components of ~̀ take a form which is independent of the radial variable r. Indeed,
using the chain rule it is readily found that

`x = i

µ
sinÁ

@

@µ
+ cosÁ cot µ

@

@Á

¶
(5.152)

`y = i

µ
¡ cosÁ @

@µ
+ sinÁ cot µ

@

@Á

¶
(5.153)

`z = ¡i @
@Á
: (5.154)

In keeping with our previous development, it is useful to construct from `x and `y the
raising and lowering operators

`§ = `x § i`y (5.155)

which (5.152) and (5.153) reduce to

`§ = e§iÁ
·
§ @

@µ
+ i cot µ

@

@Á

¸
: (5.156)

From these it is also straightforward to construct the di¤erential operator

`2 = ¡
·
@2

@µ2
+ cot µ

@

@µ
+

1

sin2 µ

@2

@Á2

¸
(5.157)

representing the total square of the angular momentum.
Now we are interested in …nding common eigenstates of `2 and `z: Since these

operators are independent of r; it su¢ces to consider only the angular dependence. It
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is clear, in other words, that the eigenfunctions of these operators can be written in the
form

Ãl;m(r; µ; Á) = f(r)Y
m
l (µ; Á) (5.158)

where f(r) is any acceptable function of r and the functions Yml (µ; Á) are solutions to
the eigenvalue equations

`2Yml (µ; Á) = l(l+ 1)Y ml (µ; Á)

`zY
m
l (µ; Á) = mYml (µ; Á) : (5.159)

Thus, it su¢ces to …nd the functions Yml (µ; Á) ; which are, of course, just the spherical
harmonics.

More formally, we can consider the position eigenstates j~ri as de…ning direct
product states

j~ri = jr; µ; Ái = jri­ jµ; Ái; (5.160)

i.e., the space can be decomposed into a direct product of a part describing the radial
part of the wave function and a part describing the angular dependence. The angular
part represents the space of functions on the unit sphere, and is spanned by the “angular
position eigenstates” jµ; Ái: In this space, an arbitrary function Â(µ; Á) on the unit sphere
is associated with a ket

jÂi =
Z
d­ Â(µ; Á)jµ; Ái =

Z 2¼

0

dÁ

Z ¼

0

dµ sin µ Â(µ; Á)jµ; Ái (5.161)

where Â(µ; Á) = hµ; ÁjÂi and the integration is over all solid angle, d­ = sin µ dµ dÁ: The
states jµ; Ái form a complete set of states for this space, and soZ

d­ jµ; Áihµ; Áj = 1: (5.162)

The normalization of these states is slightly di¤erent than the usual Dirac normaliza-
tion, however, because of the factor associated with the transformation from Cartesian to
spherical coordinates. To determine the appropriate normalization we note that

Â(µ0; Á0) = hµ0; Á0jÂi =
Z 2¼

0

dÁ

Z ¼

0

dµ sin µ Â(µ; Á)hµ0; Á0jµ; Ái (5.163)

which leads to the identi…cation ±(Á¡ Á0)±(µ ¡ µ0) = sin µ hµ0; Á0jµ; Ái; or

hµ0; Á0jµ; Ái = 1

sin µ
±(Á¡ Á0)±(µ ¡ µ0) = ±(Á¡ Á0)±(cos µ ¡ cos µ0): (5.164)

Clearly, the components of ~̀ are operators de…ned on this space and so we denote by jl;mi
the appropriate eigenstates of the Hermitian operators `2 and `z within this space (this
assumes that l;m are su¢cient to specify each eigenstate, which, of course, turns out to
be true). By assumption, then, these states satisfy the eigenvalue equations

`2jl;mi = l(l+ 1)jl;mi
`zjl;mi = mjl;mi (5.165)

and can be expanded in the angular “position representation”, i.e.,

jl;mi =
Z
±­ jµ; Áihµ; Ájl;mi =

Z
±­ Y ml (µ; Á) jµ; Ái (5.166)



Orbital Angular Momentum Revisited 185

where the functions
Y ml (µ; Á) = hµ; Ájl;mi (5.167)

are clearly the same as those introduced above, and will turn out to be the spherical
harmonics.

To obtain the states jl;mi (or equivalently the functions Yml ) we proceed in three
stages. First, we determine the general Á-dependence of the solution from the eigenvalue
equation for `z: Then, rather than solving the second order equation for `2 directly, we
determine the general form of the solution for the states jl; li having the largest component
of angular momentum along the z-axis consistent with a given value of l. Finally, we
use the lowering operator `¡ to develop a general prescription for constructing arbitrary
eigenstates of `2 and `z:

The Á-dependence of the eigenfunctions in the position representation follows from
the simple form taken by the operator `z in this representation. Indeed, using (5.154), it
follows that

`zY
m
l (µ; Á) = ¡i

@

@Á
Y ml (µ; Á) = mY

m
l (µ; Á); (5.168)

which has the general solution

Y ml (µ; Á) = F
m
l (µ)e

imÁ: (5.169)

Single-valuedness of the wave function in this representation imposes the requirement that
Yml (µ; Á) = Y

m
l (µ; Á+ 2¼); which leads to the restriction m 2 f0;§1;§2; ¢ ¢ ¢ g: Thus, for

the case of orbital angular momentum only integral values of m (and therefore l) can
occur. (We have yet to show that all integral values of l do, in fact, occur, however.)

From this result we now proceed to determine the eigenstates jl; li; as represented
by the wave functions

Y ll (µ; Á) = F
l
l (µ)e

ilÁ: (5.170)

To this end, we recall the general result that any such state of maximal angular momentum
along the z axis is taken by the raising operator onto the null vector, i.e., `+jl; li = 0. In
the position representation, using (5.156), this takes the form

hµ; Áj`+jl; li = eiÁ
·
@

@µ
+ i cot µ

@

@Á

¸
Y ll (µ; Á)

= eiÁ
·
@

@µ
+ i cot µ

@

@Á

¸
F ll (µ)e

ilÁ = 0: (5.171)

Performing the Á derivative reduces this to a …rst order equation for F ll (µ), i.e.,

dF ll (µ)

dµ
= l cot µF ll (µ) (5.172)

dF ll
F ll

= l
d (sin µ)

sin µ
(5.173)

which integrates to give, up to an overall multiplicative constant, a single linearly inde-
pendent solution

F ll (µ) = cl sin
l µ (5.174)

for each allowed value of l. Thus, all values of l consistent with the integer values of m
deduced above give acceptable solutions. Up to normalization we have, therefore, for each
l = 0; 1; 2 ¢ ¢ ¢ ; the functions

Y ll (µ; Á) = cl sin
l µ eilÁ: (5.175)
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The appropriate normalization for these functions follows from the relation

hl;mjl;mi = 1 (5.176)

which in the position representation becomesZ
d­ hl;mjµ; Áihµ; Ájl;mi =

Z
d­ [Y ml (µ; Á)]

¤ Y m
0

l0 (µ; Á)

=

Z 2¼

0

dÁ

Z ¼

0

dµ sin µ jY ml (µ; Á)j2 = 1 (5.177)

Substituting in the function Y ll (µ; Á) = cl sin
l µ eilÁ; the magnitude of the constants cl can

be determined by iteration, with the result that

jclj =
s
(2l + 1)!!

4¼ (2l)!!
=

1

2ll!

r
(2l + 1)!

4¼
; (5.178)

where the double factorial notation is de…ned on the postive integers as follows:

n!! =

8<: n(n¡ 2)(n¡ 4) ¢ ¢ ¢ (2) if n an even integer
n(n¡ 2)(n¡ 4) ¢ ¢ ¢ (1) if n an odd integer
1 if n = 0

(5.179)

With the phase of cl; (chosen so that Y 0l (0; 0) is real and positive) given by the relation
cl = (¡1)l jclj we have the …nal form for the spherical harmonic of order (l; l); i.e.

Y ll (µ; Á) =
(¡1)l
2ll!

r
(2l + 1)!

4¼
sinl µ eilÁ: (5.180)

From this, the remaining spherical harmonics of the same order l can be generated
through application of the lowering operator, e.g., through the relation

jl;m¡ 1i = `¡jl;mip
l(l + 1)¡m(m¡ 1) (5.181)

which, in the position representation takes the form

Y m¡1l (µ; Á) = e¡iÁ
·
¡ @

@µ
¡m cot µ

¸
Yml (µ; Á) : (5.182)

In fact, it straightforward to derive the following expression

jl;mi =
s

(l +m)!

(2l)!(l +m)!
[`¡]

l¡m jl; li (5.183)

relating an arbitrary state jl;mi to the state jl; li which we have explicitly found. This
last relation is straightforward to prove by induction. We …rst assume that it holds for
some value of m and then consider

jl;m¡1i = `¡jl;mip
l(l+ 1)¡m(m¡ 1) =

1p
l(l + 1)¡m(m¡ 1)

s
(l ¡m)!

