
Chapter 5
APPROXIMATION METHODS FOR STATIONARY STATES

As we have seen, the task of prediciting the evolution of an isolated quantum mechan-
ical can be reduced to the solution of an appropriate eigenvalue equation involving the
Hamiltonian of the system. Unfortunately, only a small number of quantum mechanical
systems are amenable to an exact solution. Moreover, even when an exact solution to
the eigenvalue problem is available, it is often useful to understand the behavior of the
system in the presence of weak external fields that my be imposed in order to probe the
structure of its stationary states. In these situations an approximate method is required
for calculating the eigenstates of the Hamiltonian in the presence of a perturbation that
renders an exact solution untenable. There are two general approaches commonly taken
to solve problems of this sort. The first, referred to as the variational method, is most
useful in obtaining information about the ground state of the system, while the second,
generally referred to as time-independent perturbation theory, is applicable to any set of
discrete levels and is not necessarily restricted to the solution of the energy eigenvalue
problem, but can be applied to any observable with a discrete spectrum.

5.1 The Variational Method

Let H be a time-independent observable (e.g., the Hamiltonian) for a physical system
having (for convenience) a discrete spectrum. The normalized eignestates {|φni} of H
each satisfy the eigenvalue equation

H|φni = En|φni (5.1)

where for convenience in what follows we assume that the eigenvalues and corresponding
eigenstates have been ordered, so that

E0 ≤ E1 ≤ E2 · · · . (5.2)

Under these circumstances, if |ψi is an arbitrary normalized state of the system it is
straightforward to prove the following simple form of the variational theorem: the
mean value of H with respect to an arbitrary normalized state |ψi is necessarily greater
than the actual ground state energy (i.e., lowest eigenvalue) of H, i.e.,

hHiψ = hψ|H|ψi ≥ E0. (5.3)

The proof follows almost trivially upon using the expansion

H =
X
n

|φniEnhφn| (5.4)

of H in its own eigenstates to express the mean value of interest in the form

hHiψ =
X
n

hψ|φniEnhφn|ψi =
X
n

|ψn|2En, (5.5)
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and then noting that each term in the sum is itself bounded, i.e., |ψn|2En ≥ |ψn|2E0, so
that X

n

|ψn|2En ≥
X
n

|ψn|2E0 = E0 (5.6)

where we have used the assumed normalization hψ|ψi = P
n |ψn|2 = 1 of the otherwise

arbitrary state |ψi. Note that the equality holds only if |ψi is actually proportional to the
ground state of H.

Thus, the variational theorem proved above states that the ground state minimizes
the mean value of H taken with respect to the normalized states of the space. This has
interesting implications. It means, for example, that one could simply choose random
vectors in the state space of the system and evaluate the mean value of H with respect
to each. The smallest value obtained then gives an upper bound for the ground state
energy of the system. By continuing this random, or “Monte Carlo”, search it is possible,
in principle, to get systematically better (i.e., lower) estimates of the exact ground state
energy.

It is also possible to prove a stronger statement that includes the simple bound
given above as a special case: the mean value of H is actually stationary in the neigh-
borhood of each of its eigenstates |φi. This fact, which is a more complete and precise
statement of the variational theorem, is compactly expressed in the language of the cal-
culus of variations through the relation

δhHiφ = 0. (5.7)

To see what this means physically, let |φi be a normalizable state of the system
about which we consider a family of kets

|φ(λ)i = |φi+ λ|ηi (5.8)

that differ by a small amount from the original state |φi, where |ηi is a fixed but arbitrary
normalizeable state and λ is a real parameter allowing us to parameterize the small but
arbitrary variations

δ|φi = |φ(λ)i− |φi = λ|ηi (5.9)

of interest about the ket |φi = |φ(0)i.
Let us now denote by

ε(λ) = hHiλ = hφ(λ)|H|φ(λ)i
hφ(λ)|φ(λ)i (5.10)

the mean value of H with respect to the varied state |φ(λ)i, in which we have included
the normalization in the denominator so that we do not have to worry about constraining
the variation to normalized states. With these definitions, then, we wish to prove the
following: the state |φi is an eigenstate of H if and only if, for arbitrary |ηi,

∂ε

∂λ

¯̄̄̄
λ=0

= 0. (5.11)

To prove the statement we first compute the derivative of ε(λ) using the chain
rule, i.e., introducing the notation

|φ0i = ∂|φ(λ)i
∂λ

= |ηi hφ0| = ∂hφ(λ)|
∂λ

= hη| (5.12)
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we have (since H is independent of λ)

∂ε

∂λ

¯̄̄̄
λ=0

=
hφ0|H|φi
hφ|φi +

hφ|H|φ0i
hφ|φi − hφ|H|φihφ|φi2

£hφ0|φi+ hφ|φ0i¤ . (5.13)

This can be multiplied through by hφ|φi and the identity |φ0i = |ηi used to obtain the
relation

hφ|φi ∂ε
∂λ

¯̄̄̄
λ=0

= hη|H|φi+ hφ|H|ηi− hφ|H|φihφ|φi [hη|φi+ hφ|ηi] . (5.14)

Now denote by E the mean value of H with respect to the unvaried state, i.e., set

E = ε(0) =
hφ|H|φi
hφ|φi (5.15)

and write E [hη|φi+ hφ|ηi] = hη|E|φi+ hφ|E|ηi to put the above expression in the form

hφ|φi ∂ε
∂λ

¯̄̄̄
λ=0

= hη|(H −E)|φi+ hφ|(H −E)|ηi. (5.16)

We now note that if |φi is an actual eigenstate of H its eigenvalue must be equal to
E = ε(0), in which case the right hand side of the last expression vanishes (independent
of the state |ηi). Since |φi is nonzero, we conclude that the derivative in (5.11) and (5.16)
vanishes for arbitrary variations δ|φi = λ|ηi about any eigenstate |φi of H.

