
Chapter 4
MANY PARTICLE SYSTEMS

The postulates of quantum mechanics outlined in previous chapters include no restrictions
as to the kind of systems to which they are intended to apply. Thus, although we have
considered numerous examples drawn from the quantum mechanics of a single particle,
the postulates themselves are intended to apply to all quantum systems, including those
containing more than one and possibly very many particles.

Thus, the only real obstacle to our immediate application of the postulates to a system
of many (possibly interacting) particles is that we have till now avoided the question
of what the linear vector space, the state vector, and the operators of a many-particle
quantum mechanical system look like. The construction of such a space turns out to be
fairly straightforward, but it involves the forming a certain kind of methematical product
of di¤erent linear vector spaces, referred to as a direct or tensor product. Indeed, the
basic principle underlying the construction of the state spaces of many-particle quantum
mechanical systems can be succinctly stated as follows:

The state vector jÃi of a system of N particles is an element of the direct
product space

S(N) = S(1)­ S(2)­ ¢ ¢ ¢­ S(N)
formed from the N single-particle spaces associated with each particle.

To understand this principle we need to explore the structure of such direct prod-
uct spaces. This exploration forms the focus of the next section, after which we will return
to the subject of many particle quantum mechanical systems.

4.1 The Direct Product of Linear Vector Spaces

Let S1 and S2 be two independent quantum mechanical state spaces, of dimension N1 and
N2, respectively (either or both of which may be in…nite). Each space might represent that
of a single particle, or they may be more complicated spaces, each associated with a few
or many particles, but it is assumed that the degrees of mechanical freedom represented
by one space are independent of those represented by the other. We distinguish states in
each space by superscripts. Thus, e.g., jÃi(1) represents a state in S1 and jÁi(2) a state of
S2. To describe the combined system we now de…ne a new vector space

S12 = S1 ­ S2 (4.1)

of dimension N12 = N1 £N2 which we refer to as the direct or tensor product of S1 and
S2. Some of the elements of S12 are referred to as direct or tensor product states, and are
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formed as a direct product of states from each space. In other words, from each pair of
states jÃi(1) 2 S1 and jÁi(2) 2 S2 we can construct an element

jÃ; Ái ´ jÃi(1) ­ jÁi(2) = jÃi(1)jÁi(2) 2 S12 (4.2)

of S12; in which, as we have indicated, a simple juxtaposition of elements de…nes the tensor
product state when there is no possibility of ambiguous interpretation. By de…nition,
then, the state jÃ; Ái represents that state of the combined system in which subsystem
1 is de…nitely in state jÃi(1) and subsystem 2 is in state jÁi(2): The linear vector space
S12 , which is intended to describe the combined system, consists precisely of all such
direct product states as well as all possible linear combinations of those states. This direct
product of states is assumed to be commutative in the trivial sense that there is nothing
special about taking the elements in the reverse order, i.e.,

jÃ; Ái ´ jÃi(1)jÁi(2) = jÁi(2)jÃi(1) (4.3)

except that in the abbreviated notation on the left hand side we agree to chose a distinct
ordering of the spaces once and for all and thus associate the …rst symbol in the list with
that part of the state arising from S1 and the second symbol for that part of the state
arising from S2. In the decoupled form on the right, however, we are free to move the
two kets from each space past each other whenever it is convenient. The tensor product
is also assumed to be linearly distributive in the sense that if jÃi(1) = ®j»i(1) + ¯j´i(1),
then

jÃ; Ái ´ jÃi(1)jÁi(2) = [®j»i(1) + ¯j´i(1)]jÁi(2) = ®j»; Ái+ ¯j´; Ái; (4.4)

and similarly for kets jÁi(2) which are linear combinations in S2. It is important to
emphasize that there are many states in the space S12 that are not direct product states,
although (by construction) any state in the product space can be written as a linear
combination of such states. On the other hand, for any given linear combination

jÃi = ®j»; Ái+ ¯j´; Âi (4.5)

of product states, there may or may not be other states in S1 and S2 which allow jÃi to be
“factored” into a single direct product of states from each space. If no such factorization
exists, then the state is said to be an entangled state of the combined system. Under
such circumstances neither subsystem can be described independently by its own state
vector, without consideration of the state of the other. Generally, such entanglements
arise as a result of interactions between the component degrees of freedom of each space.
The space combined space S12 consists of all possible direct product states as well as all
possible entangled states.

We denote by hÃ; Áj the bra of the dual space S¤12 = S¤1 ­ S¤2 adjoint to the ket jÃ; Ái.
Thus, the combined symbol Ã; Á labeling the state is untouched by the adjoint process:

[jÃ; Ái]+ = [jÃi(1)jÁi(2)]+ = [hÃj(1)hÁj(2)] = hÃ; Áj: (4.6)

Inner products taken between elements of the direct product space are obtained by
straightforward linear extension of inner products in each factor space, with the stip-
ulation that it is only possible to take inner products between those factors in the same
space, i.e.,

hÃ; Áj´; »i =
³
hÃj(1)hÁj(2)

´³
j´i(1)j»i(2)

´
= hÃj´i(1)hÁj»i(2): (4.7)
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Thus, kets and bras in one space commute past those of the other to form a bracket with
members of their own space. Since any state is expressible as a linear combination of
product states, this completely speci…es the inner product in the combined space.

Basis vectors for the product space S12 can be constructed from basis vectors in the
factor spaces S1 and S2. Speci…cally, if the states fjÁii(1)g form a discrete ONB for S1
and the states fjÂji(2)g form a discrete ONB for S2, then the set of N1 £ N2 product
states fjÁi; Âjig form an ONB for the tensor product space S12. We write:

hÁi; Âj jÁi0 ; Âj0i = ±i;i0±j;j0 (4.8)X
i;j

jÁi; ÂjihÁi; Âj j = 1 (4.9)

to denote the orthonormality and completeness of the product basis in S12. Any state in
the system can be expanded in such a basis in the usual way, i.e.,

jÃi =
X
i;j

jÁi; ÂjihÁi; Âj jÃi =
X
i;j

Ãij jÁi; Âji: (4.10)

Similar relations hold for direct product bases formed form continuous ONB’s in S1 and

S2: Thus, if fj»i(1)g and fjÂi(1)g form continuous ONB’s for the two (in…nite dimensional)
factor spaces then the product space is spanned by the basis vectors j»; Âi; for which we
can write

h»; Âj»0; Â0i = ±(» ¡ »0)±(Â¡ Â0) (4.11)Z
d»

Z
dÂ j»; Âih»; Âj = 1 (4.12)

jÃi =
Z
d»

Z
dÂ j»; Âih»; ÂjÃi =

X
i;j

Ã(»; Â)j»; Âi: (4.13)

Finally, we can also form direct product bases using a discrete basis for one space and a
continuous basis for the other.
Note, that by unitary transformation in the product space it is generally possible to
produce bases which are not the direct products of bases in the factor spaces (i.e., ONB’s
formed at least partially from entangled states). Note also, that we have implicitly de…ned
operators in the product space through the last relation.

More generally, operators in S12 are formed from linear combinations of (what
else) the direct product of operators from each space. That is, for every pair of linear
operators A of S1 and B of S2 we associate an operator AB = A­ B which acts in S12
in such a way that each operator acts only on that part of the product state with which
it is associated. Thus,

ABjÃ;Âi =
³
AjÃi(1)

´³
BjÂi(2)

´
= jÃA; ÂBi: (4.14)

Every operator in the individual factor spaces has a natural extension into the product
space, since it can be multiplied by the identity operator of the other space; i.e., the
extension of the operator A(1) of S1 into S12 is the operator

A(12) = A(1) ­ 1(2), (4.15)
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where 1(2) is the identity operator in S2. Often we will drop the superscripts, since
the symbol A represents the same physical observable in S1 and in S12 (but is generally
unde…ned in S2). Identical constructions hold for the extension of operators of S2. Clearly,
1(12) = 1(1)­1(2) = 1(1)1(2). Again, as with direct product states, the order of the factors
is not important, so that operators of one factor space always commute with operators of
the other, while operators from the same space retain the commutation relations that
they had in the original space This implies, for example, that if Ajai(1) = ajai(1) and
Bjbi(2) = bjbi(2), then

ABja; bi = BAja; bi =
³
Ajai(1)

´³
Bjbi(2)

´
= abja; bi (4.16)

so that the eigenstates of a product of operators from di¤erent spaces are simply products
of the eigenstates of the factors.

As with the states, a general linear operator in S12 can be expressed as a linear combina-
tion of direct product operators, but need not be factorizeable into such a product itself.
A simple example is the sum or di¤erence of two operators, one from each space; again if
Ajai(1) = ajai(1) and Bjbi(2) = bjbi(2), then

(A§B)ja; bi = (a§ b)ja; bi: (4.17)

In general any operator can be expanded in terms of an ONB for the product space in
the usual way, e.g.,

H =
X
i;j

X
i0;j0

jÁi; ÂjiHij;i0j0hÁi0 ; Âj0 j; (4.18)

where Hij;i0j0 = hÁi; Âj jHjÁi0 ; Âj0i. Note that if H = AB is a product of operators from
each space, then the matrix elements representing H in any direct product basis is just
the product of the matrix elements of each operator as de…ned in the factor spaces, i.e.,

hÁi; Âj jHjÁi0 ; Âj0i = hÁi; Âj jABjÁi0 ; Âj0i = hÁijAjÁi0ihÂj jBjÂj0i

The resulting N1 £N2 dimensional matrix in S12 is then said to be the direct or tensor
product of the matrices representing A in S1 and B in S2:

Finally we note that this de…nition of direct product spaces is easily extensible to
treat multiple factor spaces. Thus, e.g., if S1; S2; and S3 are three independent quantum
mechanical state spaces, then we can take the 3-fold direct product of states jÃi(1) 2 S1
and jÁi(2) 2 S2; and jÂi(3) 2 S3 to construct elements jÃ;Á; Âi = jÃi(1)jÁi(2)jÂi(3) of the
direct product space

S123 = S1 ­ S2 ­ S3
with inner products

hÃ0; Á0; Â0jÃ; Á; Âi = hÃ0jÃi(1)hÁ0jÁi(2)hÂ0jÂi(2)

and operators
ABCjÃ; Á; Âi = jÃA; ÁB ; ÂCi:
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4.1.1 Motion in 3 Dimensions Treated as a Direct Product of Vector Spaces

To make these formal de…nitions more concrete we consider a few examples. Consider,
e.g., our familiar example of a single spinless quantum particle moving in 3 dimensions.
It turns out that this space can be written as the direct product

S3D = Sx ­ Sy ­ Sx: (4.19)

of 3 spaces Si, each of which is isomorphic to the space of a particle moving along one
cartesian dimension. In each of the factor spaces we have a basis of position states and
relevant operators, e.g., in Sx we have the basis states, fjxig and operators X;Kx; Px; ¢ ¢ ¢
, in Sy the basis states fjyig and operators Y;Ky; Py; ¢ ¢ ¢ , and similarly for Sz. In the
direct product space S3D we can then form, according to the rules outlined in the last
section, the basis states

j~ri = jx; y; zi = jxi­ jyi­ jzi (4.20)

each of which is labeled by the 3 cartesian coordinates of the position vector ~r of R3. Any
state in this space can be expanded in terms of this basis

jÃi =
Z
dxdy dz jx; y; zihx; y; zjÃi =

Z
dxdy dz Ã(x; y; z) jx; y; zi; (4.21)

or in more compact notation

jÃi =
Z
d3r j~rih~rjÃi =

Z
d3r Ã(~r)j~ri: (4.22)