(2l)!(l +m)!
[`¡]

l¡m+1 jl; li:
(5.184)
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But, as we have noted before, l(l+1)¡m(m¡1) = (l +m) (l ¡m+ 1) : Substituting this
into the radical on the right and canceling the obvious terms which arise we …nd that

jl;m¡ 1i =
s

[l ¡ (m¡ 1)]!
(2l)!(l +m¡ 1)! [`¡]

l¡(m¡1) jl; li (5.185)

which is of the same form as the expression we are trying to prove withm!m¡1: Thus,
if it is true for any m it is true for all values of m less than the original. We then note that
the expression is trivially true for m = l; which completes the proof. Thus, the spherical
harmonic of order (l;m) can be expressed in terms of the one of order (l; l) in the form

Y ml (µ; Á) =

s
[l ¡ (m¡ 1)]!
(2l)!(l+m¡ 1)!e

¡i(l¡m)Á
·
¡ @

@µ
+ i cot µ

@

@Á

¸l¡(m¡1)
Y ll (µ; Á): (5.186)

It is not our intention to provide here a complete derivation of the properties of
the spherical harmonics, but rather to show how they …t into the general scheme we have
developed regarding angular momentum eigenstates in general. To round things out a bit
we mention without proof a number of their useful properties.

1. Parity - The parity operator ¦ acts on the eigenstates of the position representation
and inverts them through the origin, i.e., ¦j~ri = j¡~ri: It is straightforward to show
that in the position representation this takes the form ¦Ã(~r) = Ã(¡~r): In spherical
coordinates it is also easily veri…ed that under the parity operation r! r; µ ! ¼¡µ;
and Á! Á+ ¼: Thus, for functions on the unit sphere, ¦f(µ; Á) = f(¼ ¡ µ; Á+ ¼):
The parity operator commutes with the components of ~̀ and with `2: Indeed, the
states jl;mi are eigenstates of parity and satisfy the eigenvalue equation

¦jl;mi = (¡1)l jl;mi (5.187)

which implies for the spherical harmonics that

¦Y ml (µ; Á) = Y
m
l (¼ ¡ µ; Á+ ¼) = (¡1)l Y ml (µ; Á): (5.188)

2. Complex Conjugation - It is straightforward to show that

[Y ml (µ; Á)]
¤ = (¡1)mY ¡ml (µ; Á): (5.189)

This allows spherical harmonics with m < 0 to be obtained very simply from those
with m > 0.

3. Relation to Legendre Functions - The spherical harmonics with m = 0 are
directly related to the Legendre polynomials

Pl(u) =
(¡1)l
2ll!

dl

dul
¡
1¡ u2¢l (5.190)

through the relation

Y 0l (µ; Á) =

r
(2l + 1)!

4¼
Pl(cos µ): (5.191)

The other spherical harmonics with m > 0 are related to the associated Legendre
functions

Pml (u) =
p
(1¡ u2)m dmPl(u)

dum
; (5.192)

through the relation

Y ml (µ; Á) = (¡1)m
s
(2l+ 1)!(l¡m)!
4¼ (l +m)!

Pml (cos µ)e
imÁ: (5.193)
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5.9 Rotational Invariance

As we have seen, the behavior exhibited by a quantum system under rotations can usually
be connected to a property related to the angular momentum of the system. In this
chapter we consider in some detail the consequences of rotational invariance, that is, we
explore just what is implied by the statement that a certain physical state or quantity is
unchanged as a result of rotations imposed upon the system. To begin the discussion we
introduce the important idea of rotationally invariant subspaces.

5.9.1 Irreducible Invariant Subspaces

In our discussion of commuting or compatible observables we encountered the idea of
global invariance and saw, e.g., that the eigenspaces Sa of an observable A are globally
invariant with respect to any operator B that commutes with A: It is useful to extend
this idea to apply to more than one operator at a time. We therefore introduce the idea
of invariant subspaces.

A subspace S0 of the state space S is said to be invariant with respect to
the action of a set G = fR1; R2; ¢ ¢ ¢ g of operators if, for every jÃi in S0; the vectors
R1jÃi; R2jÃi; ¢ ¢ ¢ are all in S0 as well. S0 is than said to be an invariant subspace of the
speci…ed set of operators. The basic idea here is that the operators Ri all respect the
boundaries of the subspace S0; in the sense that they never take a state in S0 onto a state
outside of S0.

With this de…nition, we consider a quantum mechanical system with state space
S; characterized by total angular momentum ~J: It is always possible to express the state
space S as a direct sum of orthogonal eigenspaces associated with any observable. (Recall
that a space can be decomposed into a direct sum of two or more orthogonal subspaces
if any vector in the space can be written as a linear combination of vectors from each
subspace.) In the present context we consider the decomposition

S = S(j)© S(j0)© S(j00) + ¢ ¢ ¢ (5.194)

of our original space S into eigenspaces S(j) of the operator J2. Now each one of the
spaces S(j) associated with a particular eigenvalue j(j+1) of J2 can, itself, be decomposed
into a direct sum

S(j) = S(¿ ; j)© S(¿ 0; j)© S(¿ 00; j) + ¢ ¢ ¢ (5.195)

of 2j +1 dimensional subspaces S(¿; j) associated with a standard representation for the
space S, i.e., the vectors in S(¿ ; j) comprise all linear combinations

jÃi =
jX

m=¡j
Ãmj¿ ; j;mi (5.196)

of the 2j + 1 basis states j¿ ; j;mi with …xed ¿ and j. We now show that each of these
spaces S(¿; j) is invariant under the action of the operator components

n
Ju = ~J ¢ û

o
of

the total angular momentum. This basically follows from the the way that such a standard
representation is constructed. We just need to show that the action of any component
of ~J on such a vector takes it onto another vector in the same space, i.e., onto a linear
combination of the same basis vectors. But the action of the operator Ju = ~J ¢û =Pi uiJi
is completely determined by the action of the three Cartesian components of the vector
operator ~J . Clearly, however, the vector

JzjÃi =
jX

m=¡j
mÃmj¿; j;mi (5.197)
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lies in the same subspace S(¿ ; j) as jÃi:Moreover, Jx and Jy are simple linear combinations
of J§; which take such a state onto

J§jÃi =
jX

m=¡j

p
j(j + 1)¡m(m§ 1)Ãmj¿ ; j;m§ 1i (5.198)

which is also in the subspace S(¿ ; j). Thus it is clear the the components of ~J cannot
take an arbitrary state jÃi in S(¿; j) outside the subspace. Hence S(¿ ; j) is an invariant
subspace of the angular momentum operators. Indeed, it is precisely this invariance that
leads to the fact the the matrices representing the components of ~J are block-diagonal in
any standard representation.

It is not di¢cult to see that this invariance with respect to the action of the
operator Ju extends to any operator function F (Ju). In particular, it extends to the
unitary rotation operators Uû(®) = exp (¡i®Ju) which are simple exponential functions
of the components of ~J . Thus, we conclude that the spaces S(¿ ; j) are also invariant
subspaces of the group of operators fUû(®)g : We say that each subspace S(¿ ; j) is an
invariant subspace of the rotation group, or that S(¿ ; j) is rotationally invariant. We note
that the eigenspace S(j) is also an an invariant subspace of the rotation group, since any
vector in it is a linear combination of vectors from the invariant subspaces S(¿ ; j) and so
the action of Uû(®) on an arbitrary vector in Sj is to take it onto another vector in S(j);
with the di¤erent parts in each subspace S(¿ ; j) staying within that respective subspace.
It is clear, however, that although S(j) is invariant with respect to the operators of the
rotation group, it can often be reduced or decomposed into lower dimensional invariant
parts S(¿ ; j). It is is reasonable in light of this decomposability exhibited by S(j); to ask
whether the rotationally invariant subspaces S(¿ ; j) of which S(j) is formed are similarly
decomposable. To answer this question we are led to the idea of irreducibility.

An invariant subspace S0 of a group of operators G = fR1; R2; ¢ ¢ ¢ g is said to be
irreducible with respect to G (or is an irreducible invariant subspace of G) if, for every
non-zero vector jÃi in S0, the vectors fRijÃig span S0. Conversely, S0 is reducible if
there exists a nonzero vector jÃi in S0 for which the vectors fRijÃig fail to span the space.
Clearly, in the latter case the vectors spanned by the set fRijÃig form a subspace of S0

that is itself invariant with respect to G:
We now answer the question we posed above, and show explicitly that any invari-

ant subspace S(¿ ; j) associated with a standard representation for the state space S is, in
fact, an irreducible invariant subspace of the rotation group fUû(®)g, i.e., S(¿; j) cannot
be decomposed into smaller invariant subspaces. To prove this requires several steps. To
begin, we let

jÃi =
jX

m=¡j
Ãmj¿ ; j;mi (5.199)

again be an arbitrary (nonzero) vector in S(¿; j) and we formally denote by SR the
subspace of S(¿ ; j) spanned by the vectors fUû(®)jÃig ; that is, SR is the subspace of all
vectors that can be written as a linear combination of vectors obtained through a rotation
of the state jÃi: It is clear that SR is contained in S(¿; j); since the latter is invariant
under rotations; the vectors fUû(®)jÃig must all lie inside S(¿ ; j). We wish to show that
in fact SR = S(¿; j): To do this we show that SR contains a basis for S(¿; j) and hence
the two spaces are equivalent.