To prove the converse we note that, if the derivative of ε(λ) with respect to λ
does indeed vanish for arbitrary kets |ηi, then it must do so for any particular ket we
choose; for example, if we pick

|ηi = (H −E)|φi. (5.17)

then, (5.16) above reduces to the relation

0 = hη|(H −E)|φi+ hφ|(H −E)|ηi = hφ|(H −E)2|φi. (5.18)

Because, by assumption,H is Hermitian and E real we can now interpret this last equation
as telling us that

hφ|(H −E)2|φi = ||(H −E)|φi||2 = 0, (5.19)

which means that the vector (H−E)|φimust vanish, and that |φi is therefore an eigenstate
of H with eigenvalue E whenever the derivative (5.11) vanishes for arbitrary variations
δ|φi = λ|ηi, completing the proof.

In practice, use of this principle is referred to as the variational method, the basic
steps of which we enumerate below:

1. Choose an appropriate family {|φ(α)i} of normalized trial kets which depend pa-
rameterically on a set of variables α = {α1,α2, · · · ,αn} , referred to as variational
parameters.

2. Calculate the mean value

hH(α)i = hφ(α)|H|φ(α)i (5.20)

as a function of the parameters α.

3. Minimize E(α) = hH(α)i with respect to the variational parameters by finding the
values α0 for which

∂hHi
∂αi

¯̄̄̄
α=α0

= 0 i = 1, 2, · · · , n. (5.21)
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The value E(α0) so obtained is the variational estimate of the ground state energy
with respect to this family of trial kets, and the corresponding state |φ(α0)i provides the
corresponding variational approximation to the ground state.

It should be noted that if the family {|φ(α)i} of trial kets actually contains the
ground state (or any excited state), the variational principle shows that the technique
described above will find it and the corresponding energy exactly. This can sometimes
be exploited. For example, if symmetry properties of the ground state are known (parity,
angular momentum, etc.) it is often possible to choose a family of trial kets that are
orthogonal to the exact ground state of the system. In this situation, the variational
method will then yield an upper bound to the energy of the lowest lying excited state of
the system that is not orthogonal to the family of trial kets employed. We also note, in
passing, that our derivation of the variational principle shows that an approximation to
the ground state |φ0i that is correct to order ε (i.e., |φ(ε)i = |φ0i + ε|ηi) will yield an
estimate of the ground state energy E0 which is correct to order ε2. This follows from the
fact that in an expansion

E (ε) = E0 + ε
∂E

∂ε

¯̄̄̄
ε=0

+
ε2

2!

∂2E

∂ε2

¯̄̄̄
ε=0

+ · · · (5.22)

of the mean energy about that of the actual ground state, the linear term vanishes due to
the stationarity condition derived above. This explains the often observed phenomenon
that a rather poor approximation to the eigenstate can yield a relatively good estimate
of the ground state energy.

A particulalry useful application of the variational method involves what is re-
ferred to as the Rayleigh-Ritz method, which overcomes to some extent the usual difficulty
of dealing with an infinite dimensional space. Suppose for example that we were to take
as a trial ket a state

|φi =
X
i

φi|ii (5.23)

expanded in terms of some orthonormal set of vectors {|ii}, and take the expansion
coefficients φi (or their real and imaginary parts) as our variational parameters. If the set
{|ii} is complete, then the family {|φi} of trial kets includes all physical vectors in the state
space, and the resulting variational procedure will just generate the exact eigenvectors of
H. Suppose, on the other hand, that the states {|ii} are not complete, but span some
N−dimensional subspace SN . The variational procedure would then search through this
finite dimensional subspace to find those states that are closest to being actual eigenstates
of the full system. The resulting vectors would then extremize the mean value

hHi = hφ|H|φi =
X
i,j

φ∗iHijφj (5.24)

taken with respect to the states |φi in this subspace. In this last expession, Hij = hi|H|ji
denotes the matrix elements of H with respect to the orthonormal states {|ii} spanning
the subspace SN . Suppose, however, we introduce a new Hermitian operator H(S) defined
only on the subspace SN and having the same matrix elements

H
(S)
ij = hi|H|ji = Hij (5.25)

as H within that subspace (but which vanishes outside of SN ); the N eigenvectors of this
restricted operator H(S) will be those states |φi in SN which extremize the mean value

hH(S)i =
X
i,j

φ∗iH
(S)
ij φj =

X
i,j

φ∗iHijφj , (5.26)
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i.e., they will be precisely the variational eigenstates of the full Hamiltonian H that we
are looking for. Thus, in this case, application of the variational method simply amounts
to diagonalizing the matrix representing H restricted to some finite subspace of interest.
Moreover, as implied by our previous comments on the variational method, the Rayleigh-
Ritz method described above will exactly find any actual eigenvectors ofH that lie entirely
within the chosen subspace SN .

5.2 Perturbation Theory for Nondegenerate Levels

We now turn to a more general and systematic method for determining the eigenvector
and eigenvalues for observables with a discrete spectrum. As in the last section we use the
language of energy eigenstates and Hamiltonia even though the method itself is perfectly
applicable to other observables. For the purposes of stating the initial problem of interest,
however, we consider the eigenvalue problem for a time-independent Hamiltonian

H = H(0) +H(1) = H(0) + λV (5.27)

having a discrete nondegenerate spectum. In writing the Hamiltonian in this form, the
eigenvalue problem for the operator H(0), which will be referred to as the “unperturbed
part” of the Hamiltonian, is assumed to have been solved, and the perturbationH(1) = λV
is presumed to be, in some sense, small compared toH(0). Our goal is to obtain expressions
for the eigenstates |ni = |n(λ)i and eigenvalues εn = εn(λ) of H as an expansion in powers
of the small, real parameter λ. These eigenstates of the full Hamiltonian H are to be
expressed as linear combinations and simple functions of the known eigenstates |n(0)i and
eigenvalues ε(0)n of the unperturbed Hamiltonian H(0). Thus, the exact and unperturbed
states of the system are assumed to satisfy the equations

(H − εn)|ni = 0 hn|mi = δn,m
X
n

|nihn| = 1 (5.28)

(H(0) − ε(0)n )|n(0)i = 0 hn(0)|m(0)i = δn,m
X
n

|n(0)ihn(0)| = 1, (5.29)

the two relations on the right of the last two lines indicating that both sets of states form
an ONB for the space of interest. We wish to identify, in particular, the unperturbed
eigenstates |n(0)i as those to which the exact states |ni tend as λ → 0. This still leaves
the relative phase of the two sets of basis vector undetermined, as we could multiply the
basis vectors of one set by an arbitrary set of phases eiφn without affecting the validity of
the equations above. For nonzero values of λ, therefore, we further fix the relative phase
between these two sets of states by requiring that the inner product hn|n(0)i between
corresponding elements of these two basis sets be real and positive.