Thus, the state jÃi is represented in this basis by a wave function Ã(~r) = Ã(x; y; z)
of 3 variables. Note that by forming the space as the direct product, the individual
components of the position operator Xi automatically are presumed to commute with
one another, since they derive from di¤erent factor spaces. Indeed, it follows that the
canonical commutation relations

[Xi;Xj ] = 0 = [Pi; Pj ] (4.23)

[Xi; Pj ] = i~±i;j (4.24)

are automatically obeyed due to the rule for extending operators into the product space.
The action of the individual components of the position operator and momentum operators
also follow from the properties of the direct product space, i.e.,

Xjx; y; zi = Xjxi1yjyi1zjzi = xjx; y; zi (4.25)

PxjÃi = ¡i~
Z
d3r

@Ã(~r)

@x
j~ri (4.26)

and so on.
In a similar fashion it is easily veri…ed that all other properties of the space S3D of a single
particle moving in 3 dimensions follow entirely from the properties of the tensor product
of 3 one-dimensional factor spaces. Of course, in this example, it is merely a question of
mathematical convenience whether we view S3 in this way or not.
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4.1.2 The State Space of Spin-1/2 Particles

Another situation in which the concept of a direct product space becomes valuable is in
treating the internal, or spin degrees of freedom of quantum mechanical particles. It is a
well-established experimental fact that the quantum state of most fundamental particles
is not completely speci…ed by properties related either to their spatial coordinates or to
their linear momentum. In general, each quantum particle possesses an internal structure
characterized by a vector observable ~S; the components of which transform under rotations
like the components of angular momentum. The particle is said to possess “spin degrees
of freedom”. For the constituents of atoms, i.e., electrons, neutrons, protons, and other
spin-1=2 particles, the internal state of each particle can be represented as a superposition
of two linearly independent eigenvectors of an operator Sz whose eigenvalues s = §1=2
(in units of ~) characterize the projection of their spin angular momentum vectors ~S onto
some …xed quantization axis (usually taken by convention to be the z axis). A particle
whose internal state is the eigenstate with s = 1=2 is said to be spin up, with s = ¡1=2;
spin down.

The main point of this digression, of course, is that the state space of a spin-1=2
particle can be represented as direct product

Sspin-1=2 = Sspatial ­ Sspin
of a quantum space Sspatial describing the particle’s spatial state (which is spanned, e.g., by
an in…nite set of position eigenstates j~ri), and a two-dimensional quantum space Sspin de-
scribing the particle’s internal structure. This internal space is spanned by the eigenstates
jsi of the Cartesian component Sz of its spin observable ~S; with eigenvalues s = §1=2:
The direct product of these two sets of basis states from each factor space then generates
the direct product states

j~r; si = j~ri­ jsi;
which satisfy the obvious orthonormality and completeness relationsX

s=§1=2

Z
d3r j~r; sih~r; sj = 1 h~r0; s0j~r; si = ±(~r ¡ ~r0)±s;s0 :

An arbitrary state of a spin-1=2 particle can then be expanded in this basis in the form

jÃi =
X

s=§1=2

Z
d3r Ãs(~r)j~r; si =

Z
d3r [Ã+(~r)j~r; 1=2i+ Ã¡(~r)j~r;¡1=2i]

and thus requires a two component wave function (or spinor). In other words, to specify
the state of the system we must provide two seprate complex-valued functions Ã+(~r) and
Ã¡(~r); with jÃ+(~r)j2 describing the probability density to …nd the particle spin-up at ~r
and jÃ¡(~r)j2 describing the density to …nd the particle spin-down at ~r. Note that, by
construction, all spin related operators (~S; Sz; S2; etc.) automatically commute with all
spatial related operators (~R; ~K; ~P ; etc.).

Thus, the concept of a direct product space arises in many di¤erent situtations
in quantum mechanics and when properly identi…ed as such can help to elucidate the
structure of the underlying state space.

4.2 The State Space of Many Particle Systems

We are now in a position to return to the topic that motivated our interest in direct
product spaces in the …rst place, namely, the construction of quantum states of many
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particle systems. The guiding principle has already been state, i.e., that the state vector
of a system of N particles is an element of the direct product space formed from the N
single-particle spaces associated with each particle.

Thus, as the simplest example, consider a collection of N spinless particles each moving in
one-dimension, along the x-axis, say (e.g., a set of particles con…ned to a quantum wire).
The ®th particle of this system is itself associated with a single particle state space S(®)
that is spanned by a set of basis vectors fjx®ig, and is associated with the standard set
of operators X®;K®; P®; etc. The combined space S(N) of all N particles in this system
is then the N -fold direct product

S(N) = S(1)­ S(2)­ ¢ ¢ ¢­ S(N) (4.27)

of the individual single-particle spaces, and so is spanned by the basis vectors formed from
the position eigenstates of each particle, i.e., we can construct the direct product basis

jx1; : : : ; xNi = jx1i(1) ­ jx2i(2) : : :­ jxNi(N): (4.28)

In terms of this basis an arbitraryN -particle quantum state of the system can be expanded
in the form

jÃi =

Z
dx1 : : : dxN jx1; : : : ; xNihx1; : : : ; xN jÃi

=

Z
dx1 : : : dxN Ã(x1; : : : ; xN) jx1; : : : ; xNi: (4.29)

Thus, the quantum mechanical description involves a wave function Ã(x1; : : : ; xN) which
is a function of the position coordinates of all particles in the system. This space is clearly
isomorphic to that of a single particle moving in N dimensions, but the interpretation
is di¤erent. For a single particle in N dimensions the quantity Ã(x1; : : : ; xN) represents
the amplitude that a position measurement of the particle will …nd it located at the
point ~r having the associated cartesian coordinates x1; : : : ; xN . For N particles moving in
one dimension, the quantity Ã(x1; : : : ; xN) represents the amplitude that a simultaneous
position measurement of all the particles will …nd the …rst at x1, the second at x2, and
so on.

The extension to particles moving in higher dimensions is straightforward. Thus, for
example, the state space of N spinless particles moving in 3 dimensions is the tensor
product of the N single particle spaces S(®) each describing a single particle moving in
3 dimensions. The ®th such space is now spanned by a set of basis vectors fj~r®ig, and is
associated with the standard set of vector operators ~R®; ~K®; ~P®; etc. We can now expand
an arbitrary state of the combined system

jÃi =

Z
d3r1 : : : d

3rN j~r1; : : : ; ~rNih~r1; : : : ; ~rN jÃi

=

Z
d3r1 : : : d

3rN Ã(~r1; : : : ; ~rN) j~r1; : : : ; ~rNi: (4.30)

in the direct product basis fj~r1; : : : ; ~rNig of position localized states, each of which de-
scribes a distinct con…guration of the N particles. The wave function is then a function
of the N position vectors ~r® of all of the particles (or of the 3N cartesian components
thereof). A little re‡ection shows that the mathematical description of N particles moving
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in 3 dimensions is mathematically equivalent, both classically and quantum mechanically,
to a single particle moving in space of 3N dimensions.

Before discussing other properties of many-particle systems, it is worth pointing out that
our choice of the position representation in the examples presented above is arbitrary. The
state of a system of N spinless particles moving in 3 dimensions may also be expanded in
the ONB of momentum eigenstates

jÃi =
Z
d3k1 : : : d

3kN j~k1; : : : ;~kNih~k1; : : : ;~kN jÃi

=

Z
d3k1 : : : d

3kN Ã(~k1; : : : ;~kN) j~k1; : : : ;~kNi;

or in any other complete direct product basis. In addition, it should be noted that the
rules associated with forming a direct product space ensure that all operators associated
with a given particle automatically commute with all the operators associated with any
other particle.

4.3 Evolution of Many Particle Systems

The evolution of a many particle quantum system is, as the basic postulates assert, gov-
erned through the Schrödinger equation

i~ d
dt
jÃi = HjÃi (4.31)

where H represents the Hamiltonian operator describing the total energy of the many
particle system. For a system of N particles, the Hamiltonian can often be written in the
form

H =
NX
®=1

P 2®
2m®

+ V (~R1; ~R2; : : : ;RN): (4.32)

As for conservative single particle systems, the evolution of the system is most easily
described in terms of the eigenstates of H, i.e., the solutions to the energy eigenvalue
equation

HjÁEi = EjÁEi: (4.33)

Projecting this expression onto the position representation leads to a partial di¤erential
equation

NX
®=1

¡~2
2m®

r2®ÁE + V (~r1; ~r2; : : : ; ~rN)ÁE = EÁE (4.34)

for the many particle eigenfunctions ÁE(~r1; ~r2; : : : ; ~rN). When N is greater than two
this equation is (except in special cases) analytically intractable (i.e., nonseparable). This
analytical intractability includes the important physical case in which the potential energy
of the system arises from pairwise interactions of the form

V =
1

2

X
®;¯
®6=¯

V (~r® ¡ ~r¯): (4.35)
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Solutions of problems of this sort are fundamental to the study of atomic and molecular
physics when N is relatively small (N · 200, typically) and to the study of more gen-
eral forms of matter (i.e., condensed phases, liquids, solids, etc.) when N is very large
(N » 1024). Under these circumstances one is often led to consider the development of
approximate solutions developed, e.g., using the techniques of perturbation theory.

An important, and in principle soluble special case is that of noninteracting particles, for
which the potential can be written in the form

V =
NX
®=1

V®(~r®) (4.36)

corresponding to a situation in which each particle separately responds to its own external
potential. In fact, using potentials of this type it is often possible, in an approximate sense,
to treat more complicated real interactions such as those described by (4.35). In fact, if
all but one of the particles in the system were …xed in some well-de…ned state, then
this remaining particle could be treated as moving in the potential …eld generated by all
the others. If suitable potentials V®(~r®) could thus be generated that, in some average
sense, took into account the states that the particles actually end up in, then the actual
Hamiltonian

H =
X
®

P 2®
2m®

+ V

could be rewritten in the form

H =
X
®

·
P 2®
2m®

+ V®(~r®)

¸
+¢V

= H0 +¢V

where
¢V = V ¡

X
®

V®(~r®)

would, it is to be hoped, represent a small perturbation. The exact solution could then be
expanded about the solutions to the noninteracting problem associated with the Hamil-
tonian

H0 =
X
®

·
P 2®
2m®

+ V®(~r®)

¸
:

In this limit, it turns out, the eigenvalue equation can, in principle, be solved by the
method of separation of variables. To obtain the same result, we observe that in this limit
the Hamiltonian can be written as a sum

H0 =
NX
®=1

·
P 2®
2m®

+ V®(~R®)

¸
=

NX
®=1

H®; (4.37)

of single particle operators, where the operator H® acts only on that part of the state
associated with the single particle space S(®). In each single particle space the eigenstates
jEn®i of H® form an ONB for the associated single particle space. Thus the many particle
space has as an ONB the simultaneous eigenstates jEn1 ; En2 ; : : : ; EnN i of the commut-
ing set of operators fH1;H2; : : : ;HNg. These are automatically eigenstates of the total
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Hamiltonian H0, i.e.,

H0jEn1 ;En2 ; : : : ; En® ; : : : ; EnN i =
X
®

H®jEn1 ;En2 ; : : : ; En® ; : : : ; EnN i

=
X
®

En® jEn1 ; En2 ; : : : ; En® ; : : : ; EnN i

= E jEn1 ; En2 ; : : : ; En® ; : : : ; EnN i; (4.38)

where the total energy E =
P
®En® is just the sum of the single particle energies (as it

is classically). The corresponding wave function associated with such a state is

h~r1; ~r2; : : : ; ~rN jEn1 ; En2 ; : : : ; EnN i = Án1(~r1)Án2(~r2) : : : ÁnN (~rN) (4.39)

which is just the product of the associated single particle eigenfunctions of the operators
H®, the same result that one would …nd by using the process of separation of variables.
Indeed, the standard process of solving a partial di¤erential equation by the method of
separation of variables can be interpreted as the decomposition of an original functional
space of several variables into the direct product of the functional spaces associated with
each.