To this end we note that the vectors JujÃi are all contained in SR: This follows
from the form of in…nitesimal rotations Uû(±®) = 1¡ i±®Ju; which imply that

Ju =
1

i®
[1¡ Uû(±a)] = 1

i®
[Uû(0)¡ Uû(±a)] : (5.200)



190 Angular Momentum and Rotations

Thus,

JujÃi = 1

i®
[Uû(0)¡ Uû(±a)] jÃi = 1

i®
[Uû(0)jÃi ¡ Uû(±a)jÃi] (5.201)

which is, indeed, a linear combination of the vectors fUû(®)jÃig, and thus is in the space
SR spanned by such vectors. By a straightforward extension, it follows, that the vectors

J§jÃi = (Jx § iJy)jÃi
=

1

i®
[Ux(0)¡ Ux(±a)§ iUy(0)¨ iUy(±a)] jÃi (5.202)

are also in SR: In fact, any vector of the form

(J¡)
q (J+)

P jÃi (5.203)

will be expressable as a linear combination of various products of Ux(0); Uy(0); Ux(±®);
and Uy(±®) acting on jÃi. Since the product of any two such rotation operators is itself
a rotation, the result will be a linear combination of the vectors fUû(®)jÃig ; and so will
also lie in SR:

We now note, that since jÃi is a linear combination of the vectors j¿ ; j;mi, each
of which is raised or annihilated by the operator J+; there exists an integer P < 2j for
which (J+)

P jÃi = ¸j¿ ; j; ji (in other words, we keep raising the components of jÃi up and
annhilating them till the component that initially had the smallest value of Jz is the only
one left.) It follows, therefore, that the basis state j¿ ; j; ji lies in the subspace SR. We
are now home free, since we can now repeatedly apply the lowering operator, remaining
within SR with each application, to deduce that all of the basis vectors j¿; j;mi lie in the
subspace SR: Thus SR is a subspace of S(¿ ; j) that contains a basis for S(¿ ; j): The only
way this can happen is if SR = S(¿ ; j):

It follows that the under the unitary transformation associated with a general
rotation, the basis vectors fj¿ ; j;mig of S(¿ ; j) are transformed into new basis vectors
for the same invariant subspace. Indeed, it is not hard to see, based upon our earlier
description of the rotation process, that a rotation R that takes the unit vector ẑ onto
a new direction ẑ0 will take the basis kets j¿ ; j;mzi, which are eigenstates of J2 and
Jz onto a new set of basis kets j¿ ; j;mz0i for the same space that are now eigenstates
of J2 and the component Jz0 of ~J along the new direction. These new vectors can,
of course, be expressed as linear combinations of the original ones. The picture that
emerges is that, under rotations, the vectors j¿; j;mi transform (irreducibly) into linear
combinations of themselves. This transformation is essentially geometric in nature and is
analogous to the way that normal basis vectors in R3 transform into linear combinations of
one another. Indeed, by analogy, the coe¢cients of this linear transformation are identical
in any subspace of a standard representation having the same value of j; since the basis
vectors of such a representation have been constructed using the angular momentum
operators in precisely the same fashion. This leads to the concept of rotation matrices,
i.e., a set of standard matrices representing the rotation operators Uû(®) in terms of their
e¤ect on the vectors within any irreducible invariant subspace S(¿; j). Just as with the
matrices representing the components of ~J within any irreducible subspace S(¿ ; j), the
elements of the rotation matrices will depend upon j and m but are indepndent of ¿ .
Thus, e.g., a rotation UR of a basis ket j¿ ; j;mi of S(¿ ; j) results in a linear combination
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of such states of the form

URj¿ ; j;mi =

jX
m0=¡j

j¿; j;m0ih¿ ; j;m0jURj¿; j;mi

=

jX
m0=¡j

j¿; j;m0iR(j)m0;m (5.204)

where, as the notation suggests, the elements

R
(j)
m0;m = h¿; j;m0jURj¿ ; j;mi = hj;m0jURj; j;mi (5.205)

of the 2j + 1 dimensional rotation matrix are independent of ¿ : In terms of the elements
R
(j)
m0;m of the rotation matrices, the invariance of the subspaces S(¿ ; j) under rotations
leads to the general relation

h¿ 0; j0;m0jURj¿ ; j;mi = ±j0;j±¿ 0;¿R(j)m0;m: (5.206)

These matrices are straightforward to compute for low dimensional subspaces,
and general formulas have been developed for calculating the matrices for rotations asso-
ciated with the Euler angles (®; ¯; °). For rotations about the z axis the matrices take a
particulalrly simple form, since the rotation operator in this case is a simple function of
the operator Jz of which the states jj;mi are eigenstates. Thus, e.g.,

R
(j)
m0m(z; ®) = hj;m0je¡i®Jz jj;mi = e¡im®±m;m0 (5.207)

In a subspace with j = 1=2; for example, this takes the form

R̂(1=2)(z; ®) =

µ
e¡i®=2 0
0 e+i®=2

¶
; (5.208)

while in a space with j = 1 we have

R̂(1)(z;®) =

0@ e¡i® 0 0
0 1 0
0 0 ei®

1A :
The point is that, once the rotation matrices have been worked out for a given

value of j, they can be used for a standard representation of any quantum mechanical
system. Thus, e.g., we can deduce a transformation law associated with rotations of the
spherical harmonics, i.e.,

R [Yml (µ; Á)] = hµ; ÁjURjl;mi

=
lX

m0=¡l
Ym

0
l (µ; Á)R

(l)
m0;m: (5.209)

For rotations about the z-axis, this takes the form

Rz(®) [Y
m
l (µ; Á)] = hµ; Áje¡i®`z jl;mi

= e¡im®Y ml (µ; Á) = e
¡im®Fml (µ)e

imÁ

= Fml (µ)e
im(Á¡®)

= Y ml (µ; Á¡ ®) (5.210)

which is readily con…rmed from simple geometric arguments.
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5.9.2 Rotational Invariance of States

We now consider a physical state of the system that is invariant under rotations, i.e., that
has the property that

URjÃi = jÃi (5.211)

for all rotations UR. This can be expressed in terms of the angular momentum of the
system by noting that invariance under in…nitesimal rotations

Uû(±®)jÃi = jÃi ¡ i±®JujÃi = jÃi;

requires that
JujÃi = 0 (5.212)

for all û, which also implies that J2jÃi = 0: Thus, a state jÃi is rotationally invariant if
and only if it has zero angular momentum.

5.9.3 Rotational Invariance of Operators

If an observable Q is rotationally invariant it is, by our earlier de…nition, a scalar with
respect to rotations, and we can deduce the following:

1. [UR; Q] = 0

2. [Ju; Q] = 0 = [J2;Q]

3. There exists an ONB of eigenstates states fj¿; q; j;mig common to Jz; J2; and Q.
4. The eigenvalues of q of Q within any irreducible subspace S(j) are (at least) 2j +1
fold degenerate.

This degeneracy, referred to as a rotational or essential degeneracy, is straight-
foward to show. Suppose that jqi is an eigenstate of Q; so that Qjqi = qjqi: Then

QURjqi = URQjqi = qURjqi: (5.213)

This shows that URjqi is an eigenstate of Q with the same eigenvalue. Of course not all
the states fURjqig are linearly independent. From this set of states we can form linear
combinations which are also eigenstates of J2 and Jz; and which can be partitioned into
irreducible invariant subspaces of well de…ned j: The 2j + 1 linearly independent basis
states associated with each such irreducible subspace S(q; j) are then 2j+1 fold degenerate
eigenstates of Q.

As an important special case, suppose that the Hamiltonian of a quantum system
is a scalar with respect to rotations. We can then conclude that

1. H is rotationally invariant.

2. [UR;H] = [Ju;H] = [J2;H] = 0:

3. The components of ~J are constants of the motion, since

d

dt
hJui = i

~
h[H;Ju]i = 0: (5.214)

4. The equations of motion are invariant under rotations. Thus, if jÃ(t)i is a solution
to µ

i~ d
dt
¡H

¶
jÃ(t)i = 0 (5.215)
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then

UR

µ
i~ d
dt
¡H

¶
jÃ(t)i =

µ
i~ d
dt
¡H

¶
URjÃ(t)i = 0 (5.216)

which shows that the rotated state URjÃ(t)i is also a solution to the equations of
motion.

5. There exists an ONB of eigenstates states fjE; ¿; j;mig common to Jz; J2; and H.
6. The eigenvalues E of H within any irreducible subspace are (at least) 2j + 1 fold
degenerate. For the case of the Hamiltonian, these degeneracies are referred to as
multiplets. Thus, a nondegenerate subspace associated with a state of zero angular
momentum is referred to as a singlet, a doubly-degenerate state associated with a
two-fold degenerate j = 1=2 state is a doublet, and a three-fold degenerate state
associated with angular momentum j = 1 is referred to as a triplet.

5.10 Addition of Angular Momenta

Let S1 and S2 be two quantum mechanical state spaces associated with angular mo-
mentum ~J1 an ~J2; respectively. Let fj¿1; j1;m1ig denote the basis vectors of a standard
representation for S1, which is decomposable into corresponding irreducible subspaces
S1(¿1; j1), and denote by fj¿2; j2;m2ig the basis vectors of a standard representation for
S2; decomposable into irreducible subspaces S2(¿2; j2).