Now, by assumption, there exist expansions of the full eigenstate |ni and the
corresponding eigenenergy εn of the form

|ni = |n(0)i+ λ|n(1)i+ λ2|n(2)i+ · · · (5.30)

εn = ε(0)n + λε(1)n + λ2ε(2)n + · · · (5.31)

We will refer to the terms λkε(k)n and λk|n(k)i as the kth order correction to the nth
eigenenergy and eigenstate, respectively. The corresponding correction to the energy is
also generally referred to as the kth order energy shift, for obvious reasons. To deter-
mine these corrections, we will simply require that the exact eigenstate |ni satisfy the
appropriate eigenvalue equation

(H − εn)|ni = 0 (5.32)
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to all orders in λ. Upon substitution of the expansions for |ni and εn into the eigenvalue
equation we obtain

(H(0) + λV )
∞X
k=0

λk|n(k)i =
∞X
k=0

λkε(k)n

∞X
j=0

λj |n(j)i =
∞X

k,j=0

λj+kε(k)n |n(j)i (5.33)

or
∞X
k=0

λkH(0)|n(k)i+ V λk+1|n(k)i−
∞X
j=0

λj+kε(k)n |n(k)i
 = 0. (5.34)

For this equation to hold for small but arbitrary values of λ, the coefficients of each power
of that parameter must vanish separately. The reason for this is essentially that the
polynomials fk(λ) = λk form a linearly independent set of functions on R, so any relation
of the form

P∞
k=0 ckλ

k = 0 can only be satisfied for all λ in R if ck = 0 for all k. Applying
this requirement to the last equation generates an infinite heirarchy of coupled equations,
one for each power of λ. The equation generated by setting the coefficient of λk equal to
zero is referred to as the kth order equation. Collecting coefficients of the first few powers
of λ we obtain after a little rearrangement the zeroth order equation

(H(0) − ε(0)n )|n(0)i = 0, (5.35)

the first order equation

(H(0) − ε(0)n )|n(1)i+ (V − ε(1)n )|n(0)i = 0, (5.36)

the second order equation

(H(0) − ε(0)n )|n(2)i+ (V − ε(1)n )|n(1)i− ε(2)n |n(0)i = 0, (5.37)

the third order equation

(H(0) − ε(0)n )|n(3)i+ (V − ε(1)n )|n(2)i− ε(2)n |n(1)i− ε(3)n |n(0)i = 0, (5.38)

and finally, after inspecting those which precede it, we deduce for k ≥ 2 the form of the
general kth order equation

(H(0) − ε(0)n )|n(k)i+ (V − ε(1)n )|n(k−1)i−
kX
j=2

ε(j)n |n(k−j)i = 0. (5.39)

As we will demonstrate, the structure of these equations allows for the general kth order
solutions to be obtained from those solutions of lower order, allowing for the development
of a systematic expansion of the eigenstates and eigenenergies in powers of λ. To begin
the demonstration we note that the zeroth order equation (5.35) is already satisfied, by
assumption. From knowledge of the unperturbed states and eigenenergies, Eq. (5.36) can
be solved to give the first order correction ε

(1)
n to the energy. This is most easily done by

simply multiplying (5.36) on the left by the unperturbed eigenbra hn(0)|, i.e.,
hn(0)|(H(0) − ε(0)n )|n(1)i+ hn(0)|(V − ε(1)n )|n(0)i = 0. (5.40)

Since H(0) is Hermitian (and ε
(0)
n therefore real) it follows that hn(0)|(H(0) − ε

(0)
n ) = 0,

and so the first order equation reduces to the relation

ε(1)n = hn(0)|V |n(0)i λε(1)n = hn(0)|H(1)|n(0)i. (5.41)
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Thus, the first order correction to the energy eigenvalue for the nth level is simply
the mean value of the perturbing Hamiltonian taken with respect to the unperturbed
eigenfunctions. Note that the first order correction to the energy comes from a mean
value taken with respect to the zeroth order approximation to the state, consistent with
the remarks made earlier in the context of the variational method. As we will see, a
similar structure persists to all orders of perturbation theory, namely, an approximation
of the state to kth order generates an approximation to the energy that is correct to order
k + 1.

Now that we have ε(1)n , we can put it back in to the first order equation (5.36) to
find an expansion for the first order correction |n(1)i to the eigenstate. Since we want to
express this correction as an expansion

|n(1)i =
X
m

|m(0)ihm(0)|n(1)i (5.42)

in unperturbed eigenstates |m(0)i of H(0), we obviously need to evaluate the expansion
coeffiicients hm(0)|n(1)i. Thus, we now take inner products of the first order equation
(5.36) with the other members of this complete set of states, i..e., for the states with
m 6= n. Multiplying (5.36) on the left by hm(0)| we obtain

hm(0)|(H(0) − ε(0)n )|n(1)i+ hm(0)|(V − ε(1)n )|n(0)i = 0 (5.43)

and observe that for the first term on the left of this expression

hm(0)|(H(0) − ε(0)n )|n(1)i = (ε(0)m − ε(0)n )hm(0)|n(1)i, (5.44)

while orthogonality of the unperturbed states implies that, for the second term,

hm(0)|ε(1)n |n(0)i = ε(1)n hm(0)|n(0)i = 0 for m 6= n. (5.45)