4.4 Systems of Identical Particles

The developments in this chapter derive their importance from the fact that there exist
experimental systems of considerable interest which contain more than one particle. It is
useful at this point to consider the implications of another important empirical fact: in
many of these systems the particles of interest belong to distinct classes of (apparently)
indistinguishable or identical particles. We use names (protons, electrons, neutrons,
silver ions, etc.) to distinguish the di¤erent classes of indistinguishable particles from one
another. Operationaly, this means that two members of a given class (e.g., two electrons)
are not just similar, but are in fact identical to one another, i.e., that there exists no
experiment which could possibly distinguish one from the other. This leads us to ask the
following question: What constraint, if any, does indistinguishability impose upon the
state vector of a system of identical particles?

To explore this question, consider …rst a system of N distinguishable, but physically
similar, particles each of which is associated with a state space S(®) which is isomorphic
to all the others. If the set of vectors fjÁºi(®) j º = 1; 2; ¢ ¢ ¢ g forms an ONB for the space
of the ®th particle then the many particle space S(N) is spanned by basis vectors of the
form

jÁº1 ; Áº2 ; : : : ; ÁºN i = jÁº1i(1)jÁº2i(2) : : : jÁºN i(N) (4.40)

which corresponds to a state in which particle 1 is in state Áº1 ; particle 2 in state Áº2 ;
and so on.

Consider, now, the operation of “interchanging” two of the particles in the system.
Formally, we can de…ne a set of N(N ¡ 1)=2 unitary exchange operators U®¯ through
their action on any direct product basis as follows:

U®¯jÁº1 ; : : : ; Áº® ; : : : ; Áº¯ ; : : : ; ÁºN i = jÁº1 ; : : : ; Áº¯ ; : : : ; Áº® ; : : : ; ÁºN i (4.41)

which puts particle ® in the state formerly occupied by particle ¯, puts particle ¯ in
the state formerly occupied by particle ®, and leaves all other particles alone (we assume
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® 6= ¯). We note in passing that each exchange operator is unitary since it maps any
direct product basis onto itself, but in a di¤erent order. We note also that the product
of any exchange operator with itself gives the identity operator, as is easily veri…ed by
multiplying the equation above by U®¯,.and which is consistent with the intuitive idea
that two consecutive exchanges is equivalent to none. Thus, we deduce that U2®¯ = 1:

These properties of the exchange operators aside, the important physical point is
that for distinguishable particles an exchange of this sort leaves the system in a physically
di¤erent state (assuming º® 6= º¯). The two states jÁº1 ; : : : ; Áº¯ ; : : : ; Áº® ; : : : ; ÁºN i and
U®¯jÁº1 ; : : : ; Áº¯ ; : : : ; Áº® ; : : : ; ÁºN i, are linearly independent.

When we mentally repeat this exercise of exchanging particles with a system of indistin-
guishable particles, however, we must confront the fact that there can be no experiment
which can tell which particle is in which state, since there is no way of distinguishing the
di¤erent particles in the system from one another. That is to say, we cannot know that
particle ® is in the state jÁº®i, but only that the state jÁº®i is occupied by one of the
particles. Thus, an ordered list enumerating which particles are in which states, such as
that labeling the direct product states above, contains more information than is actually
knowable. For the moment, let jÁº1 ; : : : ; ÁºN i(I) denote the physical state of a system
of N indistinguishable particles in which the states Áº1 ; : : : ; ÁºN are occupied. We then
invoke the principle of indistinguishability and assert that this state and the one

U®¯jÁº1 ; : : : ; ÁºN i(I) (4.42)

obtained from it by switching two of the particles must represent the same physical state
of the system. This means that they can di¤er from one another by at most a phase
factor, i.e., a unimodular complex number of the form ¸ = eiµ. Thus, we assert that there
exists some ¸ for which

U®¯jÁº1 ; : : : ; ÁºN i(I) = ¸jÁº1 ; : : : ; ÁºN i(I): (4.43)

Note, however, that exchanging two particles twice in succession must return the system
to its original state, i.e.,

U®¯[U®¯jÁº1 ; : : : ; ÁºN i(I)] = jÁº1 ; : : : ; ÁºN i(I): (4.44)

This last statement is true whether applied to distinguishable or indistinguishable parti-
cles. The implication for the undetermined phase factor, however, is that

U2®¯jÁº1 ; : : : ; ÁºN i(I)] = ¸2jÁº1 ; : : : ; ÁºN i(I) = jÁº1 ; : : : ; ÁºN i(I) (4.45)

from which we deduce that ¸2 = 1. This implies that ¸ = §1, so that
U®¯jÁº1 ; : : : ; ÁºN i(I) = §jÁº1 ; : : : ; ÁºN i(I): (4.46)

Thus, we have essentially proved the following theorem: The physical state of a system
of N identical particles is a simultaneous eigenstate of the set of exchange operators
fU®¯g with eigenvalue equal either to +1 or ¡1. A state is said to be symmetric under
exchange of the particles ® and ¯ if it is an eigenvector of U®¯ with eigenvalue +1;
and is antisymmetric if it is an eigenvector of U®¯ with eigenvalue ¡1. It is totally
symmetric if it is symmetric under all exchanges and totally antisymmetric if it is
antisymmetric under all exchanges.

Now it is not hard to see that the set of all totally symmetric states of N particles
forms a subspace S(N)S of the original product space S(N), (since any linear combination
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of such states is still totally symmetric). We shall call S(N)S the symmetric subspace
of S(N). Similarly the set of all totally antisymmetric states forms the antisymmetric
subspace S(N)A of S(N). Our theorem shows that all physical states of a system of N

indistinguishable particles must lie either in S(N)S or S(N)A . (We can’t have a physical state
symmetric under some exchanges and antisymmetric under others, since this would imply
a physical di¤erence between some of the particles.) Moreover, if a given class of identical
particles had some states that were symmetric and some that were antisymmetric, it
would be possible to form linear combinations of each, forming physical states that were
neither, and thus violating our theorem. We deduce, therefore, that each class of identical
particles can have physical states that lie only in S(N)S or only in S(N)A ; it cannot have
some states that are symmetric and some that are antisymmetric.

Experimentally, it is indeed found that the identi…able classes of indistinguishable particles
divide up naturally into those whose physical states are all antisymmetric and those
whose physical states are all symmetric under the exchange of any two particles in the
system. Particles which are antisymmetric under exchange, such as electrons, protons,
and neutrons, are referred to as fermions. Particles which are symmetric under exchange,
such as photons, are referred to as bosons.

4.4.1 Construction of the Symmetric and Antisymmetric Subspaces

We …nd ourselves in an interesting formal position. We have found that it is a straight-
forward exercise to construct the Hilbert space S(N) of N distinguishable particles as a
direct product of N single particle spaces. We see now that the physical states associated
with N indistinguishable particles are necessarily restricted to one or the other of two
subspaces of the originally constructed direct product space. We still have not said how
to actually construct these subspaces or indeed how to actually produce a physical state
of such a system. This would be straightforward, of course, if we had at our disposal the
projectors PS and PA onto the corresponding symmetric and antisymmetric subspaces,
for then we could start with any state in S(N) and simply project away those parts of
it which were not symmetric or antisymmetric, respectively. These projectors, if we can
construct them, must satisfy the condition obeyed by any projectors, namely,

P 2S = PS P 2A = PA: (4.47)

In addition, if jÃSi and jÃAi represent, respectively, any completely symmetric or anti-
symmetric states in S(N), then we must have

PSjÃSi = jÃSi PAjÃSi = 0 (4.48)

PAjÃAi = jÃAi PSjÃAi = 0 (4.49)

the right-hand relations follow because an antisymmetric state must be orthogonal to
all symmetric states and vice versa. It turns out that the projectors PS and PA are
straightforward to construct once one has assembled a rather formidable arsenal of unitary
operators referred to as permutation operators, which are very closely related to, and
in a sense constructed from, the exchange operators. To this end it is useful to enumerate
some of the basic properties of the exchange operators U®¯ :

1. All exchange operators are Hermitian, since, as we have seen, they have real eigen-
values ¸ = §1.

2. All exchange operators are nonsingular, since they are equal to their own inverses,
a fact that we have already used by observing, e¤ectively, that U2®¯ = 1, hence
U¡1®¯ = U®¯.
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3. All exchange operators are unitary since they are Hermitian and equal to their own
inverses; it follows that U®¯ = U+®¯ = U

¡1
®¯ . Thus each one transforms any complete

direct product basis for S(N) onto another, equivalent, direct product basis.

4. Di¤erent exchange operators do not generally commute. This makes sense on a
physical basis; if we …rst exchange particles ® and ¯ and then exchange particles
¯ (which is the original particle ®) and ° we get di¤erent results then if we make
these exchanges in the reverse order.

The product of two or more exchange operators is not, in general, simply another exchange
operator, but is a unitary operator that has the e¤ect of inducing a more complicated
permutation of the particles among themselves. Thus, a product of two or more exchange
operators is one of the N ! possible permutation operators the members of which set we
will denote by the symbol U», where

» ´
µ
1; 2 ; : : : ; N
»1; »2; : : : ; »N

¶
(4.50)

denotes an arbitrary permutation, or reordering of the integers (1; 2 ; : : : ; N) into a
new order, denoted by (»1; »2; : : : ; »N). Thus the operator U» has the e¤ect of replacing
particle 1 with particle »1, particle 2 with particle »2 and so on, i.e.

U»jÁº1 ; : : : ; ÁºN i = jÁº»1 ; : : : ; Áº»N i

There are N ! such permutations of N particles. The set of N ! permutation operators
share the following properties, some of which are given without proof:

1. The product of any two permutation operators is another permutation operator. In
fact, they form a group, the identity element of which is the identity permutation that
maps each particle label onto itself. Symbolically, we can write U»U»0 = U»00 . The
group property also insures that this relation applies to the whole set of permutation
operators, i.e., for any …xed permutation operator U» the set of products fU»U»0g is
equivalent to the set fU»g of permutation operators itself. This important property
will be used below.

2. Each permutation », or permutation operator U» can be classi…ed as being either
“even” or “odd”. An even permutation operator can be written as a product

U» = U®¯U°± ¢ ¢ ¢U¹º
of an even number of exchange operators, and odd permutation as a product of an
odd number of exchange operators. This factorization of each U» is not unique, since
we can obviously insert an even number of factors of U®¯ in the product without
changing the permutation (or the even-odd classi…cation ). This is equivalent to the
observation that an arbitrary permutation of N particles can be built up through a
series of simple exchanges in many di¤erent ways.