The combined quantum system formed from S1 and S2 is an element of the direct
product space

S = S1 ­ S2: (5.217)

The direct product states

j¿1; j1;m1; ¿2; j2;m2i = j¿1; j1;m1ij¿2; j2;m2i (5.218)

form an orthonormal basis for S. As we will see, however, these direct product states
do not de…ne a standard representation for S. Indeed, for this combined space the total
angular momentum vector is the sum

~J = ~J1 + ~J2 (5.219)

of those assocated with each “factor space”. What this means is that the rotation op-
erators for the combined space are just the products of the rotation operators for each
individual space

Uû(®) = U
(1)
û (®)U

(2)
û (®)

= e¡i®~J1¢ûe¡i®~J2¢û = e¡i®(~J1+~J2)¢û (5.220)

e¡i®~J¢û = e¡i®(~J1+~J2)¢û (5.221)

so that the generators of rotations for each factor space simply add. At this point, we
make no speci…c identi…cation of the nature of the two subspaces involved. Accordingly,
the results that we will derive will apply equally well to the description of two spinless
particles (for which ~J = ~L = ~L1+ ~L2 is the total orbital angular momentum of the pair),
to the description of a single particle with spin (for which ~J = ~L + ~S is the sum of the
orbital and spin angular momenta of the particle), or even to a collection of particles
(where ~J = ~L+ ~S is again the sum of the orbital and spin angular momentum, but where
now the latter represent the corresponding orbital and spin angular momenta ~L =

P
®
~L®

and ~S =
P
®
~S® for the entire collection of particles).
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In either of these cases the problem of interest is to construct a standard repre-
sentation j¿ ; j;mi of common eigenstates of J2 and Jz associated with the total angular
momentum vector ~J of the system as linear combinations of the direct product states
j¿1; j1;m1; ¿2; j2;m2i. As it turns out, the latter are eigenstates of

Jz = ( ~J1 + ~J2) ¢ ẑ
= J1z + J2z (5.222)

since they are individually eigenstates of J1z and J2z; i.e.,

Jzj¿1; j1;m1; ¿2; j2;m2i = (J1z + J2z)j¿1; j1;m1; ¿2; j2;m2i
= (m1 +m2)j¿1; j1;m1; ¿2; j2;m2i
= mj¿1; j1;m1; ¿2; j2;m2i (5.223)

where m = m1 +m2: The problem is that these direct product states are generally not
eigenstates of

J2 = ( ~J1 + ~J2) ¢ ( ~J1 + ~J2)

= J21 + J
2
2 + 2

~J1 ¢ ~J2 (5.224)

because, although they are eigenstates of J21 and J
2
2 ; they are not eigenstates of

~J1 ¢ ~J2 =
X
i

J1iJ2i (5.225)

due to the presence in this latter expression of operator components of ~J1 and ~J2 perpen-
dicular to the z axis.

Using the language of invariant subspaces, another way of expressing the problem
at hand is as follows: determine how the direct product space S = S1 ­ S2 can be
decomposed into its own irreducible invariant subspaces S(¿ ; j). This way of thinking
about the problem actually leads to a simpli…cation. We note that since S1 and S2 can
each be written as a direct sum

S1 =
X
¿1;j1

S1(¿1; j1) S2 =
X
¿2;j2

S2(¿2; j2) (5.226)

of rotationally invariant subspaces, the direct product of S1 and S2 can also be writtten
as a direct sum

S = S1 ­ S2
=

X
¿1;j1;¿2;j2

S1(¿1; j1)­ S2(¿2; j2)

=
X

¿1;j1;¿2;j2

S(¿1; ¿2; j1; j2) (5.227)

of direct product subspaces S(¿1; ¿2; j1; j2) = S1(¿1; j1)­ S2(¿2; j2).
Now, because S1(¿1; j1) and S2(¿2; j2) are rotationally invariant, so is their di-

rect product, i.e., any vector j¿1j1m1; ¿2j2m2i in this space will be take by an arbi-
trary rotation onto the direct product of two other vectors, one from S1(¿1; j1) and
one from S2(¿2; j2); it will remain inside S(¿1; ¿2; j1; j2): On the other hand, although
S(¿1; ¿2; j1; j2) is rotationally invariant there is no reason to expect it that it is also irre-
ducible. However, in decomposing S into irreducible invariant subspaces, we can use the
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fact that we already have a natural decomposition of that space into smaller invariant
subspaces. To completely reduce the space S we just need to break these smaller parts
into even smaller irreducible parts.

Within any such space S(¿1; ¿2; j1; j2) the values of ¿1; ¿2; j1; and j2 are …xed.
Thus we can simplify our notation in accord with the simpler problem at hand which
can be stated thusly: …nd the irreducible invariant subspaces of a direct product space
S(¿1; ¿2; j1; j2) = S1(¿1; j1)­ S2(¿2; j2) with …xed values of j1 and j2: While working in
this subspace we suppress any constant labels, and so denote by

S(j1; j2) = S(¿1; ¿2; j1; j2) = S1(¿1; j1)­ S2(¿2; j2) (5.228)

the subspace of interest and by

jm1;m2i = j¿1; j1;m1; ¿2; j2;m2i (5.229)

the original direct product states within this subspace. These latter are eigenvectors of
J21 and J

2
2 with eigenvalues j1(j1+1) and j2(j2+1); respectively, and of J1z and J2z with

eigenvalues m1 and m2. We will denote the sought-after common eigenstates of J2 and
Jz in this subspace by the vectors

jj;mi = j¿1; j1; ¿2; j2; j;mi (5.230)

which are to be formed as linear combinations of the states jm1;m2i.
With this notation we now proceed to prove the main result, referred to as

The addition theorem: The (2j1 + 1)(2j2 + 1) dimensional space S(j1; j2)
contains exactly one irreducible subspace S(j) for each value of j in the se-
quence

j = j1 + j2; j1 + j2 ¡ 1; ¢ ¢ ¢ ; jj1 ¡ j2j: (5.231)

In other words, the subspace S(j1; j2) can be reduced into a direct sum

S(j1; j2) = S(j1 + j2)© S(j1 + j2 ¡ 1)© ¢ ¢ ¢S(jj1 ¡ j2j) (5.232)

of irreducible invariant subspaces of the rotation group, where each space S(j)
is spanned by 2j + 1 basis vectors jj;mi.

To prove this result we begin with a few general observations, and then follow
up with what is essentially a proof-by-construction. First, we note that since the space
S(j1; j2) contains states jm1;m2i with

j1 ¸ m1 ¸ ¡j1 and j2 ¸m2 ¸ ¡j2 (5.233)

the corresponding eigenvalues m = m1 +m2 of Jz within this subspace can only take on
values in the range

j1 + j2 ¸ m ¸ ¡(j1 + j2): (5.234)

This implies that the eigenvalues of J2 must, themselves be labeled by values of j satisfying
the bound

j1 + j2 ¸ j: (5.235)

Moreover, it is not hard to see that the sum of m1 and m2 will result in integral values
of m if m1 and m2are both integral or both half-integral and will result in half-integral
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values of m if one is integral and the other half-integral. Since the integral character of
m1 and m2 is determined by the character of j1 and j2; we deduce that

j =

8<: integral if j1; j2 are both integral or both half-integral

half-integral otherwise.
(5.236)

With these preliminary observations out of the way, we now proceed to observe
that in the subspace S(j1; j2) there is only one direct product state jm1;m2i in which the
value of m = m1 +m2 takes on its largest value of j1 + j2; namely that vector in which
m1 and m2 both individually take on their largest values, j1 and j2. This fact, we assert,
implies that the vector, jm1;m2i = jj1; j2i must be also be an eigenvector of J2 and Jz
with angular momentum (j;m) = (j1 + j2; j1 + j2): In other words, it is that vector of
an irreducible subspace S(j) with j = j1 + j2 having the maximum possible component
of angular momentum along the z axis consistent with that value of j. To prove this
assertion, we note that if this were not the case, we could act on this vector with the
raising operator

J+ = J1+ + J2+ (5.237)

and produce an eigenstate of Jz with eigenvalue m = j1 + j2 + 1. This state would have
to be in S(j1; j2) because the latter is invariant under the action of the components of
~J . But no vector exists in this space with m larger than j1 + j2: Thus, when J+ acts on
jj1; j2i it must take it onto the null vector. The only states having this property are those
of the form jj;mi with j =m, which proves the assertion.

Since there is only one such state in S(j1; j2) with this value of m; moreover,
there can be only one irreducible subspace S(j) with j = j1 + j2 (in general there would
be one such vector starting the sequence of basis vectors for each such subspace). Thus
we identify

jj1 + j2; j1 + j2i = jj1; j2i;
where the left side of this expression indicates the jj;mi state, the right side indicates the
original direct product state jm1;m2i: The remaining basis states jj;mi in this irreducible
space S(j) with j = j1+ j2 can now, in principle, be produced by repeated application of
the lowering operator

J¡ = J1¡ + J2¡: (5.238)

For example, we note that, in the jj;mi representation,

J¡jj1 + j2; j1 + j2i =

p
(j1 + j2)(j1 + j2 + 1)¡ (j1 + j2)(j1 + j2 ¡ 1) jj1 + j2; j1 + j2 ¡ 1i

=
p
2(j1 + j2) jj1 + j2; j1 + j2 ¡ 1i: (5.239)

But J¡ = J1¡+J2¡; so this same expression can be written in the jm1;m2i representation,
after some manipulation, as

(J1¡ + J2¡)jj1; j2i =
p
2j1 jj1 ¡ 1; j2i+

p
2j2 jj1; j2 ¡ 1i: (5.240)

Equating these last two results then gives

jj1 + j2; j1 + j2 ¡ 1i =
s

j2
j1 + j2

jj1; j2 ¡ 1i+
s

j1
j1 + j2

jj1 ¡ 1; j2i: (5.241)
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This procedure can obviously be repeated for the remaining basis vectors with this value
of j.