Thus, we obtain after a little rearrangement the following result

hm(0)|n(1)i = −hm
(0)|V |n(0)i
ε
(0)
m − ε

(0)
n

m 6= n. (5.46)

for the expansion coefficients of interest. This procedure for obtaining the expansion
coefficients for the state |n(1)i does not work for the term with m = n, since it just leads,
again, to the expression ε

(1)
n = hn(0)|V |n(0)i for the first order energy correction. As it

turns out, however, the one remaining expansion coefficient hn(0)|n(1)i can be evaluated
from the normalization condition hn|ni = 1 and our already chosen phase convention.
The normalization condition implies the expansion

1 =
h
hn(0)|+ λhn(1)|+ λ2hn(2)|+ · · ·

i
[|n(0)i+ λ|n(1)i+ λ2|n(2)i+ · · · ]

= hn(0)|n(0)i+ λ
h
hn(1)|n(0)i+ hn(0)|n(1)i

i
+O(λ2). (5.47)

Since, by assumption, hn(0)|n(0)i = 1, all of the remaining terms on the right-hand side
of this expansion must vanish, term-by-term. Thus, to first order normalization of the
eigenstates requires that

0 = hn(1)|n(0)i+ hn(0)|n(1)i = 2Re
³
hn(0)|n(1)i

´
. (5.48)

On the other hand, we have chosen our phase convention so that the inner product

hn|n(0)i =
h
hn(0)|+ λhn(1)|+ λ2hn(2)|+ · · ·

i
|n(0)i

= hn(0)|n(0)i+ λhn(1)|n(0)i+ λ2hn(2)|n(0)i+ · · · (5.49)
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is real and positive. Setting the imaginary part equal to zero gives the condition

∞X
k=1

λk Im
h
hn(k)|n(0)i

i
= 0, (5.50)

which again requires, for arbitrary λ, that each inner product in the sum be separately
real. Combining this with (5.48) we deduce, therefore, that

hn(0)|n(1)i = 0. (5.51)

By our simple choice of phase, then, the first order correction |n(1)i is forced to be or-
thogonal to the unperturbed eigenstate |n(0)i. Using this fact we then end up with the
following expansion

|n(1)i = −
X
m6=n

|m(0)ihm(0)|V |n(0)i
ε
(0)
m − ε

(0)
n

(5.52)

for the first order correction, and similar expansions

|ni = |n(0)i−
X
m6=n

hm(0)|λV |n(0)i
ε
(0)
m − ε

(0)
n

|m(0)i+O(λ2) (5.53)

|ni = |n(0)i−
X
m6=n

hm(0)|H(1)|n(0)i
ε
(0)
m − ε

(0)
n

|m(0)i+O(λ2) (5.54)

for the full eigenstate, correct to first order in the perturbation. This expression shows
that the pertubation H(1) “mixes” the eigenstates of H(0), by which is referred to the
fact that the eigenstates of H are linear combinations of the unperturbed eigenstates.
Note also that the presence of the “energy denominators” ε

(0)
m − ε

(0)
n appearing in the

expansion coefficients in this expression tend to mix together states close together in
energy more strongly than states that are energetically disparate. This makes it clear
why we assumed from the outset that the unperturbed spectrum was non-degenerate,
since the method we have developed clearly must fail when applied to perturbations that
connect degenerate states. It is also clear that an implicit condition for the perturbation
expansion to converge, i.e., that the correction terms be sufficiently small is that

|hm(0)|H(1)|n(0)i| ¿
¯̄̄
ε(0)m − ε(0)n

¯̄̄
(5.55)

for all states |m(0)i connected to the state |n(0)i by the perturbing Hamiltonian.
When the first order correction to the energy vanishes, or higher accuracy is

required, it is necessary to go to higher order in the perturbation expansion. To obtain
the second order energy correction we proceed as follows: multiply the second order
equation (5.37) on the left by the unperturbed eigenbra hn(0)| to obtain

hn(0)|(H(0) − ε(0)n )|n(2)i+ hn(0)|(V − ε(1)n )|n(1)i− ε(2)n hn(0)|n(0)i = 0. (5.56)

Again using the fact that hn(0)| is an eigenbra of H0, along with the orthogonality relation
hn(0)|n(1)i = 0 deduced above, we find that

ε(2)n = hn(0)|V |n(1)i. (5.57)

Inserting the expansion deduced above for |n(1)i, we then obtain the second order energy
shift

λ2ε(2)n = −
X
m6=n

hn(0)|λV |m(0)ihm(0)|λV |n(0)i
ε
(0)
m − ε

(0)
n

= −
X
m6=n

|λVmn|2
ε
(0)
m − ε

(0)
n

(5.58)
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where the quantities λVmn = hm(0)|λV |n(0)i = H(1)
mn are just the matrix elements of the

perturbation between the unperturbed eigenstates. Thus, the full eigenenergies, correct
to second order, are given by the expression

εn = ε(0)n +H(1)
nn −

X
m6=n

|H(1)
mn|2

ε
(0)
m − ε

(0)
n

+O(λ3). (5.59)

In problems involving weak perturbations it usually suffiices to determine corrections and
energy shifts to lowest non-vanishing order in the perturbation, and so it is unusal that one
needs to go beyond second order for “simple” problems in perturbation theory. Exceptions
to this general observation arise quite often when dealing with many-body problems, where
diagramatic methods have been developed that take the ideas of perturbation theory to
an extrememly high level, and where it is not uncommon to find examples where effects
of the perturbation are calculated to all orders.

It is worth pointing out, however, that the first order correction to the energy
contains no information in it about any changes that occur in the eigenstates of the system
as a result of the perturbation. This information appears for the first time in the second
order energy shift, as the derivation above makes clear. In many cases it is not possible
to perform the sum in (5.59) exactly, and so it is useful to develop simple means for
estimating the magnitude of the second order energy shift. As it turns out, it is often
straightforward to develop upper and lower bounds for the magnitude of the change in
energy that occurs in any given eigenstate.