3. The exchange parity "» of a given permutation operator is de…ned to be +1 if U»
is even and ¡1 if it is odd. Equivalently, if U» can be written as a product of n
exchange operators then "» = (¡1)n:
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It turns out that for a given number N of particles, there are an equal number of even
and odd permutation operators (indeed multiplying any even permutation operator by
one exchange operator makes it an odd permutation operator and vice versa.). It is also
fairly easy to see that if a state jÃSi is symmetric (i.e., invariant) under all exchanges, it
is also symmetric under any product thereof, and thus is symmetric under the entire set
of permutation operators, i.e.,

U»jÃSi = jÃSi: (4.51)

Physically, this means that it is invariant under an arbitrary permutation of the particles
in the system. Alternatively, it means that jÃSi is an eigenstate of U» with eigenvalue 1:

On the other hand, a state jÃAi which is antisymmetric under all exchanges will be left
unchanged after an even number of exchanges (i.e., after being operated on by an even
number of exchange operators), but will be transformed into its negative under an odd
number of exchanges. Thus is succinctly expressed by the relation

U»jÃAi = "»jÃAi: (4.52)

Thus, an antisymmetric state is an eigenstate of U» with eigenvalue "».

With these properties in hand, we are now ready to display the form of the projectors onto
the symmetric and antisymmetric subspaces of S(N). These are expressible as relatively
simple sums of the permutation operators as follows; the symmetric projector is essentially
the symmetric sum

PS =
1

N !

X
»

U» (4.53)

of all the permutation operators, while the antisymmetric projector has a form

PA =
1

N !

X
»

U»"»: (4.54)

that weights each of the permutation operators by its exchange parity of §1. Thus, half
the terms in the antisymmetric projector have a ¡1 and half have a +1.

The proof that these operators do indeed satisfy the basic properties of the pro-
jectors as we described earlier is straightforward. First we note that if jÃSi is a symmetric
state, then

PSjÃSi =
1

N !

X
»

U»jÃSi =
1

N !

X
»

jÃSi = jÃSi (4.55)

where the sum over the N ! permutations » eliminates the normalization factor. Similarly,
we have

PAjÃSi =
1

N !

X
»

"»U»jÃSi =
1

N !

X
»

"»jÃSi = 0; (4.56)

where we have used the fact that there are equal numbers of even and odd permutations to
evaluate the alternating sum in the last expression. Similarly, if jÃAi is an antisymmetric
state,

PAjÃAi =
1

N !

X
»

"»U»jÃAi =
1

N !

X
»

"2» jÃAi = jÃAi (4.57)

while
PS jÃAi =

1

N !

X
»

U»jÃAi =
1

N !

X
»

"»jÃAi = 0: (4.58)
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Finally, we must show that P 2S = PS, and P
2
A = PA. To show this we note …rst that

U»PS =
1

N !

X
»0
U»U»0 =

1

N !

X
»00
U»00 = PS; (4.59)

where we have used the group property which ensures that the set of permutation opera-
tors simply reproduces itself when multiplied by any single permutation operator. Thus
for the symmetric projector we have

PSPS =
1

N !

X
»

U»PS =
1

N !

X
»00
PS = PS; (4.60)

showing that it is indeed a projection operator.
To prove a similar result for the antisymmetric projector, we note …rst that the

exchange parity of the product of any two permutation operators is the product of their
individual parities. Thus if U»U»0 = U»00 ; then

"»00 = "»"»0 : (4.61)

This can be seen by factorizing both permutation operators in the product into exchange
operators. If U» and U»0 contain n and m factors, respectively, then U»00 contains n+m
factors, so "»00 = (¡1)n+m = (¡1)n(¡1)m = "»"»0 . Using this, along with the obvious
relation "2» = 1; it follows that

U»PA =
1

N !

X
»0
U»U»0"»0 =

1

N !

X
»0
"»U»U»0"»"»0 = "»

1

N !

X
»00
"»00U»00

= "»PA; (4.62)

Thus for the antisymmetric projector we have

PAPA =
1

N !

X
»

"»U»PA =
1

N !

X
»

"2»PA =
1

N !

X
»

PA = PA; (4.63)

which is the desired idempotency relation for the antisymmetic projector.

Using these projectors, the physical state of a system ofN identical particles is constructed
by projection. To each state jÃi 2 S(N) there corresponds at most one state jÃSi 2 S(N)S

and one state jÃAi 2 S(N)A : For bosons, the normalized symmetrical state is given by the
projection

jÃSi =
PSjÃiphÃjPSjÃi (4.64)

onto S(N)S ; while for fermions we have

jÃAi =
PAjÃiphÃjPAjÃi : (4.65)

It is important to point out that the projection may give the null vector if, for example,
the original state is entirely symmetric or antisymmetric to begin with.
Example: Two Identical Bosons - Let jÁi and jÂi be two orthonormal single particle
states. The state jÁ(1); Â(2)i = jÁ;Âi = jÃi is in the two-particle direct product space
S(2): The projection of jÃi onto the symmetric subspace of S(2) is

PSjÃi = 1

2
[U12 + U21] jÁ; Âi = 1

2
[jÁ; Âi+ jÂ; Ái] : (4.66)
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To normalize we evaluate

1

2
[hÁ; Âj+ hÂ; Áj] 1

2
[jÁ; Âi+ jÂ; Ái] = 1

4
[1 + 0 + 0 + 1] =

1

2
; (4.67)

so
jÃSi =

1p
2
[jÁ; Âi+ jÂ; Ái] : (4.68)

Notice that if Á = Â; then the original state is already symmetric, i.e., PSjÁ; Ái = jÁ; Ái.
Thus, it is possible for two (or more) bosons to be in the same single particle state. Also
notice that if Á 6= Â; then the states jÁ; Âi and jÂ; Ái are both projected onto the same
physical state, i.e., PSjÁ; Âi = PSjÂ; Ái. This fact, namely that there are generally many
states in S(N) that correspond to the same physical state in S(N)S is referred to as a lifting
of the exchange degeneracy of S(N).
Example: Two Identical Fermions - Again let jÁi and jÂi be two orthonormal single
particle states, and jÁ(1); Â(2)i = jÁ; Âi = jÃi be the associated two-particle state in S(2):
The projection of jÃi onto the antisymmetric part of S(2) is

PAjÃi = 1

2
["12U12 + "21U21] jÁ; Âi = 1

2
[jÁ; Âi ¡ jÂ; Ái] : (4.69)

To normalize we evaluate

1

2
[hÁ; Âj ¡ hÂ; Áj] 1

2
[jÁ; Âi ¡ jÂ; Ái] = 1

4
[1¡ 0¡ 0 + 1] = 1

2
; (4.70)

so
jÃAi =

1p
2
[jÁ; Âi ¡ jÂ; Ái] : (4.71)

Again, the projection of the states jÁ; Âi and jÂ; Ái onto S(2)A correspond to the same
physical state, (a lifting of the exchange degeneracy) although they di¤er from one another
by a phase factor, i.e., PSjÁ; Âi = ¡PAjÂ;Ái = ei¼PS jÁ; Âi. Notice, however, that if
Á = Â; then the projection of the original state vanishes. Thus, two identical fermions
cannot occupy the same physical state. This fact, which follows from the symmetrization
requirement is referred to as the Pauli exclusion principle.

It is possible to write the fermion state derived above in a convenient mathemat-
ical form involving a determinant, i.e., if we write

jÃAi =
1p
2

¯̄̄̄
jÁ(1)i jÁ(2)i
jÂ(1)i jÂ(2)i

¯̄̄̄
(4.72)

and formally evaluate the determinant of this odd matrix we obtain

jÃAi =
1p
2

h
jÁ(1)ijÂ(2)i ¡ jÂ(1)ijÁ(2)i

i
=

1p
2
[jÁ; Âi ¡ jÂ; Ái] (4.73)

This determinantal way of expressing the state vector (or the wave function) is referred
to as a Slater determinant, and generalizes to a system of N particles. Thus, if
jÁº1i; jÁº2i; ¢ ¢ ¢ ; jÁºN i represent a set of N orthonormal single particle states, then the
Slater determinant

jÃAi =
1p
N !

¯̄̄̄
¯̄̄̄ jÁ

(1)
º1 i jÁ(2)º1 i ¢ ¢ ¢ jÁ(N)º1 i

jÁ(1)º2 i jÁ(2)º2 i ¢ ¢ ¢ jÁ(N)º2 i¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
jÁ(1)ºN i jÁ(2)ºN i ¢ ¢ ¢ jÁ(N)ºN i

¯̄̄̄
¯̄̄̄ (4.74)
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is a properly normalized state of N fermions. Note that if any two states jÁº®i and jÁº¯ i
are the same, then the corresponding rows will be identical and the resulting state will
vanish, automatically satisfying the Pauli exclusion principle.

4.4.2 Number Operators and Occupation Number States

We now turn to the task of identifying and constructing ONB’s for the symmetric (or
bosonic) subspace describing a collection of N identical bosons and the antisymmetric (or
fermionic) subspace describing a collection of N identical fermions. As we have seen, from
a given set of single particle states fjÁºi jº = 1; 2; ¢ ¢ ¢ g we can form for the direct product
space S(N) of N distinguishable particles an ONB of direct product states jÁº1 ; : : : ; ÁºN i,
in which particle 1 is in state jÁº1i; particle 2 in state jÁº2i; and so on. It is useful at this
point to introduce a set of operators fNº jº = 1; 2; ¢ ¢ ¢ g associated with this representa-
tion which “count” the number of particles that are in each single-particle state, i.e., by
de…nition,

N1jÁº1 ; : : : ; ÁºN i = n1jÁº1 ; : : : ; ÁºN i
N2jÁº1 ; : : : ; ÁºN i = n2jÁº1 ; : : : ; ÁºN i

...