We now proced to essentially repeat the argument, by noticing that there are
exactly two direct product states jm1;m2i in which the value of m = m1 +m2 takes the
next largest value possible, i.e., m = j1 + j2 ¡ 1; namely, the states

jm1;m2i = jj1; j2 ¡ 1i
jm1;m2i = jj1 ¡ 1; j2i: (5.242)

From these two orthogonal states we can produce any eigenvectors of Jz in S(j1; j2)
having eigenvalue m = j1 + j2 ¡ 1: In particular, we can form the state (5.241), which
is an eigenvector of J2 with j = j1 + j2: But we can also produce from these two direct
product states a vector orthogonal to (5.241), e.g., the vectors

j2
j1 + j2

jj1; j2 ¡ 1i ¡
s

j1
j1 + j2

jj1 ¡ 1; j2i: (5.243)

Analogous to our previous argument we argue that this latter state must be an eigenstate
of J 2 and Jz with angular momentum (j;m) = (j1 + j2 ¡ 1; j1 + j2 ¡ 1): In other words,
it is that vector of an irreducible subspace S(j) with j = j1+ j2¡ 1 having the maximum
possible component of angular momentum along the z axis consistent with that value of
j. To prove this assertion, assume it were not the case. We could then act both on this
vector and on (5.241) with the raising operator and produce in S(j1; j2) two orthogonal
eigenstates of Jz with eigenvalue m = j1 + j2 (since, as we have seen the raising and
lowering operators preserve the orthogonality of such sequences). But there is only one
such state with this value of m; and it is obtained by applying the raising operator to
(5.241). Thus, application of J+ to (5.243) must take it onto the null vector, and hence
it must be a state of the type asserted. Since there are no other orthogonal states of this
type that can be constructed, we deduce that there is exactly one irreducible invariant
subspace S(j) with j = j1 + j2 ¡ 1; and we identify (5.243) with the state heading the
sequence of basis vectors for that space. As before, the remaining basis vectors jj;mi for
this value of j can then be generated by applying the lowering operator J¡ = J1¡ + J2¡
to (5.243).

The next steps, we hope, are clear: repeat this procedure until we run out of
vectors. The basic idea is that as we move down through each value of j we always
encounter just enough linearly-independent direct product states with a given value of m
to form by linear combination the basis vectors associated with those irreducible spaces
already generated with higher values of j; as well as one additional vector which is to be
constructed orthogonal to those from the other irreducible spaces. This remaining state
forms the beginning vector for a new sequence of 2j +1 basis vectors associated with the
present value of j.

Thus, e.g., for small enough n; we …nd that there are exactly n+1 direct product
states jm1;m2i in which the value of m = m1 + m2 takes the value m = j1 + j2 ¡ n;
namely, the states with

m1 = m2 =
j1 ¡ n j2
j1 ¡ n+ 1 j2 ¡ 1
...

...
j1 j2 ¡ n

: (5.244)

If, at this stage, there has been exactly one irreducible invariant subspace S(j) for all
values of j greater than j1 + j2 ¡ n; than we can form from these n + 1 vectors those
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n vectors having this m value that have already been obtained using J¡ from spaces
with higher values of j. We can then form exactly one additional vector orthogonal to
these (e.g., by the Gram-Schmidt procedure) which cannot be associated with any of the
subspaces S(j) already constructed and so, by elimination, must be associated with the
one existing subspace S(j) having j = j1 + j2 ¡ n: This state must, moreover, be that
state of this space in which m = j, (if it were not we could use the raising operator to
produce n+ 1 orthogonal states with m having the next higher value which exceeds the
number of orthogonal states of this type). Thus, the remaining basis vectors of this space
can be constructed using the lowering operator on this state. We have inductively shown,
therefore, that if there is exactly one irreducible invariant subspace S(j) for all values of
j greater than j1 + j2 ¡ n; then there is exactly one such subspace for j = j1 + j2 ¡ n.
This argument proceeds until we reach a value of n for which there are not n + 1 basis
vectors with the required value of m. From the table above, we see that this occurs when
the values of m1 or m2 exceed there natural lower bounds of ¡j1 and ¡j2: Conversely,
the induction proof holds for all values of n such that

j1 ¡ n ¸ ¡j1 and j2 ¡ n ¸ ¡j2 (5.245)

or
2j1 ¸ n and 2j2 ¸ n (5.246)

With j = j1 + j2 ¡ n; this implies that

j ¸ j2 ¡ j1 and j ¸ j1 ¡ j2 (5.247)

or more simply
j ¸ jj1 ¡ j2j: (5.248)

Thus, the arguments above prove the basic statement of the addition theorem,
namely that there exists in S(j1; j2) exactly one space S(j) for values of j starting at
j1 + j2 and stepping down one unit at a time to the value of jj1 ¡ j2j: Moreover, the
method of proof contains an outline of the basic procedure used to actually construct
the subspaces of interest. Of course there remains the logical possibility that there exist
other irreducible subspaces in S(j1; j2) that are simply not accessible using the procedure
outlined. It is straightforward to show that this is not the case, however, by simply
counting the number of vectors produced through the procedure outlined. Indeed, for
each value of j = j1 + j2; ¢ ¢ ¢ ; jj1 ¡ j2j the procedure outlined above generates 2j + 1
basis vectors. The total number of such basis vectors is then represented by the readily
computable sum

j1+j2X
j=jj1¡j2j

(2j + 1) = (2j1 + 1)(2j2 + 1) (5.249)

showing that they are su¢cient in number to generate a space of dimension equal to the
original.

Thus, the states jj;mi = j¿1; j1; ¿2; j2; j;mi formed in this way comprise an or-
thonormal basis for the subspace S(j1; j2): Implicitly, therefore, there is within this sub-
space a unitary transformation between the original direct product states jm1;m2i =
j¿1; j1; ¿2; j2;m1;m2i and the basis states jj;mi assocated with the total angular momen-
tum ~J . By an appropriate choice of phase, the expansion coe¢cients (i.e., the matrix
elements of the unitary transformation between these two sets) can be chosen indepen-
dent of ¿ and ¿ 0 and dependent only on the values j;m; j1; j2;m1; and m2: Thus, e.g., the
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new basis states can be written as linear combinations of the direct product states in the
usual way, i.e.,

jj;mi =
j1X

m1=¡j1

j2X
m2=¡j2

jj1; j2;m1;m2ihj1; j2;m1;m2jj;mi (5.250)

where we have included the quantum numbers j1 and j2 in the expansion to explicitly
indicate the subspaces that are being combined. Similarly, the direct product states can
be written as linear combinations of the new basis states jj;mi; i.e.,

jj1; j2;m1;m2i =
j1+j2X

j=jj1¡j2j

jX
m=¡j

jj;mihj;mjj1; j2;m1;m2i: (5.251)

These expansions are completely determined once we know the corresponding expansion
coe¢cients hj1; j2;m1;m2jj;mi; which are referred to as Clebsch-Gordon coe¢cients (or
CG coe¢cients). Di¤erent authors denote these expansion coe¢cients in di¤erent ways,
e.g.,

Cj1;j2;m1;m2

j;m = hj;mjj1; j2;m1;m2i: (5.252)

It is straightforward, using the procedure outlined above, to generate the CG coe¢cients
for given values of j1; j2; and j. They obey certain properties that follow from their
de…nition and from the way in which they are constructed. We enumerate some of these
properties below.

1. Restrictions on j and m - It is clear from the proof of the addition theorem
detailed above that the CG coe¢cient hj1; j2;m1;m2jj;mi must vanish unless the
two states in the innner product have the same z component of total angular mo-
mentum. In addition, we must have the value of total j on the right lie within the
range produced by the angular momenta j1 and j2. Thus we have the restriction

hj1; j2;m1;m2jj;mi = 0 unless m =m1 +m2

hj1; j2;m1;m2jj;mi = 0 unless j1 + j2 ¸ j ¸ jj1 ¡ j2j: (5.253)
The restriction on j is referred to as the triangle inequality, since it is equivalent
to the condition that the positive numbers j; j1; and j2 be able to represent the
lengths of the three sides of some triangle. As such, it is easily shown to apply to
any permutation of these three numbers, i.e., its validity also implies that j1 + j ¸
j2 ¸ jj1 ¡ jj and that j + j2 ¸ j1 ¸ jj ¡ j2j.

2. Phase convention - From the process outlined above, the only ambiguity involved
in constructing the states jj;mi from the direct product states jm1;m2i is at the
point where we construct the maximally aligned vector jj; ji for each subspace S(j):
This vector can always be constructed orthogonal to the states with the same value
of m associated with higher values of j; but the phase of the state so constructed
can, in principle, take any value. To unambiguously specify the CG coe¢cients,
therefore, this phase must be unambiguously speci…ed. This is done by de…ning the
phase of this state relative to a particular direct product state. In particular, we
de…ne the CG coe¢cients so that the coe¢cient

hj1; j2; j1; j ¡ j1jj; ji = hj; jjj1; j2; j1; j ¡ j1i ¸ 0 (5.254)

is real and positive. Since the remaining states jj;mi are constructed from jj; ji
using the lowering operator this choice makes all of the CG coe¢cients real

hj1; j2;m1;m2jj;mi = hj;mjj1; j2;m1;m2i; (5.255)
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although not necessarily positive (one can show, for example, that the sign of
hj1; j2;m1;m2jj; ji is (¡1)j1¡m1 .)