For example, a general upper bound for the second order shift can be obtained for
any nondegenerate level by observing that

ε(2)n =
X
m6=n

|H(1)
mn|2

ε
(0)
n − ε

(0)
m

≤
X
m6=n

|H(1)
mn|2¯̄̄

ε
(0)
n − ε

(0)
m

¯̄̄ (5.60)

where in the right hand side we have a sum of positive definite terms that will always
be larger in magnitude than a similar sum in which some of the corresponding terms are
positive and some negative, depending upon where the energy of each level lies relative
to the one of interest. Moreover, each term in the sum on the right can itself be bounded,
since the energy denominators are bounded from below by that associated with the level
closest in energy to the state |n(0)i. If we denote by ∆εn the energy spacing between level
n and the state closest in energy to it, then

¯̄̄
ε
(0)
n − ε

(0)
m

¯̄̄
≥ ∆εn and so

ε(2)n ≤
1

∆εn

X
m6=n

|H(1)
mn|2 =

λ2

∆εn

X
m6=n

|Vmn|2

We can perform the infinite sum by “removing” the restriction on the summation index.
We do this latter trick by adding and subtracting the quantity |Vnn|2 = |hV in|2 , where
hV in = Vnn = hn(0)|V |n(0)i is the mean value of the perturbation taken with respect to
the unperturbed eigenstate. (It is, essentially, just the first order energy correction ε

(1)
n ).

Performing this operation allows us to write the upper bound above in the form

ε(2)n ≤
λ2

∆εn

"X
m

|hm(0)|V |n(0)i|2 − |hV in|2
#
. (5.61)

where the sum is now unrestricted. But since the unperturbed states form a complete set
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of states we can now rewrite the sum asX
m

|hm(0)|V |n(0)i|2 =
X
m

hn(0)|V |m(0)ihm(0)|V |n(0)i

= hn(0)|V |n(0)i = hV 2in (5.62)

which is just the mean value of the square of the perturbation taken with respect to the
unperturbed eigenstate. Making this substition above and recognizing the root-mean-
square statistical uncertainty

∆2V = hV 2i− hV i2 (5.63)

associated with the perturbing operator taken with respect to the unperturbed state of
interest, we obtain our final result for the upper bound

ε(2)n ≤
λ2∆2V

∆εn
=
∆2H(1)

∆εn
(5.64)

in the second order energy shift. We note in passing that this gives another intuitively
reasonable measure for determining the validity of the perturbation expansion, which
requires for the smallness of ε(2)n that the uncertainty in H(1) be small relative to the
energy level spacing associated with the unperturbed states, i.e., that ∆H(1)/∆εn << 1.

For the ground state energy (or more generally the extremal eigenvalue) it is also
possible to determine a lower bound on the magnitude of the second order energy shift.
For the ground state, such a bound follows from the fact that in this case the second order
energy shift

ε
(2)
0 = −

X
m6=n

|H(1)
mn|2

ε
(0)
m − ε

(0)
0

(5.65)

is always negative (the change in state always leads to a lower energy, consistent with the
variational principle), because the energy denominators are always positive. We can thus
write ¯̄̄

ε
(2)
0

¯̄̄
=
X
m6=n

|H(1)
mn|2

ε
(0)
m − ε

(0)
0

≥ |H(1)
mn|2

ε
(0)
m − ε

(0)
0

(5.66)

where in the right-hand side we have used the fact that any single term in the sum is less
than or equal to the total sum of all the positive defnitite terms therein. The maximal
term in the sum (which is usually one of the low-lying excited states closest in energy to
the ground state) can thus be used to provide a reasonable lower bound for the the second
order shift in the ground state energy.

As an application of the techniques of nondegenerate perturbation theory we
consider the example of a harmonically bound electron to which a uniform electric field
is applied. Thus, we take for our Hamiltonian

H = H0 + V̂ (5.67)

where

H0 =
P 2

2m
+
1

2
mω2X2 (5.68)

is a simple one-dimensional harmonic oscillator describing the bound electron, and the
perturbing field is described by the potential

V̂ = −eEX = −fX. (5.69)
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Our goal is to treat V̂ as a small perturbation and calculate relevant corrections to the
energy levels and eigenstates in the presence of the applied electric field. To this end we
recall the standard transformations

q =

r
mω

~
X p =

P√
m~ω

(5.70)

a =
1√
2
(q + ip) a+ =

1√
2
(q − ip) N = a+a (5.71)

that allow us to put the harmonic oscillator part of the problem in a simpler, dimensionless
form

H0 =

·
N +

1

2

¸
~ω V̂ = −f

r
~
mω

q = −λq = − λ√
2
(a+ + a) (5.72)

where

λ = f

r
~
mω

(5.73)

is a (presumed small) measure of the strength of the applied field. With these definitions,
the unperturbed states of H0 are the usual oscillator states |ni which obey

N |ni = n|ni H0|ni = (n+ 1
2
)~ω|ni = ε(0)n |ni hn|n0i = δn,n0 . (5.74)

We also have the relations

a+|ni = √n+ 1|n+ 1i a|ni = √n|n− 1i (5.75)

in terms of which we readily determine that the first order energy shift due to the applied
field

ε(1)n = hn|V̂ |ni = −λ√
2
hn|(a+ + a)|ni

= − λ√
2

©hn|a+|ni+ hn|a|niª = − λ√
2

©√
n+ 1hn|n+ 1i+√nhn|n− 1iª

= 0 (5.76)

vanishes due to the orthogonality of the unperturbed states. So the first order energy
shift vanishes and we must go to second order to calculate the energy shift. Physically
this vanishing of the first order energy shift occurs for the unperturbed states because
they have equal weight on each side of the origin, and so the net change in energy due to
the linear applied potential vanishes. We can anticipate that the second order correction
will cause a lowering of the energy as the electron displaces in the presence of the field,
lowering its potential energy in the process. To see this we first calculate the first order
correction to the eigenstates. In the present problem we will denote by |n̂i the exact
eigenstates of the system that are presumed to have an expansion

|n̂i = |ni+ λ|ni(1) + λ2|ni(2) + · · · (5.77)

in powers of the small parameter λ. The first order correction is given, according to the
results of the last section, by the expression