Nº jÁº1 ; : : : ; ÁºN i = nº jÁº1 ; : : : ; ÁºN i
... (4.75)

where, e.g., n1 represents the number of times the symbol Á1 appears in the list (Áº1 ; : : : ; ÁºN );
i.e., it describes the number of particles in the collection occupying the single-particle state
jÁ1i: Similarly, the eigenvalue

nº =
NX
®=1

±º;º® (4.76)

is, for this state, the number of particles in the single-particle state jÁºi: Thus the direct
product states of this representation are simultaneous eigenstates of this set of number
operators fNºg ; and each such state is characterized by a speci…c set of eigenvalues
fnºg : The eigenvalues nº are referred to as the occupation numbers associated with
this representation of single particle states. Now, typically, the number of single-particle
states fjÁºig is in…nite, and so most of the occupation numbers fnºg characterizing any
given basis state jÁº1 ; : : : ; ÁºN i are equal to zero. In fact, it is clear that at mostN of them
are not zero, and this maximum can be obtained only if all the particles are in di¤erent
single-particle states. On the other hand, at least one of the occupation numbers is not
zero, since the sum of the occupation numbers is equal to the total number of particles in
the system, i.e.,

N =
X
º

nº : (4.77)

Now for distinguishable particles, the occupation numbers fnºg = fn1; n2; ¢ ¢ ¢ g
generally do not determine uniquely the corresponding basis states. This is because the
occupation numbers, by construction, contain information about which single-particle
states are …lled, but contain no information about which particles are in which states.
Thus, e.g., if jÁº1 ; : : : ; ÁºN i is a direct product state characterized by a certain set of
occupation numbers fnºg ; any permutation of the particles in the system among the
same speci…ed set of single-particle states will leave the system in a state U»jÁº1 ; : : : ; ÁºN i
having exactly the same set of single-particle states …lled (albeit by di¤erent particles
than in the original). The set of occupation numbers for any such state will, therefore, be
identical with that of the unpermuted state. If all of the occupied single-particle states
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Áº1 ; : : : ; ÁºN are distinct (i.e., if all the associated occupation numbers are either zero
or one) , then there will be N ! linearly independent states U»jÁº1 ; : : : ; ÁºN i associated
with the same set of occupation numbers fnºg. If, however, some of the single-particle
states are multiply occupied, then any permutation that simply rearranges those particles
in the same occupied state will leave the system in exactly the same state as before.
If, e.g., there are n1 particles in the state jÁ1i then there will be n1! permutations that
simply permute these n1 particles among themselves, and so on. Arguing in this way for
each multiply-occupied state, we deduce that the number of linearly-independent states©
U»jÁº1 ; : : : ; ÁºN i

ª
of N distinguishable particles associated with a given set fnºg of

occupation numbers is given by the expression

g (fnºg) = N !

n1!n2! ¢ ¢ ¢ : (4.78)

Recall that 0! = 1! = 1; so that this expression reduces to N ! when there are N distinct
single-particle states …lled. This number g (fnºg) de…nes more closely the term exchange
degeneracy introduced earlier, since it is, in fact, the degeneracy in S(N) associated with
the set of simultaneous eigenvalues fnºg of the number operators fNºg, a degeneracy that
arises entirely due to the distinguishability of the particles described.

Now when the basis vectors
©jÁº1 ; : : : ; ÁºN iª of this representation of S(N) are

projected onto the symmetric or anti-symmetric subspaces, they generate an ONB for
each of these two smaller subspaces. As we might expect, however, there is a reduc-
tion in the number of linearly-independent basis vectors that survive the projection. In
particular, projection onto either the symmetric or anti-symmetric spaces eliminates any
information regarding which particle is in which single-particle state. As a consequence,
all the basis vectors

©
U»jÁº1 ; : : : ; ÁºN i

ª
associated with a given set fnºg of occupation

numbers project onto at most one linearly independent basis vector of each subspace.
This dramatic reduction (which is the essence of the removal of the exchange degeneracy
that we observed in the two-particle case) allows us to label each such basis vector by
the associated set of occupation numbers, and provides us with what is referred to as
the occupation number representation associated with a given set of single-particle
states. In what follows we describe the projection process independently for the bosonic
and fermionic subspaces.

The projection of the basis vector jÁº1 ; : : : ; ÁºN i onto the symmetric subspace
S
(N)
S of N -identical bosons is, by de…nition, the vector PSjÁº1 ; : : : ; ÁºN i: On the other
hand the projection of the state U»jÁº1 ; : : : ; ÁºN i; which is associated with the same set
of occupation numbers, is given by the vector PSU»jÁº1 ; : : : ; ÁºN i: But, we note that

PSU» =
1

N !

X
»0
U»0U» =

1

N !

X
»00
U»00 = PS; (4.79)

where we have used the group properties of the permutation operators. Thus we …nd that

PSU»jÁº1 ; : : : ; ÁºN i = PSjÁº1 ; : : : ; ÁºN i; (4.80)

and hence deduce that all g (fnºg) basis vectors of S(N) associated with the same set fnºg
of occupation numbers project onto precisely the same vector in S(N)S : As a consequence,
the basis vectors obtained in this way by projection onto S(N)S can be uniquely labeled by
the occupation numbers fnºg that characterize them. We thus denote by

jn1; n2; : : :i =
PSjÁº1 ; : : : ; ÁºN i
jjPSjÁº1 ; : : : ; ÁºN ijj

(4.81)



Systems of Identical Particles 141

the symmetric state of N identical bosons containing n1 particles in state Á1; n2 particles
in state Á2; and so on. The set of such states with

P
º nº = N span the symmetric

subspace S(N)S of N identical bosons, and form what is referred to as the occupation
number representation associated with this set of single particle states. (Note that any
such ONB of single particle states generates a similar representation.) For any such
representation for the symmetric subspace, therefore, we can write an orthonormality
relation

hn1; n2; : : : jn01; n02; : : :i = ±n1;n01±n2;n02 ¢ ¢ ¢ (4.82)

showing that two occupation number states are orthogonal unless they have exactly the
same set of occupation numbers, and a completeness relationX

fnºg
jn1; n2; : : :ihn1; n2; : : : j = 1 (4.83)

for the symmetric space, where the sum is over all sets of occupation numbers consistent
with the constraint

P
º nº = N: We note in passing that the number operators fNºg

form a complete set of commuting observables (CSCO) for this symmetric subspace, since
each basis vector in this occupation number representation is uniquely labeled by the
associated set of eigenvalues.

Construction of the occupation number representation for the antisymmetric
space of N identical fermions is similar, but some important di¤erences arise. In par-
ticular, we note …rst that the projection onto S(N)A of any basis vector jÁº1 ; : : : ; ÁºN i of
S
(N)
S having more than one particle in any given single particle state vanishes, since the
corresponding Slater determinant (4.74) will have repeated rows. Thus most of the basis
states of S(N) have no physical counterpart in the antisymmetric subspace. (In this sense,
threfore, fermionic spaces are always smaller than bosonic spaces.) In general, only those
direct product states jÁº1 ; : : : ; ÁºN i with each particle in a distinct single-particle state
Áº1 ; : : : ; ÁºN will have a non-vanishing projection PAjÁº1 ; : : : ; ÁºN i onto S(N)A : In that
case, the projection of the N ! linearly independent states U»jÁº1 ; : : : ; ÁºN i characterized
by the same set fnºg of occupation numbers (which will now all be 0’s or 1’s) will take
the form PAP»jÁº1 ; : : : ; ÁºN i: But this product of operators can also be simpli…ed, i.e.,

PAU» =
1

N !

X
»0
"»0U»0U» =

"»
N !

X
»0
"»0"»U»0U»

= "»

24 1
N !

X
»00
"»00U»00

35 = "»PA (4.84)

where we have used the group properties of the permutation operators and the identity
"2» = 1: Thus, we …nd that

PAU»jÁº1 ; : : : ; ÁºN i = "»PAjÁº1 ; : : : ; ÁºN i = §PAjÁº1 ; : : : ; ÁºN i: (4.85)

Thus, the even permutations project onto the vector PAjÁº1 ; : : : ; ÁºN i and the odd per-
mutations onto its negative ¡PAjÁº1 ; : : : ; ÁºN i: Of course, although these two states di¤er
by a phase factor of unit modulus (¡1 = ei¼), they represent precisely the same physical
state in Hilbert space. Thus, with a suitable phase convention, we …nd that all of the basis
vectors associated with a given acceptable set fnºgof occupation numbers project onto
the same basis vector of S(N)A ; and so are uniquely labeled by the occupation numbers that
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characterize them. Thus, the number operators fNºg form a complete set of commuting
observables (CSCO) for the antisymmetric subspace, as well. We thus denote by

jn1; n2; : : :i =
PAjÁº1 ; : : : ; ÁºN i
jjPAjÁº1 ; : : : ; ÁºN ijj

(4.86)

the antisymmetric state of N identical fermions containing n1 particles in state Á1; n2
particles in state Á2; and so on, where all nº 2 f0; 1g ; and where Pº nº = N: To
unambiguously …x the phase of the associated occupation number basis state jn1; n2; : : :i;
we note that of all the N ! states

©
U»jÁº1 ; : : : ; ÁºN i

ª
associated with the same set of

occupation numbers fnºg ; only one of them has the occupied states ordered so that the
…rst particle is in the lowest occupied state, the second is in the next-to-lowest occupied
state, and so on. It is this state (or any even permutation thereof) that we project
onto S(N)A to produce the basis state. Thus jn1; n2; : : :i is identi…ed with the normalized
antisymmetric projection of that state jÁº1 ; : : : ; ÁºN i that has the correct set of occupation
numbers and for which

º1 < º2 < ¢ ¢ ¢ < ºN : (4.87)

Another way of putting it is that we identify the basis state jn1; n2; : : :i with that Slater
determinant (4.74) in which the indices º® of the single particle states are strictly increas-
ing in going from the top row to the bottom row.

For this set of states, we can write completeness and orthonormality relations
essentially identical to those that we wrote for the occupation number representation of
the bosonic subspace, except for the restriction on the allowed set of occupation numbers
to those for which nº 2 f0; 1g :
4.4.3 Evolution and Observables of a System of Identical Particles

The state vector jÃ(t)i describing a collection of identical bosons or fermions, if it is
to continue to describe such a system for all times, must remain within the bosonic or
fermionic space in which it starts. What does this imply about the structure of the
corresponding Hamiltonian and of the observables for such a system? To address this
question we note that, as for any quantum system, evolution of the state vector is governed
by Schrödinger’s equation

i~ d
dt
jÃ(t)i = HjÃ(t)i (4.88)

where H is the Hamiltonian governing the many-particle system. Now the state vector
of a collection of bosons must remain symmetric under the exchange of any two particles
in the system, and the state vector of a collection of identical fermions must remain
antisymmetric under any such exchange. Thus, we can write that, for all times t;

U®¯jÃ(t)i = ¸jÃ(t)i (4.89)

where ¸ = +1 for bosons and ¡1 for fermions. Applying U®¯ to the evolution equation
we determine that

i~¸ d
dt
jÃ(t)i = U®¯HjÃ(t)i

= ¸U®¯HU
+
®¯jÃ(t)i (4.90)

where we have inserted a factor of 1 = U+®¯U®¯ betweenH and the state vector. Canceling
the common factor of ¸; and comparing the result to the original evolution equation we
…nd that

i~ d
dt
jÃ(t)i = U®¯HU+®¯jÃ(t)i = HjÃ(t)i (4.91)
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which is satis…ed provided that
H = U®¯HU

+
®¯: (4.92)

This shows that H, if it is to preserve the exchange symmetry of the state vector, must be
invariant under the unitary transformations that exchange particles in the system. An op-
erator A is said to be symmetric under the exchange of particles ® and ¯ if U®¯AU+®¯ = A
and is said to be antisymmetric under exchange if U®¯AU+®¯ = ¡A. Using this termi-
nology, we see that the Hamiltonian of a collection of identical bosons or fermions must
be symmetric under all particle exchanges in the system. Another way of expressing the
same thing is obtained by multiplying (4.92) through on the right by U®¯ to obtain the
result HU®¯ = U®¯H; or,

[U®¯;H] = 0 (4.93)

Thus, any operator that is symmetric under particle exchange commutes with the ex-
change operators. If H commutes with all of the exchange operators, then it commutes
with any product of exchange operators, i.e., with any permutation operator U»; thus

[U»;H] = 0: (4.94)

Since the projectors PS and PA onto the bosonic and fermionic subspaces are linear
combinations of permutation operators, they must also commute with H, i.e.,

[PS;H] = 0 = [PA;H] : (4.95)

From the basic theorems that we derived for commuting observables, it follows that the
eigenspaces of PS and PA; in particular, the subspaces S

(N)
S and S(N)A ; must be globally-

invariant under the action of the Hamiltonian H. In other words, H connects no state
inside either subspace to any state lying outside the subspace in which it is contained.
Indeed, this is the way that H keeps the state vector inside the relevant subspace. It
follows, for example, that if the symmetric and antisymmetric projectors commute with
the Hamiltonian at each instant, then they also commute with the evolution operator
U(t; t0) which can be expressed as a function of the Hamiltonian. This means, e.g., that
if jÃ(t0)i is some arbitrary initial state vector lying in S(N) which evolves into the state
jÃ(t)i = U(t; t0)jÃ(t0)i; then the projection of jÃ(t)i onto the symmetric subspace can be
written

jÃS(t)i = PSjÃ(t)i = PSU(t; t0)jÃ(t0)i = U(t; t0)PSjÃ(t0)i = U(t; t0)jÃS(t0)i (4.96)

and the projection onto the antisymmetric space can be written

jÃA(t)i = PAjÃ(t)i = PAU(t; t0)jÃ(t0)i = U(t; t0)PAjÃ(t0)i = U(t; t0)jÃA(t0)i (4.97)

which shows that we can project an arbitrary initial state …rst to get an initial state
vector with the right symmetry, and then evolve within the subspace, or simply evolve
the arbitrary initial state and project at the end of the evolution process to get the state
that evolves out of the appropriate projection of the initial state.