3. Orthogonality and completeness relations - Being eigenstates of Hermitian
operators the two sets of states fjj;mig and fjm1;m2ig each form an ONB for the
subspace S(j1; j2): Orthonormality implies that

hj1j2m1m2jj1j2m0
1m

0
2i = ±m1;m0

1
±m2;m0

2
(5.256)

hj;mjj0;m0i = ±j;j0±m;m0 (5.257)

While completeness of each set within this subspace implies that

j1+j2X
j=jj1¡j2j

jX
m=¡j

jj;mihj;mj = 1 within S(j1; j2) (5.258)

j1X
m1=¡j1

j2X
m2=¡j2

jj1; j2;m1;m2ihj1; j2;m1;m2j = 1 within S(j1; j2) (5.259)

inserting the completeness relations into the orthonormality relations gives corre-
sponding orthonormality conditions for the CG coe¢cients, i.e.,

j1+j2X
j=jj1¡j2j

jX
m=¡j

hj1j2m1m2jj;mihj;mjj1j2m0
1m

0
2i = ±m1;m0

1
(5.260)

j1X
m1=¡j1

j2X
m2=¡j2

hj;mjj1; j2;m1;m2ihj1; j2;m1;m2jj0;m0i = ±j;j0±m;m0 : (5.261)

4. Recursion relation - The states jj;mi in each irreducible subspace S(j) are formed
from the state jj; ji by application of the lowering operator. It is possible, as a
result, to use the lowering operator to obtain recursion relations for the Clebsch-
Gordon coe¢cients associated with …xed values of j; j1; and j2. To develop these
relations we consider the matrix element of J§ between the states jj;mi and the
states jj1; j2;m1;m2i; i.e., we consider

hj;mjJ§jj1; j2;m1;m2i = hj;mj(J1§ + J2§)jj1; j2;m1;m2i (5.262)

On the left hand side of this expression we let J§ act on the bra hj;mj. Since this
is the adjoint of J¨jj;mi the role of the raising and lowering operators is reversed,
i.e.,

hj;mjJ§ =
p
j(j + 1)¡m(m¨ 1) hj;m¨ 1j: (5.263)

Substituting this in above and letting J1§ and J2§ act to the right we obtain the
relations p

j(j + 1)¡m(m¨ 1) hj;m¨ 1jj1; j2;m1;m2i

=
p
j1(j1 + 1)¡m1(m1 § 1) hj;mjj1; j2;m1 § 1;m2i

+
p
j2(j2 + 1)¡m2(m2 § 1) hj;mjj1; j2;m1;m2 § 1i: (5.264)

These relations allow all CG coe¢cients for …xed j; j1; and j2; to be obtained from
a single one, e.g., hj1; j2; j1; j ¡ j1jj; ji.
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5. Clebsch-Gordon series - As a …nal property of the CG coe¢cients we derive a
relation that follows from the fact that the space S(j1; j2) is formed from the direct
product of irreducible invariant subspaces S1(j1) and S2(j2). In particular, we know
that in the space S1(j1) the basis vectors jj1;m1i transform under rotations into
linear combinations of the themselves according to the relation

U
(1)
R jj1m1i =

j1X
m0
1=¡j1

jj1;m0
1iR(j1)m0

1;m1
; (5.265)

where R(j1)m0
1;m1

is the rotation matrix associated with an irreducible invariant sub-
space with angular momentum j1: Similarly, for the states jj2;m2i of S2(j2) we have
the relation

U
(2)
R jj2m2i =

j2X
m0
2=¡j2

jj2;m0
2iR(j2)m0

2;m2
: (5.266)

It follows that in the combined space the direct product states jj1; j2;m1;m2i trans-
form under rotations as follows

URjj1; j2;m1;m2i = U
(1)
R U

(2)
R jj1; j2;m1;m2i

=
X
m0
1;m

0
2

jj1; j2;m0
1;m

0
2iR(j1)m0

1;m1
R
(j2)
m0
2;m2

: (5.267)

On the other hand, we can also express the states jj1; j2;m1;m2i in terms of the
states jj;mi; i.e.,

URjj1; j2;m1;m2i =
X
j;m

URjj;mihj;mjj1; j2;m1;m2i: (5.268)

But the states jj;mi are the basis vectors of an irreducible invariant subspace S(j)
of the combined subspace, and so tranform accordingly,

URjj;mi =
X
m0
jj;m0iR(j)m0;m: (5.269)

Thus, we deduce that

URjj1; j2;m1;m2i =
X
j;m;m0

jj;m0iR(j)m0;mhj;mjj1; j2;m1;m2i (5.270)

=
X
m0
1;m

0
2

X
j;m;m0

jj1; j2;m0
1;m

0
2ihj1; j2;m0

1;m
0
2jj;m0iR(j)m0;mhj;mjj1; j2;m1;m2i

(5.271)
where in the second line we have transformed the states jj;m0i back to the direct
product representation. Comparing coe¢cients in (5.267) and (5.271), we deduce a
relation between matrix elements of the rotation matrices for di¤erent values of j;
namely,

R
(j1)
m0
1;m1

R
(j2)
m0
2;m2

=
X
j;m;m0

hj1; j2;m0
1;m

0
2jj;m0iR(j)m0;mhj;mjj1; j2;m1;m2i (5.272)

which is referred to as the Clebsch-Gordon series. Note that in this last expression
the CG coe¢cients actually allow the sum overm andm0 to both collapse to a single



202 Angular Momentum and Rotations

term with m =m1 +m2 and m0 = m0
1 +m

0
2; making it equivalent to

R
(j1)
m0
1;m1

R
(j2)
m0
2;m2

=

j1+j2X
j=jj1¡j2j

hj1; j2;m0
1;m

0
2jj;m0

1+m
0
2iR(j)m0

1+m
0
2;m1+m2

hj;m1+m2jj1; j2;m1;m2i

(5.273)

5.11 Reducible and Irreducible Tensor Operators

We have seen that it is possible to classify observables of a system in terms of their
transformation properties. Thus, scalar observables are, by de…nition, invariant under
rotations. The components of a vector observable, on the other hand, transform into
well de…ned linear combinations of one another under an arbitrary rotation. As it turns
out, these two examples constitute special cases of a more general classi…cation scheme
involving the concept of tensor operators. By de…nition, a collection of n operators
fQ1; Q2; ¢ ¢ ¢ ; Qng comprise an n-component rotational tensor operatorQ if they transform
under rotations into linear combinations of each other, i.e., if for each rotation R there
are a set of coe¢cients Dji(R) such that

R [Qi] = URQiU
+
r =

X
j

QjDji(R): (5.274)

It is straightforward to show that under these circumstances the matrices D(R) with
matrix elements Dji(R) form a representation for the rotation group.

As an example, we note that the Cartesian components fVx; Vy; Vzg of a vector
operator ~V form the components of a 3-component tensor V. Indeed, under an arbitrary
rotation, the operator Vu = ~V ¢ û is transformed into

R [Vu] = Vu0 = ~V ¢ û0 (5.275)

where û0 = ARû indicates the direction obtained by performing the rotation R on the
vector û. Thus,

u0i =
X
j

Aijuj : (5.276)

If û corresponds to the Cartesian unit vector x̂k; then uj = ±j;k and u0i = Aik; so that

R [Vk] = ~V ¢ x̂0k =
X
i

ViAik (5.277)

which shows that the components of ~V transform into linear combinations of one another
under rotations, with coe¢cients given by the 3£ 3 rotation matrices AR.

As a second example, if ~V and ~W are vector operators and Q is a scalar opera-
tor, then the operators fQ;Vx; Vy; Vz;Wx;Wy;Wzg form a seven component tensor, since
under an arbitrary rotation R they are taken onto

Q ! Q+
X
j

0 ¢ Vj +
X
j

0 ¢Wj (5.278)

Vi !
X
j

VjAji +
X
j

0 ¢Wj + 0 ¢Q (5.279)

Wi !
X
j

WjAji +
X
j

0 ¢ Vj + 0 ¢Q (5.280)
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which satis…es the de…nition. Clearly in this case, however, the set of seven components
can be partitioned into 3 separate sets of operators fQg; fVx; Vy; Vzg; and fWx;Wy;Wzg;
which independently transform into linear combinations of one another, i.e., the tensor
can be reduced into two 3-component tensors and one tensor having just one component
(obviously any scalar operator constitutes a one-component tensor). Note also that in
this circumstance the matrices D(R) governing the transformation of these operators is
block diagonal, i.e., it has the form

D(R) =

0BBBBBBBB@

1 0@ AR

1A 0@ AR

1A

1CCCCCCCCA
: (5.281)

Thus this representation of the rotation group is really a combination of three separate
representations, one of which is 1 dimensional and two of which are 3 dimensional.

This leads us to the idea of irreducible tensors. A tensor operator T is said to
be reducible if its components fT1; T2; ¢ ¢ ¢ ; Tng, or any set of linear combinations thereof,
can be partitioned into tensors having a smaller number of components. If a tensor cannot
be so partitioned it is said to be irreducible.