λ|ni(1) =
X
m6=n

hm|V̂ |ni
ε
(0)
n − ε

(0)
m

|mi = − λ√
2

X
n0 6=n

hm| (a+ + a) |ni
(n−m)~ω |mi. (5.78)
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Letting a and a+ act to the right we find after a little calculation that, except for the
ground state, this reduces to a sum of just two terms

λ|ni(1) = − λ√
2

·√
n+ 1

−~ω |n+ 1i+
√
n

~ω
|n− 1i

¸
=

λ√
2~ω

£√
n+ 1|n+ 1i−√n|n− 1i¤ . (5.79)

Thus, to first order the exact eigenstates of H can be written

|n̂i = |ni+ λ√
2~ω

£√
n+ 1|n+ 1i−√n|n− 1i¤+O(λ2). (5.80)

Thus, the perturbation mixes only the states immediately above and below the unper-
turbed level. Note that the corresponding expression for the ground state does not contain
the second term in the above expression, i.e.,

|0̂i = |0i+ λ√
2~ω

|1i+O(λ2). (5.81)

We now consider the second order energy shift

ε(2)n =
X
m6=n

¯̄̄
hm|V̂ |ni

¯̄̄2
ε
(0)
n − ε

(0)
m

(5.82)

which will also (except for the ground state) contain just two terms:

ε(2)n =
λ2

2

(
|hn+ 1|a+|ni|2

−~ω +
|hn− 1|a|ni|2

~ω

)

=
λ2

2

½
−n+ 1
~ω

+
n

~ω

¾
= − λ2

2~ω
= − f2

2mω2
. (5.83)

Thus, to second order, we find

εn = ε(0)n −
λ2

2~ω
= − f2

2mω2
. (5.84)

We note that for this particular problem the energy shift is the same for all states, that
is, all of the energies of the system are lowered by the same amount in the presence of
the field. It turns out that the second order energy correction for this problem gives
the exact eigenenergies (even though the first order correction to the state does not give
the exact eigenstates). This result is physically inuitive, since it corresponds to the fact
that a classical mass-spring system when hung in a gravitationl field simply stretches,
or displaces, to a new equilibrium position, thereby lowering its potential energy, but
continues to oscillate with the same frequency as it would if it were left unperturbed. To
establish this result in the present context we perform a canonical transform to a new set
of variables

q̂ = q − λ

~ω
p̂ = p (5.85)

which has the position coordinate now centered at the new force center at q = λ/~ω. This
transformation preserves the commutation relations

[q̂, p̂] = [q, p] = i (5.86)
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and allows us to write the Hamiltonian in terms of the new coordinate and momenta in
the form

H =
~ω
2
(q2 + p2)− λq

=
~ω
2

·
q̂2 +

2λ

~ω
q̂ +

λ2

~2ω2
+ p̂2

¸
− λ

µ
q̂ +

λ

~ω

¶
=

~ω
2
(q̂2 + p̂2)− λ2

2~ω
. (5.87)

We can now introduce operators

â =
q̂ + ip̂√
2

â+ =
q̂ − ip̂√
2

N̂ = â+â

in the usual way, so that the Hamiltonian takes the form

H = (N̂ +
1

2
)~ω − λ2

2~ω

of an oscillator of frequency ω lowered uniformly in energy by an amount λ2/2~ω. Of
course this oscillator has its equilibrium position at q̂ = q − λ/~ω = 0 , i.e., shifted with
respect to the unperturbed oscillator, and its energy levels are in exact agreement with
those found to second order in the applied field using perturbation theory. In fact, this
displacement of the oscillator under the action of the field makes it clear that the exact
eigenstates of the system satisfy the equation

hq̂|n̂i = φn(q̂) = φn(q − λ/~ω) = φn(q − ε),

where ε = λ/~ω, i.e., they are just the unperturbed oscillator states shifted along the
x-axis, and centered at the new equilibrium position q = ε. The unitary operator which
effects this transformation is the corresponding translation operator

T (ε) = e−ipε

which, in the position representation has the effect of displacing the wave function, i.e.,
T (ε)ψ(q) = ψ(q − ε). Thus, we expect that the unperturbed and perturbed eigenstates
are related through the relation

|n̂i = T (ε)|ni = e−ipε|ni.

For small ε (or small λ) we can expand the exponential as T (ε) ' 1− ipε so that

|n̂i ' (1− ipε)|ni = |ni− ipε|ni.

Using the fact that −ipε = ε(a+ − a)/√2 and substituting back in the definition of
ε = λ/~ω we recover the result

|n̂i ' |ni+ λ√
2~ω

|n+ 1i− λ√
2~ω

|n− 1i

that we obtained using the techniques of first order perturbation theory.
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5.3 Perturbation Theory for Degenerate States

The expressions that we derived above for the first order correction to the ground state and
the second order correction to the energy are clearly inappropriate to situations in which
degenerate or nearly-degenerate eigenstates are connected by the perturbation, since the
corresponding corrections all diverge as the spacing between the energy levels goes to zero.
This divergence is an indication of the strength with which the perturbation tries to mix
together states that are very-nearly degenerate (or exactly so), and suggest that we might
wish to treat differnyl those states that are known in advance to be very closely related
in energy. In this section, therefore, we discuss the general approach taken to deal with
problems of this sort.