The fact that the Hamiltonian commutes with PS and PA also means that there
exists an orthonormal basis of energy eigenstates spanning each of the two subspaces
of interest. This also makes sense from the point of view of the measurement process.
If this were not the case, then an arbitrary state in either subspace would have to be
represented as a linear combination of energy eigenstates some of which lie outside (or
have components that lie outside) the subspace of interest. An energy measurement would
then have a nonzero probability of collapsing the system onto one of these inadmissible
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energy eigenstates, i.e., onto a state that is not physically capable of describing a collection
of identical particles, since it lies outside the relevant subspace.

Clearly, arguments of this sort based upon what can happen during a measure-
ment process must apply as well to any observable of a system of identical particles. That
is, in order for a measurement of an observable A not leave the system in an inadmissible
state, it must have a complete set of eigenstates spanning the relevant subspace, and must,
therefore, be symmetric under all particle exchanges.

So what kind of operators are, in fact, symmetric under all particle exchanges?
As we have seen, the number operators fNºg associated with a given direct product
representation of S(N) have the property that they count the number of particles in any
given single particle state, but are completely insensitive to which particles are in which
state. Indeed, if the state jÁº1 ; : : : ; ÁºN i is characterized by a given set of occupation
numbers fnºg (i.e., is an eigenstate of the number operators fNºg with a particular set of
eigenvalues) then so is any state U»jÁº1 ; : : : ; ÁºN i obtained from this one by a permutation
of the particles. In other words, it follows that if

Nº jÁº1 ; : : : ; ÁºN i = nº jÁº1 ; : : : ; ÁºN i (4.98)

then

Nº
£
U»jÁº1 ; : : : ; ÁºN i

¤
= nº

£
U»jÁº1 ; : : : ; ÁºN i

¤
= U»Nº jÁº1 ; : : : ; ÁºN i: (4.99)

Since this holds for each vector of the basis set, it follows that NºU» = U»Nº ; hence

[U»; Nº ] = 0; (4.100)

which implies that
[PS; Nº ] = 0 = [PA; Nº ] : (4.101)

Indeed, the number operators form a CSCO for the two subspaces of interest, and clearly
have a complete ONB of eigenvectors (i.e., the occupation number states) spanning each
subspace. It follows that any observable that can be expressed as a function of the number
operators will also be symmetric under all particle exchanges.

It is also possible to form suitable observables as appropriate linear combinations
of single-particle operators. To see how this comes about, consider as a speci…c example,
a system of two particles, each of which we can associate with a position operator ~R1 and
~R2 whose eigenstates in the two particle space S2 are the direct product position states
fj~r1; ~r2ig and have the property that

~R1j~r1; ~r2i = ~r1j~r1; ~r2i ~R2j~r1; ~r2i = ~r2j~r1; ~r2i (4.102)

To see what happens under particle exchange, consider the operator

U21 ~R1U21 = U21 ~R1U
+
21; (4.103)

where U21 = U+21 exchanges particles 1 and 2. Thus, we …nd that

U21 ~R1U21j~r1; ~r2i = U21 ~R1j~r2; ~r1i = U21~r2j~r2; ~r1i
= ~r2j~r1; ~r2i = ~R2j~r1; ~r2i (4.104)

Thus, as we might have anticipated,

U21 ~R1U
+
21 =

~R2: (4.105)
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More generally, in a system of N particles if B® is a single-particle operator associated
with particle ®; then its transform under U®¯

U®¯B®U
+
®¯ = B¯ (4.106)

is the corresponding operator for particle ¯. In this light, any symmetric combination of
operators such as ~R®+ ~R¯ is readily veri…ed to be symmetric under the associated particle
exchange, i.e.,

U®¯
³
~R® + ~R¯

´
U+®¯ =

~R¯ + ~R® (4.107)

whereas any antisymmetric combination, such as that related to the relative displacement
of two particles is antisymmetric, since

U®¯

³
~R® ¡ ~R¯

´
U+®¯ =

~R¯ ¡ ~R® = ¡
³
~R® ¡ ~R¯

´
: (4.108)

On the other hand, the relative distance between the particles
¯̄̄
~R¯ ¡ ~R®

¯̄̄
, being an even

function of the ~R¯ ¡ ~R® is symmetric. Thus any function of a symmetric operator is
symmetric, while an even function of antisymmetric operators is also symmetric.

Extending this to a system of N particles, any observable of a system of identical
particles must be symmetric under all particle exchanges and permutations. This would
include, e.g., any complete sum

B =
NX
®=1

B® (4.109)

of the corresponding single particle operators for each particle in the system. Examples
of operators of this type include the location of the center of mass

~R =
1

N

NX
®=1

~R® (4.110)

(recall that all the particles are assumed identical, so the masses are all the same), and
the total linear and angular momentum

~P =
NX
®=1

~P® ~L =
NX
®=1

~L®: (4.111)

As we have seen, a system of noninteracting particles has a Hamiltonian that is
of precisely this type, i.e.,

H =
NX
®=1

H® (4.112)

where, e.g.,

H® =
P 2®
2m

+ V (R®): (4.113)

Actually, although we have constructed these operators as symmetric linear com-
binations of single-particle operators, it is easy to show that any operator of this type can
also represented in terms of the number operators associated with a particular occupation
number representation. Suppose, e.g., that the single-particle states jÁºi(®) are eigenstates
of the single-particle operator B® with eigenvalues bº : Thus, e.g., B®jÁºi(®) = bº jÁºi(®):
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Then the direct product states formed from this set will be simultaneous eigenstates of
the all the related operators B®;

B®jÁº1 ; : : : ; Áº® ; : : : ; ÁºN i = bº® jÁº1 ; : : : ; Áº® ; : : : ; ÁºN i (4.114)

and so will be an eigenstate of the symmetric operator B =
P
®B®; i.e.,

BjÁº1 ; : : : ; ÁºN i =
X
®

B®jÁº1 ; : : : ; ÁºN i =
X
®

bº® jÁº1 ; : : : ; Áº® ; : : : ; ÁºN i

= bjÁº1 ; : : : ; Áº® ; : : : ; ÁºN i (4.115)

where the collective eigenvalue b is the sum of the individual single-particle eigenvalues

b =
NX
®=1

bº® =
NX
®=1

X
º

bº±º;º® =
X
º

bºnº (4.116)

where we have reexpressed the sum over the particle index ® by a sum over the state
index º; and collected all the eigenvalues associated with the nº particles in the same
single-particle state Áº together. Thus we can reexpress the eigenvalue equation above as

BjÁº1 ; : : : ; ÁºN i =
X
º

bºnº jÁº1 ; : : : ; ÁºN i

=
X
º

bºNº jÁº1 ; : : : ; ÁºN i (4.117)

and, through a simple process of identi…cation, reexpress the operator B in the form

B =
X
º

bºNº : (4.118)

Thus, e.g., the noninteracting particle Hamiltonian above can be expressed in terms of
the single particle energy eigenstates jÁºi obeying the equation H®jÁºi = "º jÁºi in the
form

H =
X
º

"ºNº : (4.119)

There is a real sense in which this way of expressing the Hamiltonian is to be preferred over
the earlier form, particularly when we are dealing with identical particles. The operators
Nº are not labeled by particle numbers, but by the single-particle states that can be
occupied or not. Thus in expressing the Hamiltonian in this fashion, we are not using a
notation that suggests (erroneously!) that we can actually label the individual particles
in the system, unlike, e.g., (4.112), which explicitly includes particle labels as well as the
number of particles in the system. The operator (4.119), on the other hand , makes no
explicit reference either to particle labels or to the number of particles in the system, and
therefore has exactly the same form in any of the spaces S(N) associated with any number
N = 1; 2; ¢ ¢ ¢ of identical particles.

Operators of this type, which can be expressed as a sum of single-particle opera-
tors, or equivalently, as a simple linear function of the number operators associated with
a particular occupation number representation, we will refer to as one-body operators,
since they really depend only on single-particle properties. In addition to these, there are
also operators that depend upon multiple-particle properties. For example, interactions
between particles are often represented by “two-body” operators of the form

Vint =
1

2

X
®;¯
® 6=¯

V (~R® ¡ ~R¯) (4.120)
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which is a symmetrized sum of operators that each depend upon the properties of just
two particles. It turns out that operators of this type can usually be expressed as a simple
bilinear function of the number operators associated with some set of single-particle states.
Typically, however, the Hamiltonian contains both one-body and two-body parts, and the
representation in which the one-body part is expressible in the form (4.119) is not one
in which the two-body part is expressible as a simple function of the number operators.
Conversely, a representation in which the interactions are expressible in terms of number
operators is not one in which the one-body part is, also. The reason for this is that,
typically, the interactions induce transitions between single-particle eigenstates, i.e., they
take particles out of the single-particle states that they occupy and place them back
into other single particle states. In the process, they change the occupation numbers
characterizing the state of the system. It is useful, therefore, to de…ne operators that are
capable of inducing transitions of this type.

We have, in a sense, already encountered operators that do this sort of thing in
our study of the harmonic oscillator. The energy eigenstates fjnigof the 1D harmonic
oscillator are each characterized by an integer n 2 f0; 1; 2; ¢ ¢ ¢ g that can be viewed as an
“occupation number” characterizing the number of vibrational quanta (now considered as
a kind of “particle”) in the system. The annihilation, creation, and number operators a;
a+; and N = a+a decrease, increase, and count the number of these quanta.