For example, if ~V is a vector operator, the set of operators fVx; Vyg do not form
a two component tensor, because a rotation of Vx about the y axis through ¼=2 takes it
onto Vz; which cannot be expressed as a linear combination of Vx and Vy: Thus, a vector
operator cannot be reduced into smaller subsets of operators. It follows that all vector
operators are irreducible.

It is interesting to note that the language that we are using here to describe the
components of tensor operators is clearly very similar to that describing the behavior of
the basis vectors associated with rotationally invariant subspaces of a quantum mechanical
Hilbert space. Indeed, in a certain sense the basic reducibility problem has alread been
solved in the context of combining angular momenta. We are led quite naturally, therefore,
to introduce a very useful class of irreducible tensors referred to as spherical tensors.

By de…nition, a collection of 2j+1 operators fTmj jm = ¡j; ¢ ¢ ¢ ; jg form the com-
ponents of an irreducible spherical tensor Tj of rank j if they transform under rotations
into linear combinations of one another in the same way as the basis vectors jj;mi of an
irreducible invariant subspace S(j): Speci…cally, this means that under a rotation R; the
operator Tmj is taken onto

R
£
Tmj
¤
= URT

m
j U

+
R =

X
m0
Tm

0
j R

(j)
m0;m (5.282)

where R(j)m0;m represents the rotation matrix associated with an eigenspace of J
2 with this

value of j. Since the basis vectors jj;mi transform irreducibly, it is not hard to see that
the components of spherical tensors of this sort do so as well.

It is not hard to see that, according to this de…nition, a scalar observable Q = Q00
is an irreducible spherical tensor of rank zero, i.e., its transformation law

R
£
Q00
¤
= Q00 (5.283)

is the same as that of the single basis vector j0; 0i associated with a subspace of zero
angular momentum, for which

R [j0; 0i] = j0; 0i: (5.284)
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Similary, a vector operator ~V , which de…nes an irreducible three component tensor, can be
viewed as a spherical tensorV1 of rank one. By de…nition, the spherical tensor components
fV m1 jm = 1; 0;¡1g of a vector operator ~V are given as the following linear combinations

V 11 = ¡
(Vx + iVy)p

2
V 01 = Vz V ¡11 =

Vx ¡ iVyp
2

(5.285)

of its Cartesian components. In this representation we see that the raising and lowering
operators can be expressed in terms of the spherical tensor components of the angular
momentum operator ~J through the relation

J§ = ¨
p
2J§11 : (5.286)

To see that the spherical components of a vector de…ne an irreducible tensor of
unit rank we must show that they transform appropriately. To this end it su¢ces to
demonstrate the transformation properties for any vector operator, since the transfor-
mation law will clearly be the same for all vector operators (as it is for the Cartesian
components). Consider, then, in the space of a single particle the vector operator R̂
which has the e¤ect in the position representation of multiplying the wavefunction at ~r
by the radial unit vector r̂; i.e.,

R̂j~ri = r̂j~ri = ~r

j~rj j~ri (5.287)

h~rjR̂jÃi = r̂Ã(~r) =
~rÃ(~r)

j~rj : (5.288)

In the position representation the Cartesian components of this operator can be written
in spherical coordinates (r; µ; Á) in the usual way, i.e.,

R̂x =
x

r
= cosÁ sin µ (5.289)

R̂y =
y

r
= sinÁ sin µ (5.290)

R̂z =
z

r
= cos µ (5.291)

In this same representation the spherical components of this vector operator take the form

R̂11 = ¡ 1p
2
(cosÁ sin µ + i sinÁ sin µ) = ¡ 1p

2
eiÁ sin µ (5.292)

R̂01 = cos µ (5.293)

R̂¡11 =
1p
2
(cosÁ sin µ ¡ i sinÁ sin µ) = 1p

2
e¡iÁ sin µ (5.294)

Aside from an overall constant, these are equivalent to the spherical harmonics of order
one, i.e.,

R̂11 =

r
4¼

3
Y 11 (µ; Á) (5.295)

R̂01 =

r
4¼

3
Y 01 (µ; Á) (5.296)

R̂¡11 =

r
4¼

3
Y ¡11 (µ; Á) (5.297)
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which, as we have seen, transform as the basis vectors of an irreducible subspace with
j = 1

R [Ym1 ] =
1X

m0=¡1
Y m

0
1 R

(1)
m0;m (5.298)

from which it follows that the spherical components of R̂ transform in the same way, i.e.,

R
h
R̂m1

i
=

1X
m0=¡1

R̂m
0

1 R
(1)
m0;m (5.299)

Thus, this vector operator (and hence all vector operators) de…ne a spherical tensor of
rank one.

As a natural extension of this, it is not hard to see that the spherical harmonics
of a given order l de…ne the components of a tensor operator in (e.g.) the position repre-
sentation. Thus, we can de…ne an irreducible tensor operator Yl with 2l+ 1 components
fY ml jm = ¡l; ¢ ¢ ¢ ; lg which have the following e¤ect in the position representation

h~rjY ml jÃi = Y ml (µ; Á)Ã(r; µ; Á): (5.300)

We note in passing that the components of this tensor operator arise quite naturally in
the multipole expansion of electrostatic and magnetostatic …elds.

The product of two tensors is, itself, generally a tensor. For example, if Tj1
and Qj2 represent spherical tensors of rank j1 and j2; respectively, then the set of prod-
ucts

©
Tm1
j1
Qm2
j2

ª
form a (2j1 + 1)(2j2 + 1) component tensor. In general, however, such

a tensor is reducible into tensors of smaller rank. Indeed, since the components Tm1
j1
;

Qm2
j2
of each tensor transform as the basis vectors jj1;m1i; jj2;m2i of an irreducible sub-

space S(j1); S(j2) the process of reducing the product of two spherical tensors into irre-
ducible components is essentially identical to the process of reducing a direct product space
S(j1; j2) into its irreducible components. Speci…cally, from the components

©
Tm1
j1
Qm2
j2

ª
we can form, for each j = j1+ j2; ¢ ¢ ¢ ; jj1¡ j2j an irreducible tensorWj with components

Wm
j =

j1X
m1=¡j1

j2X
m2=¡j2

Tm1
j1
Qm2
j2
hj1; j2;m1;m2jj;mi m = ¡j; ¢ ¢ ¢ ; j: (5.301)

To show that these 2j+1 components comprise a spherical tensor of rank j we must show
that they satisfy the approriate transformation law. Consider

R
£
Wm
j

¤
= URW

m
j U

+
R =

X
m1;m2

URT
m1
j1
Qm2
j2
U+R hj1; j2;m1;m2jj;mi

=
X
m1;m2

URT
m1
j1
U+RURQ

m2
j2
U+R hj1; j2;m1;m2jj;mi

=
X
m1;m2

X
m0
1;m

0
2

T
m0
1

j1
Q
m0
2

j2
R
(j1)
m0
1;m1

R
(j2)
m0
2;m2

hj1; j2;m1;m2jj;mi (5.302)
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Using the Clebsch-Gordon series this last expression can be written

R
£
Wm
j

¤
=

X
m1;m2

X
m0
1;m

0
2

X
j0;m0;m00

T
m0
1

j1
Q
m0
2

j2
hj1; j2;m0

1;m
0
2jj0;m0iR(j0)m0;m00

£hj0;m00jj1j2;m1;m2ihj1; j2;m1;m2jj;mi

=
X
m0
1;m

0
2

X
j;m0;m00

T
m0
1

j1
Q
m0
2

j2
hj1; j2;m0

1;m
0
2jj0;m0iR(j)m0;m00hj0;m00jj;mi

=
X
m0

X
m0
1;m

0
2

T
m0
1

j1
Q
m0
2

j2
hj1; j2;m0

1;m
0
2jj;m0iR(j)m0;m

=
X
m0
Wm0
j R

(j)
m0;m (5.303)

which shows that Wm
j does indeed transform as the mth component of a tensor of rank

j; and where we have used the orthonormality and completeness relations associated with
the C-G coe¢cients.