We assume, as before, that the Hamiltonian of interest can be separated into two
parts, which we now write in the simplied form

H = H0 + V (5.88)

where, since we will not be developing a systematic expansion in powers of the pertur-
bation we have no need for the more complex notation used previously. We again seek
the exact eigenstates and eigenenergies of H, expressed as an expansion in eigenstates of
H0, the latter of which are assumed to be at least partially degenerate. We will denote
by {|φn, τi} an arbitrary othonormal basis of eigenstates of H0, where the index τ is in-
cluded to distinguish between the different linearly independent basis states of H0 having
the same unperturbed energy ε(0)n . The basis states

{|φn, τi | τ = 1, · · · , Nn} (5.89)

with fixed energy ε(0)n form a basis for an eigensubspace S(ε(0)n ) of H0 corresponding
to that particular degenerate energy. The dimension Nn of this subspace is just the
degeneracy of the corresponding eigenvalue ε(0)n of H0. It is important to point out that,
due to the degeneracy, our choice of the basis set {|φn, τi} is not unique; any unitary
transformation carried out within any one of the eigenspaces S(ε(0)n ) generates a new basis
{|χn, τi} that can be used as readily as any other for expanding the exact eigenstates of
H. Any such basis set will satisfy the obvious eigenvalue, orthogonality, and completeness
relations

H0|φn, τi = ε(0)n |φn, τi hφn0 , τ 0|φn, τi = δn0,nδτ 0,τ
X
n,τ

|φn, τihφn, τ | = 1

H0|χn, τi = ε(0)n |χn, τi hχn0 , τ 0|χn, τi = δn0,nδτ 0,τ
X
n,τ

|χn, τihχn, τ | = 1.(5.90)

We now observe that the divergences that render the formulae of nondegenerate
perturbation theory inapplicable really only arise if the perturbation actually connects
states within each eigensubspace, i.e., if there exists non-zero matrix elements Vnτ ,n0τ 0 =
hφn,τ |V |φn,τ 0i of the perturbation connecting basis states of the same energy. Thus, our
previous formulae can, in fact be applied (at least to the level that we have developed
them), under two conceivable circumstances, one involving the diagonal matrix elements
of V and one involving the off-diagonal elements:

1. If the first order correction ε
(1)
n,τ = hφn, τ |V |φn, τi is distinct for all the basis states

|φn, τi in each eigenspace S(ε(0)n ), then the degeneracy is “lifted” in the first order of
the perturbation. Provided the magnitude of this splitting of the energy levels by the
perturbation is large compared to the matrix elements of V that connect these states
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we can then simply “redefine” what we call the unperturbed and the perturbing
part of the Hamiltonian. In other words, although we orginally decomposed the
Hamiltonian in the form H = H0 + V , where, in a representation of eigenstates of
H0,

H0 =
X
n,τ

|φn, τiε(0)n hφn, τ |

V =
X

n,τ ;n0,τ 0
|φn, τiVnτ ,n0τ 0hφn0 , τ 0|,

we can now include the diagonal part of V in a redefined Ĥ0 such that H = Ĥ0+ V̂ ,
but now,

Ĥ0 =
X
n,τ

|φn, τi[ε(0)n + ε(1)n,τ ]hφn, τ |

V̂ =
X

n,τ 6=n0,τ 0
|φn, τiVnτ ,n0τ 0hφn0 , τ 0|

where the perturbation V̂ now has no diagonal matrix elements in this representa-
tion. In this situation, states within S(ε(0)n ) are now no longer degenerate, so we
can proceed as before to apply the formulae of non-degenerate perturbation theory,
with the energy denominators now including the first order shifts, so no divergences
occur.

2. If, on the other hand, the off-diagonal part of the perturbation V̂ just happens to
vanish between all the basis states within a given eigensubspace S(ε(0)n ), then (at
least to second order) the problematic terms in the perturbation expansion never
actually arise; thus if the submatrix [V ]n representing the perturbation within the
degenerate subspace is diagonal, we can actually proceed as though there were no
degeneracy.

In passing we might comment regarding the first of these circumstances that the
act of including the diagonal part of the perturbation V in a redefined Ĥ0 can always be
performed, even when it does not entirely lift the degeneracy. We may therefore assume
without loss of generality in what follows that such an operation has already been carried
out, and hence that the perturbation has no diagonal components in the basis of interest.

Regarding the second circumstance mentioned above, it might be thought that,
in actual practice, the vanishing of the off-diagoanl matrix elements of V within S(ε(0)n )
would occur in so few circumstances that it hardly merits attention. To the contrary,
there is a sense in which it always can be made to occur. To understand this comment,
and in a the process reveal the basic technique that is generally employed for dealing with
degenerate states, we note that the off-diagonal matrix elements of the perturbation V
taken between basis states in a given degenerate subspace of H0 depend upon which set
of basis states of H0 we choose to begin with. If, e.g., we choose a set {|φn, τi} we get
one set of matrix elements

Vnτ ;nτ 0 = hφn, τ |V |φn, τi,
defining a certain submatrix [V ]n, while if we choose, instead, any other set {|χn, τi} we
obtain a completely different set of matrix elements

Ṽnτ ;nτ 0 = hχn, τ |V |χn, τ 0i
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defining a different submatrix [Ṽ ] representing the perturbation V within this degenerate
eigensubspace.

Thus, as we would expect, the submatrix [V ]n or [Ṽ ]n representing the pertur-

bation within the eigenspace S(ε(0)n ) depends upon the particular basis set ({|φn, τi} or
{|χn, τi}) that we chose to work in. In light of circumstance 2, above, the question that
arises is the following: under what circumstances can we find a representation of basis

states {|χn, τi} within S(ε(0)n ) for which the submatrix
h
Ṽ
i
representing the perturbation

in that subspace is strictly diagonal?
Insofar as the perturbation V itself is presumed to be an observable (and thus

Hermitian), any submatrix [V ]n or [Ṽ ]n representing V within such a subspace must
itself be a Hermitian, and related to any of the other matrices representing V within
this subspace by a unitary (sub)tranformation. For a finite Nn dimensional subspace,
however, we know that it is always possible to find a representation that diagonalizes any
Hermitian matrix. For each subspace we just have to go through the usual procedure of
finding the roots ε̃n,τ to the characteristic equation

det ([V ]n − ε) = 0

for theNn dimensional submatrix [V ]n that represents V within a given eigenspace S(ε
(0)
n ),

and then solve the resulting linear equations to find those combinations {|χn, τi} of the
original basis vectors {|φn, τi} that are also eigenvectors of the submatrix [V ]n. In this
new representation, by construction, no elements of the new basis set {|χn, τi} having
the same energy unperturbed energy are connected to one another by nonzero matrix
elements of the perturbation. Moreover, the diagonalization of V within each eigenspace
S(ε