In the 3D harmonic isotropic oscillator, which is separable in Cartesian coordi-
nates, the energy eigenstates fjnx; ny; nzig are characterized by a set of three occupation
numbers fnº jº = 1; 2; 3g characterizing the number of vibrational quanta associated with
each Cartesian degree of freedom, and there are a set of annihilation, creation, and number
operators aº , a+º ; and Nº for each axis. The di¤erent annihilation and creation operators
obey characteristic commutation relations

[aº ; aº0 ] = 0 =
£
a+º ; a

+
º0
¤

(4.121)£
aº ; a

+
º0
¤
= ±º;º0 (4.122)

that, as we have seen, completely determine the associated integer spectrum of the number
operators Nº = a+º aº :

Within this context, we now note that product operators of the form a+x ay have
the e¤ect

a+x ay fjnx; ny; nzig =
p
nx + 1

p
ny fjnx + 1; ny ¡ 1; nzig (4.123)

of transferring a quantum of vibrational excitation from one axis to another, i.e., of
inducing transitions in the states of the quanta. It is precisely operators of this type,
that are capable of creating, destroying, and counting material particles in di¤erent single
particle states that we wish to de…ne for a collection of identical particles.

In order to carry this plan out, however, we need to realize that these creation and
annhilation operators have the e¤ect of taking the system out of the space of N -particles,
and into a space containing N +1; or N ¡1 particles. Thus, we need to expand our space
in a way that allows us to put together, in the same space, states of the system containing
di¤erent particle numbers. The mathematical procedure for doing this is to combine the
di¤erent N-particle spaces together in what is referred to as a direct sum of vector spaces
which is, in a way, similar to that associated with the direct product of vector spaces that
we have already encountered.. The de…nition and details associated with this procedure
are explored in the next section.

4.4.4 Fock Space as a Direct Sum of Vector Spaces

The idea of expressing a vector space as a sum of smaller vector spaces is actually implicitly
contained in some of the concepts that we have already encountered. Consider, e.g., an
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arbitrary observable A of a linear vector space S: By de…nition, the observable A possesses
a complete orthonormal basis fja; ¿ig of eigenstates spanning the space. The eigenstates
associated with a particular eigenvalue a form a subspace Sa of S; the vectors of which
are orthogonal to the vectors in any of the other eigenspaces of A: Also, any vector jÃi
in S can be written as a linear combination of vectors taken from each of the orthogonal
subspaces Sa; i.e.,

jÃi =
X
a

jÃai (4.124)

where
jÃai =

X
¿

Ãa;¿ ja; ¿i = PajÃi: (4.125)

Under these circumstances, we say that the space S can be decomposed into a direct
sum of the eigenspaces associated with the observable A; and symbolically represent this
decomposition in the form

S = Sa © Sa0 © Sa00 © ¢ ¢ ¢ (4.126)

The vector space S has a dimension equal to the sum of the dimensions of all the
eigenspaces Sa; as can be seen by counting up the basis vectors needed to span each
orthogonal subspace.

This idea of decomposing larger spaces into direct sums of smaller spaces can be
reversed. Thus, given two separate vector spaces S1 and S2 of dimension N1 and N2;
respectively, de…ned on the same …eld of scalars, we produce a larger vector space S of
dimension N = N1 +N2 as the direct sum

S = S1 © S2: (4.127)

The space S then contains, by de…nition, all vectors in S1; all vectors in S2; and all
possible linear combinations of the vectors in S1 and S2 (the latter two spaces now being
relegated to the role of orthogonal subspaces of S), with each vector in S1 orthogonal, by
construction, to each vector in S2:

It is this procedure that we carry out with the di¤erent N -particle spaces associ-
ated with a collection of identical particles. In particular, we de…ne the Fock Space of
a collection of identical bosons or fermions, respectively, as the space obtained by form-
ing the direct sum of the corresponding spaces describing N = 0; 1; 2; ¢ ¢ ¢ particles. In
particular, the Fock space of a set of identical bosons is written as the direct sum

SS = S
0
S © S1S © S2S © S3S © ¢ ¢ ¢ (4.128)

of the symmetric spaces S(N)S for each possible value of N: The space S0S of zero particles
is assumed to contain exactly one linearly-independent basis vector, referred to as the
vacuum and denoted by j0i; and vectors from di¤erent N -particle spaces are assumed to
be automatically orthogonal to each other.

Similarly, the Fock space associated with a collection of identical fermions is
written as the direct sum

SA = S
0
A © S1A © S2A © S3A © ¢ ¢ ¢ (4.129)

of the antisymmetric spaces S(N)S for each value of N; where, again, the space of zero
particles contains one basis vector, the vacuum, denoted by j0i; and the di¤erent N -
particle subspaces are assumed orthogonal. In what follows we explore separately the
di¤erent structure of the bosonic and fermionic Fock spaces.
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4.4.5 The Fock Space of Identical Bosons

As we have seen, the symmetric occupation number states

jn1; n2; : : :i
X
º

nº = N (4.130)

associated with a given set of single-particle states jÁºi forms an ONB for the space S(N)S

of N identical bosons. The collection of such states, therefore, with no restriction on the
sum of the occupation numbers, forms a basis for the Fock space SS of a set of identical
bosons. In particular, the vacuum state is associated, in this (and any) occupation number
representation with the vector

j0i = j0; 0; : : :i (4.131)

in which nº = 0 for all single particle states Áº . The single-particle states jÁºi themselves
can be expressed in this representation in the form

jÁ1i = j1; 0; 0; : : :i
jÁ2i = j0; 1; 0; : : :i

... (4.132)

and so on. These basis states of Fock space are all simultaneous eigenvectors of the
number operators Nº associated with this set of single particle states, and are uniquely
labeled by the associated set of occupation number fnºg : Thus, the operators fNºg form
a CSCO for Fock space, just as they do for each of the symmetric N-particle subspaces
S
(N)
S . Thus, we can write a completeness relation for this representation of the form

1X
n1=0

1X
n2=0

¢ ¢ ¢ jn1; n2; : : :ihn1; n2; : : : j = 1: (4.133)

We now wish to introduce operators that change the occupation numbers in a way similar
to that associated with the harmonic oscillator. Because we are interested at present in
describing bosons we want the spectrum of each number operator Nº to be exactly the
same as for the harmonic oscillator, i.e., nº 2 f0; 1; 2; ¢ ¢ ¢ g : Thus, we can actually model
the bosonic creation and annihilation operators directly on those of the oscillator system,
i.e., we introduce for each single particle state jÁºi an annihilation and creation operator,
whose action is de…ned on the occupation number states of this representation such that

a+º jn1; : : : ; nº ; : : :i =
p
nº + 1jn1; : : : ; nº + 1; : : :i (4.134)

and
aº jn1; : : : ; nº ; : : :i = pnº jn1; : : : ; nº ¡ 1; : : :i: (4.135)

It follows from this de…nition, as special cases, that the single-particle state jÁºi (which
lies in the subspace containing just one boson) can be written in a form

jÁºi = a+º j0i = a+º j0; 0; : : :i (4.136)

in which it is created “from nothing” by the operator a+º : It also follows that any annihi-
lation operator acting on the vacuum

aº j0i = 0 (4.137)

destroys it, i.e., maps it onto the null vector (not the vacuum!). Thus, the operator
a+º creates a boson in the state Áº and the operator aº removes a boson from that state.
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Expressing the same idea in a somewhat more pedestrian fashion, the operators aº and a+º
simply connect states in adjacent subspaces S(N)S of the bosonic Fock space SS. Consistent
with the de…nitions above, annihilation and creation operators associated with di¤erent
single particle states commute with one another, allowing us to write the commutation
relations for the complete set of such operators in the form

[aº ; aº0 ] = 0 =
£
a+º ; a

+
º0
¤

(4.138)£
aº ; a

+
º0
¤
= ±º;º0 ; (4.139)

which are usually referred to as “boson commutation relations”. It also follows from the
de…nition given above that

a+º aº jn1; : : : ; nº ; : : :i = nº jn1; : : : ; nº ; : : :i (4.140)

which allows us to identify this product of operators with the associated number operator,
i.e., Nº = a+º aº ; which obey the commutation relations

[Nº ; Nº0 ] = 0 (4.141)

[Nº ; aº0 ] = ¡aº±º;º0
£
Nº ; a

+
º0
¤
= a+º ±º;º0 (4.142)

Finally, just as it is possible to create the single particle state jÁºi from the
vacuum, so it is possible to express any of the occupation number states of this represen-
tation in a form in which they are created out of the vacuum by an appropriate product
of creation operators, i.e., it is readily veri…ed that

jn1; : : : ; nº ; : : :i = (a+1 )
n1(a+2 )

n2(a+3 )
n3 ¢ ¢ ¢p

n1!
p
n2!
p
n3! ¢ ¢ ¢

j0i; (4.143)

the normalization factors taking the same form, for each single particle state, as in the
simple harmonic oscillator.

4.4.6 The Fock Space of Identical Fermions

The construction of the Fock space of a set of identical fermions proceeds in a similar
fashion, but some interesting di¤erences arise as a result of the antisymmetric structure
of the states associated with this space. For the fermionic space, we know that the
antisymmetric occupation number states

jn1; n2; : : :i
X
º

nº = N (4.144)

generated from a given set of single-particle states jÁºi forms an ONB for the space S(N)S of
N identical fermions, provided that, as required by the exclusion principle, all occupation
numbers only take the values nº = 0 or nº = 1. Lifting the restriction on the sum of the
occupation numbers, we obtain a basis for the Fock space SA of this set of fermions. As
in the bosonic case, the vacuum state is associated with the vector

j0i = j0; 0; : : :i (4.145)

in which all nº = 0, and the single-particle states jÁºi can be written as
jÁ1i = j1; 0; 0; : : :i
jÁ2i = j0; 1; 0; : : :i

... (4.146)
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and so on. These basis states jn1; n2; : : :i of the fermionic Fock space are also simultaneous
eigenvectors of the operators Nº ; and are uniquely labeled by their occupation numbers
fnºg : Thus, the operators fNºg form a CSCO for the fermionic Fock space as well. The
completeness relation di¤ers from that of the bosonic space only by the limits on the
summations involved, i.e.,

1X
n1=0

1X
n2=0

¢ ¢ ¢ jn1; n2; : : :ihn1; n2; : : : j = 1: (4.147)

As in the bosonic case, we now wish to introduce operators that change the occupation
numbers. Clearly, however, we cannot model the fermion annihilation and creation oper-
ators directly on those of the harmonic oscillator, since to do so would result in a fermion
number spectrum inappropriately identical to that of the bosons. In the fermion case we
require that the number operator have eigenvalues restricted to the set f0; 1g :

It is a remarkable fact that a very slight modi…cation to the commutation relations
associated with the annihilation and creation operators of the harmonic oscillator yield
a set of operators that have precisely the properties that we need. To partially motivate
this modi…cation we note that the commutator [A;B] of two operators simply gives, if it
is known, a rule or prescription for reversing the order of a product of these two operators
whenever it is convenient to do so. Thus if we know the operator [A;B] then we can
replace the operator AB wherever it appears with the operator BA + [A;B] : Any rule
that allows us to perform a similar reversal would serve the same purpose. For example,
it sometimes occurs that the anticommutator fA;Bg of two operators, de…ned as the
sum

fA;Bg = AB +BA (4.148)

rather than the di¤erence of the operator product taken in each order, is actually a simpler
operator than the commutator. Under these circumstances, we can use the anticommu-
tator to replace AB whenever it occurs with the operator ¡BA+ fA;Bg :

With this in mind, we now consider an operator a and its adjoint a+ which obey
anticommutation relations that have the same structure as the commutation relations of
those associated with the harmonic oscillator, i.e., suppose that

fa; ag = 0 = ©a+; a+ª (4.149)©
a; a+

ª
= 1: (4.150)