5.12 Tensor Commutation Relations

Just as scalar and vector observables obey characteristic commutation relations

[Ji; Q] = 0 (5.304)

[Ji; Vj ] = i
X
ijk

"ijkVk (5.305)

with the components of angular momentum, so do the components of a general spherical
tensor operator. As with scalars and vectors, these commutation relations follow from the
way that these operators transform under in…nitesimal rotations. Recall that under an
in…nitesimal rotation Uû(±®) = 1¡ i±®Ju; an arbitrary operator Q is transformed into

Q0 = Q¡ i±® [Ju; Q] (5.306)

Thus, the mth component of the spherical tensor Tj is transformed by Uû(±®) into

Rû(±®)[T
m
j ] = T

m
j ¡ i±® £Ju; Tmj ¤ (5.307)

On the other hand, by de…nition, under any rotation Tmj is transformed into

Rû(±®)[T
m
j ] =

jX
m0=¡j

Tm
0

j R
(j)
m0;m(û; ±®): (5.308)

But

R
(j)
m0;m(û; ±®) = hj;m0jUû(±®)jj;mi

= hj;m0j1¡ i±®Jujj;mi
= ±m;m0 ¡ i±®hj;m0jJujj;mi (5.309)

which implies that

Rû(±®)[T
m
j ] = T

m
j ¡ i±®

jX
m0=¡j

Tm
0

j hj;m0jJujj;mi: (5.310)
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Comparing these we deduce the commutation relations

£
Ju; T

m
j

¤
=

jX
m0=¡j

Tm
0

j hj;m0jJujj;mi: (5.311)

As special cases of this we have £
Jz; T

m
j

¤
= mTmj :

and £
J§; Tmj

¤
=
p
j(j + 1)¡m(m§ 1) Tm§1j : (5.312)

5.13 The Wigner Eckart Theorem

We now prove and important result regarding the matrix elements of tensor operators
between basis states j¿; j;mi of any standard representation. This result, known as the
Wigner-Eckart theorem, illustrates, in a certain sense, the constraints put on the compo-
nents of tensor operators by the transformation laws that they satisfy. Speci…cally, we
will show that the matrix elements of the components of a spherical tensor operator TJ
between basis states j¿ ; j;mi are given by the product

h¿ ; j;mjTMJ j¿ 0; j0;m0i = hj;mjJ; j0;M;m0ih¿; jjjT jj¿ 0j0i (5.313)

of the Clebsch Gordon coe¢cient hj;mjJ; j0;M;m0i and a quantity h¿ ; jjjT jj¿ 0j0i that
is independent of m;M; and m0; referred to as the reduced matrix element. Thus, the
“orientational” dependence of the matrix element is completely determined by geometrical
considerations. This result is not entirely surprising, given that the two quantities on the
right hand side of the matrix element, i.e., the TMJ j¿ 0; j0;m0i transform under rotations like
a direct product ket of the form jJ;Mi­ jj0;m0i; while the quantity on the left transforms
as a bra of total angular momentum (j;m). The reduced matrix element h¿; jjjT jj¿ 0j0i
characterizes the extent to which the given tensor operator TJ mixes the two subspaces
S(¿; j) and S(¿ 0; j0); and is generally di¤erent for each tensor operator.

To prove theWigner-Eckart theorem we will simply show that the matrix elements
of interest obey the same recursion relations as the CG coe¢cients. To this end, we use
the simplifying notation

Cj1;j2;m1;m2

j;m = hj;mjj2; j1;m1;m2i (5.314)

for the CG coe¢cients and denote the matrix elements of interest in a similar fashion,
i.e.,

T j1;j2;m1;m2

j;m = h¿; j;mjTm2
j1
j¿ 0; j2;m2i: (5.315)

This latter quantity is implicitly a function of the labels ¿ ; ¿ 0 , but we will suppress this
dependence until it is needed. We then recall that the CG coe¢cients obey a recursion
relation that is generated by consideration of the matrix elements

hj;mjJ§jj2; j1;m1;m2i = hj;mj(J1§ + J2§)jj2; j1;m1;m2i (5.316)

which leads to the relationp
j(j + 1)¡m(m¨ 1)Cj1;j2;m1;m2

j;m¨1 =
p
j1(j1 + 1)¡m1(m1 § 1) Cj1;j2;m1§1;m2

j;m

+
p
j2(j2 + 1)¡m2(m2 § 1)Cj1;j2;m1;m2§1

j;m (5.317)
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To obtain a similar relation for the matrix elements of Tj1 we consider an “analogous”
matrix element

h¿ ; j;mjJ§Tm1
j1
j¿ 0; j2;m2i =

p
j(j + 1)¡m(m¨ 1) h¿; j;m¨ 1jTm1

j1
j¿ 0; j2;m2i

=
p
j(j + 1)¡m(m¨ 1) T j1;j2;m1;m2

j;m¨1 : (5.318)

We can evaluate this in a second way by using the commutation relations satis…ed by J§
and Tm1

j1
; i.e., we can write

J§Tm1
j1

=
£
J§; Tm1

j1

¤
+ Tm1

j1
J§

=
p
j1(j1 + 1)¡m1(m1 § 1) Tm1§1

j1
+ Tm1

j1
J§ (5.319)

which allows us to express the matrix element above in the form

h¿; j;mjJ§Tm1
j1
j¿ 0; j2;m2i =

p
j1(j1 + 1)¡m1(m1 § 1) h¿ ; j;mjTm1§1

j1
j¿ 0; j2;m2i

+h¿ ; j;mjTm1
j1
J§j¿ 0; j2;m2i (5.320)

which reduces to

h¿ ; j;mjJ§Tm1
j1
j¿ 0; j2;m2i =

p
j1(j1 + 1)¡m1(m1 § 1) T j1;j2;m1§1;m2

j;m

+
p
j2(j2 + 1)¡m2(m2 § 1) T j1;j2;m1;m2§1

j;m (5.321)

Comparing the two expressions for h¿; j;mjJ§Tm1
j1
j¿ 0; j2;m2i we deduce the recursion

relationp
j(j + 1)¡m(m¨ 1) T j1;j2;m1;m2

j;m¨1 =
p
j1(j1 + 1)¡m1(m1 § 1) T j1;j2;m1§1;m2

j;m

+
p
j2(j2 + 1)¡m2(m2 § 1) T j1;j2;m1;m2§1

j;m (5.322)

which is precisely the same as that obeyed by the Clebsch-Gordon coe¢cients Cj1;j2;m1;m2

j;m :
The two sets of number, for given values of j; j1; and j2; must be proportional to one
another. Introducing the reduced matrix element h¿ ; jjjT jj¿ 0j0i as the constant of propor-
tionality, we deduce that

T j1;j2;m1;m2

j;m = h¿ ; jjjT jj¿ 0j0iCj1;j2;m1;m2

j;m (5.323)

which becomes after a little rearrangement

h¿ ; j;mjTMJ j¿ 0; j0;m0i = hj;mjJ; j0;M;m0ih¿ ; jjjT jj¿ 0j0i: (5.324)

This theorem is very useful because it leads automatically to certain selection
rules. Indeed, because of the CG coe¢cient on the right hand side we see that the matrix
element of TMJ between two states of this type vanishes unless

¢m =m¡m0 =M (5.325)

j0 + J ¸ j ¸ jj0 ¡ J j: (5.326)

Thus, for example we see that the matrix elements of a scalar operator Q00 vanish
unless ¢m = 0 and ¢j = j ¡ j0 = 0: Thus, scalar operators cannot change the angular
momentum of any states that they act upon. (They are often said to carry no angular
momentum, in contrast to tensor operators of higher rank, which can and do change the
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angular momentum of the states that they act upon.) Thus the matrix elements for scalar
operators take the form

h¿ ; j;mjQ00j¿ 0; j0;m0i = Q¿;¿ 0±j;j0±m;m0 : (5.327)

In particular, it follows that within any irreducible subspace S(¿ ; j) the matrix represent-
ing any scalar Q00 is just a constant Q¿ times the identity matrix for that space (con…rming
the rotational invariance of scalar observables within any such subspace), i.e.,

h¿ ; j;mjQ00j¿; j;m0i = Q¿±m;m0 : (5.328)

Application of the Wigner-Eckart theorem to vector operators ~V ; leads to con-
sideration of the spherical components fV m1 jm = 0;§1g of such an operator. The corre-
sponding matrix elements satisfy the relation

h¿ ; j;mjVM1 j¿ 0; j0;m0i = hj;mj1; j0;M;m0ih¿ ; jjjV jj¿ 0j0i; (5.329)

and vanish unless
¢m =M 2 f0;§1g : (5.330)

Similarly, application of the triangle inequality to vector operators leads to the selection
rule

¢j = 0;§1: (5.331)

Thus, vector operators act as though they impart or take away angular momentum j = 1.
The matrix elements of a vector operator within any given irreducible space are

proportional to those of any other vector operator, such as the angular momentum oper-
ator ~J; whose spherical components satisfy

h¿ ; j;mjJM1 j¿ 0; j0;m0i = hj;mj1; j0;M;m0ih¿ ; jjjJ jj¿ 0j0i; (5.332)

from which it follows that

h¿ ; j;mjVM1 j¿ ; j;m0i = ®(¿ ; j)h¿ ; j;mjJM1 j¿; j;m0i (5.333)

where ®(¿; j) = h¿ ; jjjV jj¿ ; ji=h¿; jjjJ jj¿ ; ji is a constant. Thus, within any subspace
S¿ (j) all vector operators are proportional, we can write

~V = ®~J within S¿ (j): (5.334)

It is a straight forward exercise to compute the constant of proportionality in terms of
the scalar observable ~J ¢ ~V ; the result being what is referred to as the projection theorem,
i.e.,

~V =
h ~J ¢ ~V i
j(j + 1)

~J within S¿ (j); (5.335)

where the mean value h ~J ¢ ~V i; being a scalar with respect to rotation can be taken with
respect to any state in the subspace S¿ (j):

In a similar manner one …nds that the nonzero matrix elements within any irre-
ducible subspace are proportional, i.e., for two nonzero tensor operators TJ and WJ of
the same rank, it follows that, provided h¿ ; jjjW jj¿ji 6= 0;

h¿ ; j;mjTMJ j¿ 0; j0;m0i = ®h¿; j;mjWM
J j¿ 0; j0;m0i (5.336)

where ® = h¿; jjjT jj¿ 0j0i=h¿ ; jjjW jj¿ 0; j0i: Thus, the orientational dependence of the (2j+
1)(2J + 1)(2j0 + 1) matrix elements is completely determined by the transformational
properties of the states and the tensors involved.
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