(0)
n ) provides a new set of eigenvalues ε̃n,τ (the roots of the characteristic equation

det [V − ε]n computed within the subspace) which will form the diagonal elements of
the matrix representing V in this representation. These diagonal elements can then be
combined with those ofH0 to obtain new unperturbed eigenenergies (correct to first order)

εn,τ = ε(0)n + ε̃n,τ

that will themselves often at least partially lift the degeneracy. The particular states found
during the diagonalization can then be chosen as a new set of zeroth order states with
which to pursue higher order corrections, according to the techniques of nondegenerate
perturbation theory. Thus, the basic result of degenerate perturbation theory is not an
explicit formula, as it is in the nondegenerate case. Rather it is a simple prescription:
diagonalize the perturbation V within the degenerate subspaces of H0 to determine a new
basis for proceeding, if necessary, with the determination of higher order corrections using
standard techniques.
5.3.1 Application: Stark Effect of the n = 2 Level of Hydrogen

We consider as an application of the ideas developed above the splitting of the spectral
lines observed in the absorbtion and emission spectra of the hydrogen atom when it is
placed in a uniform DC electric field, the so-called Stark effect. The relevant Hamiltonian
can be written in the expected form

H = H0 + V,

where

H =
p2

2m
− e

2

r
is the usual one describing a single electron bound to the proton of a hydrogen atom, and
the perturbation

V = Fz = Fr cos θ
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describes the constant force F = eE exerted on the electron by a uniform field oriented
along the negative z-axis. We initially take as our unperturbed states the standard bound
eigenstates |n, l,mi of the hydrogen atom

H0|n, l,mi = ε(0)n |n, l,mi ε(0)n = − ε0
n2

which have both a rotational and an accidental degeneracy of the energy levels. The
degeneracy gn of the nth eigenenergy (or the dimension Nn of the associated eigenspace
Sn) is given by the expression

gn = n
2 =

n−1X
`=0

(2`+ 1).

The first order correction to the energy of the state |n, l,mi due to the applied electric
field vanishes, i.e.,

ε
(1)
nlm = F hnlm|Z|nlmi = 0

reflecting the fact that the mean position of the electron in any of the standard hydrogen
atom eigenstates is the origin. To use perturbation theory to find non-vanishing correc-
tions to the energy due to the applied field we must handle the degeneracies. Consider,
e.g., the four-fold degenerate n = 2 level, which is spanned by the four |nlmi states

|2, 0, 0i |2, 1, 0i |2, 1, 1i |2, 1,−1i.

Within the subspace S2 the submatrix representing H0 is, of course, diagonal

[H0] =


ε
(0)
2 0 0 0

0 ε
(0)
2 0 0

0 0 ε
(0)
2 0

0 0 0 ε
(0)
2

 .
To proceed we need to construct the matrix [V ] representing the perturbation within this
subspace. Thus we need to evaluate the matrix elements

h2, l,m|z|2, l0,m0i =
Z
d3r ψ∗2,`,mzψ2,`0,m0 .

But the perturbing operator is clearly just the z component of the vector operator ~R.
According to the Wigner-Eckart theorem such an operator can only connect states having
the same z-component of angular momentum, i.e., those for which m = m0. Thus, of the
states in the n = 2 manifold, the only nonzero matrix elements for this perturbation occur
between the state |2, 0, 0i and the state |2, 1, 0i. Hence, within this subspace the matrix
of interest has the form

[V ] =


0 η 0 0
η∗ 0 0 0
0 0 0 0
0 0 0 0

 ,
where η = h2, 0, 0|Fz|2, 1, 0i. This latter integral is readily evaluated in the position rep-
resentation, using the known form

h~r|2, 0, 0i = ψ2,0,0(~r) =
1√
8a3

(2− r
a
)e−r/2aY 00 (θ,φ)
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h~r|2, 1, 0i = ψ2,1,0(~r) =
1√
8a3

1√
3

r

a
e−r/2aY 01 (θ,φ)

of the hydrogen n = 2 wave functions. Substituting into the integral of interest we find
after a short calculation that

η =
F

16a4

·Z ∞
0

r4(2− r
a
)e−r/adr

¸ ·Z π

0

sin θ cos2 θdθ

¸
= −3Fa.

Thus,

[V ] =


0 −3Fa 0 0

−3Fa 0 0 0
0 0 0 0
0 0 0 0

 .
Diagonalizing [V ] we set det(V − ε) = −ε2[ε2 − (3Fa)2] = 0 and find the eigenvalues

ε̂2,1,1 = ε̂2,1,−1 = 0
ε̂2,+ = +3Fa

ε̂2,− = −3Fa

which we can add to the n = 2 hydrogenic energies to provide the first order corrections.
Thus, to first order, the n = 2 eigenenergies in the presence of the field take the form

ε2,+ = ε
(0)
2 + 3Fa

ε2,− = ε
(0)
2 − 3Fa

ε2,1,1 = ε2,1,−1 = ε
(0)
2

which correspond, respectively, to new zeroth order states

|2,+i =
|2, 0, 0i+ |2, 0, 1i√

2

|2,−i =
|2, 0, 0i+ |2, 0, 1i√

2

|2, 1, 1i
|2, 1,−1i.

Qualitatively we see that the four-fold degenerate n = 2 hydrogenic level is split by the
field into three separate levels, with the nondegenerate lower and higher energy states
splitting off linearlyt in the applied field from the remaining two-fold degenerate subspace
corresponding to the unperturbed energies. With these new basis states (in which ` is
no longer a necessarily good quantum) one can, in principle, investigate higher order
corrections to the energy.