Let us also de…ne, as in the oscillator case, the positive operator N = a+a and let us
assume that N has at least one nonzero eigenvector jºi; square normalized to unity, with
eigenvalue º; i.e., N jºi = ºjºi: The following statements are then easily shown:

1. a2 = 0 = (a+)2

2. aa+ = 1¡N

3. Spectrum(N) = f0; 1g

4. If º = 0; then aj0i = 0 and a+j0i = j1i; i.e., a+j0i is a square normalized eigenvector
of N with eigenvalue 1:

5. If º = 1; then a+j1i = 0 and aj1i = j0i; i.e., aj1i is a square normalized eigenvector
of N with eigenvalue 0:
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The …rst item follows directly upon expanding the anticommutation relations
fa; ag = 0 = fa+; a+g. The second item follows from the last anticommutation relation
fa; a+g = aa+ + a+a = 1; which implies that aa+ = 1 ¡ a+a = 1 ¡ N: To show that
the spectrum can only contain the values 0 an 1; we multiply the relation aa++ a+a = 1
by N = a+a and use the fact that aa = 0 to obtain N2 = N; which implies that N is a
projection operator and so can only have the eigenvalues speci…ed . To show that both of
these actually occur, we prove the last two items, which together show that if one of the
eigenvalues occurs in the spectrum of N then so does the other. These statements follow
from the following observations

jjaj0ijj2 = h0ja+aj0i = h0jN j0i = 0 (4.151)

jja+j0ijj2 = h0jaa+j0i = h0j (1¡N) j0i = h0j0i = 1 (4.152)

Na+j0i = a+aa+j0i = a+ (1¡N) j0i
= a+j0i (4.153)

which prove the fourth item, and

jja+j1ijj2 = h1jaa+j1i = h1j (1¡N) j1i = 0 (4.154)

jjaj1ijj2 = h1ja+aj1i = h1jN j1i = h1j1i = 1 (4.155)

Naj1i = a+aaj1i = 0 (4.156)

which proves the …nal item.
It should be clear that operators of this type have precisely the properties we

require for creating and destroying fermions, since they only allow for occupation numbers
of 0 and 1. We thus de…ne, for the fermion Fock space, a complete set of annihilation,
creation, and number operators aº ; a+º ; and Nº = a

+
º aº that remove, create, and count

fermions in the single particle states jÁºi: To de…ne these operators completely, we need
to specify the commutation properties obeyed by annihilation and creation operators
associated with di¤erent single particle states. It turns out the antisymmetry of the states
in this space under particle exchange require that operators associated with di¤erent states
anticommute, so that, collectively, the operators associated with this occupation number
representation obey the following fermion commutation relations

faº ; aº0g = 0 =
©
a+º ; a

+
º0
ª

©
aº ; a

+
º0
ª
= ±º;º0 ; (4.157)

which are just like those for bosons, except for replacement of the commutator bracket
with the anticommutator bracket. It is importnat to emphasize that, according to these
de…ntions, operators associated with di¤erent single-particle states do not commute, they
anticommute, which means for example that

a+º a
+
º0 = ¡a+º0a+º : (4.158)

Thus, the order in which particles are created in or removed from various states makes a
di¤erence. This reversal of sign is reminiscent of, and stems from the same source, as the
sign change that occurs when di¤erent direct product states in S(N) are projected into
the anti-symmetric subspace, i..e., it arises from the antisymmetry exhibited by the states
under particle exchange.
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The action of these fermion annihilation and creation operators on the vacuum is
essentially the same as for the boson operators, i.e.,

a+º j0i = jÁºi aº j0i = 0; (4.159)

and in a similar fashion we can represent an arbitrary occupation number state of this
representation in terms of the vacuum state through the expression

jn1; : : : ; nº ; : : :i = (a+1 )n1(a+2 )n2(a+3 )n3 ¢ ¢ ¢ j0i: (4.160)

Note that normalization factors are not necessary in this expression, since all the occupa-
tion numbers are equal to either 0 or 1: Also, the order of the creation operators in the
expression is important, with higher occupied states (states with large values of º) …lled
…rst, since the creation operators for such states are closer to the vacuum state being acted
upon than those with lower indices. This way of representing the occupation number state
jn1; : : : ; nº ; : : :i as an ordered array of creation operators acting on the vacuum is often
referred to as standard form.

When an annihilation or creation operator acts upon an arbitrary occupation
number state the result depends upon the whether the corresponding single particle states
is already occupied, as well as on the number and kind of single particle states already
occupied. Speci…cally, it follows from the anticommutation relations above that

aº jn1; : : : ; nº ; : : :i =
8<: 0 if nº = 0

(¡1)m jn1; : : : ; nº ¡ 1; : : :i if nº = 1
(4.161)

and

a+º jn1; : : : ; nº ; : : :i =
8<: (¡1)m jn1; : : : ; nº + 1; : : :i if nº = 0

0 if nº = 1
(4.162)

where
m =

X
º0<º

nº0 (4.163)

are the number of states with º0 < º already occupied. The phase factors (¡1)m are
easily proven using the anticommutation relations. For example, the action of a+º on the
state jn1; : : : ; nº ; : : :i can be determined by expressing the latter in standard form, and
then anticommuting the creation operator through those with indices less than º until it
is sitting in its standard position. Each anticommutation past another creation operator
generates a factor of ¡1; since a+º a+º0 = ¡a+º0a+º : The product of all these factors gives ¡1
raised to the power m =

P
º0<º nº0 :

It is worth noting that, although the fermion creation and annihilation operators
anticommute, the corresponding number operators Nº = a+º aº ; actually commute with
one another. This follows from the basic de…nition of these operators in terms of their
action on the occupation number states, but is also readily obtained using the anticom-
mutation relations. To see this, consider

NºNº0 = a
+
º aºa

+
º0aº0 with º 6= º0; (4.164)

and note that each time a+º0 is moved to the left one position it incurs a minus sign. When
it moves two positions, all the way to the left, we have a product of two minus signs, so
NºNº0 = a

+
º0a

+
º aºaº0 : But now we do the same thing with aº , moving it two positions to

the left and so …nd that
NºNº0 = a

+
º0aº0a

+
º aº = Nº0Nº : (4.165)
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In a similar fashion, e.g., we deduce, using the anticommutator aº0a+º + a
+
º aº0 = ±º;º0 ;

that

Nºaº0 = a+º aºaº0 = ¡a+º aº0aº
= a+º0a

+
º aº0 ¡ aº±º;º0 = aº0(Nº ¡ ±º;º0) (4.166)

which shows that
[Nº ; aº0 ] = ¡aº0±º;º0 (4.167)

which is the same commutation relation as for bosons. In a similar fashion it is readily
established that aºa+º0 = ±ºº0 ¡ a+º0aº

Nºa
+
º0 = a+º aºa

+
º0 = a

+
º (±ºº0 ¡ a+º0aº)

= a+º0±ºº0 + a
+
º0a

+
º aº = a

+
º0±ºº0 + a

+
º0Nº (4.168)

which shows that £
Nº ; a

+
º0
¤
= +a+º0±º;º0 (4.169)

also as for bosons.

4.4.7 Observables of a System of Identical Particles Revisited

Having compiled an appropriate set of operators capable of describing transitions between
di¤erent occupation number states we now reconsider the form that general observables
of a system of identical particles take when expressed as operators of Fock space. Recall
that the problem that led to our introduction of Fock space was basically that di¤erent
parts of the same operator (e.g. the Hamiltonian) are expressible as simple functions of
number operators in di¤erent occupation number representations. The problem is similar
to that encountered in simpler quantum mechanical problems where the question often
arises as to whether to work in the position representation, the momentum representation,
or some other representation altogether. We are thus led to consider how the occupation
number representations associated with di¤erent sets of single particle states are related
to one another.

Recall that any orthonormal basis of single-particle states generates its own oc-
cupation number representation. Thus, e.g. an ONB of states fjÁºi j º = 1; 2; ¢ ¢ ¢ g
generates a representation of states jn1; : : : ; nº ; : : :i that are expressible in terms of a set
of creation, annihilation, and number operators a+º ; aº ; and Nº = a+º aº ; while a dif-
ferent ONB of states fjÂ¹i j ¹ = 1; 2; ¢ ¢ ¢ g generates a di¤erent representation of states
j~n1; : : : ; ~n¹; : : :i; say, expressible in terms of a di¤erent set of creation, annihilation, and
number operators b+¹ ; b¹; and Nº = b

+
¹ b¹:We know, on the other hand, that the two sets

of single-particle states are related to one another through a unitary transformation U
such that, e.g.,

jÁºi = U jÂºi º = 1; 2; ¢ ¢ ¢ (4.170)

with matrix elements
U¹º = hÂ¹jU jÂºi = hÂ¹jÁºi (4.171)

that are the inner products of one basis set in terms of the other. This allows us to write,
e.g., that

jÂ¹i =
X
º

jÁºihÁº jÂ¹i =
X
º

U¤¹º jÁºi (4.172)

where U¤¹º = hÂ¹jÁºi¤ = hÁº jÂ¹i: But we also know that the single-particle states jÁºi
can be expressed in terms of the vacuum state through the relation

jÁºi = a+º j0i: (4.173)
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Using this in the expression for jÂ¹i; we …nd that

jÂ¹i =
X
º

U¤¹º jÁºi =
X
º

U¤¹ºa
+
º j0i

= b+¹ j0i (4.174)

where we have identi…ed the operator

b+¹ =
X
º

U¤¹ºa
+
º (4.175)

that creates jÂ¹i out of the vacuum. The adjoint of this relation gives the corresponding
annihilation operator

b¹ =
X
º

U¹ºaº : (4.176)

Thus the annihilation/creation operators of one occupation number representation are
linear combinations of the annihilation/creation operators associated with any other oc-
cupation number representation, with the coe¢cients being the matrix elements of the
unitary transformation connecting the two sets of single particle states involved. It is
straightforward to show that this unitary transformation of annihilation and creation op-
erators preserves the boson or fermion commuation relation that must be obeyed for each
type of particle. To treat both types of particles simultaneously, we introduce the nota-
tion [A;B]§ = AB §BA; where the minus sign stands for the commutator (and applies
to boson operators) and the plus sign stands for the anticommutator (which applies to
fermion operators). Thus, if the operators aº and a+º obey the relations

[aº ; aº0 ]§ = 0 =
£
a+º ; a

+
º0
¤

£
aº ; a

+
º0
¤
§ = ±º;º0 (4.177)

Then, using the transformation law we can calculate the corresponding relation for the
operators b¹ and b+¹ : Thus, e.g.,

[b¹; b¹0 ]§ = b¹b¹0 § b¹0b¹
=

X
º;º0

U¹ºU¹0º0(aºaº0 § aº0aº)

=
X
º;º0

U¹ºU¹0º0 [aº ; aº0 ]§ = 0 (4.178)

where in the last line we have used the appropriate relations for each type of particle.
The adjoint of this relation shows that

h
b+¹ ; b

+
¹0

i
§
= 0; as well. In a similar fashion we see

that h
b¹; b

+
¹0

i
§

=
X
º;º0

U¹ºU
¤
¹0º0

£
aº ; a

+
º0
¤
§ =

X
º;º0

U¹ºU
¤
¹0º0±º;º0 =

X
º

U¹ºU
¤
¹0º

=
X
º

hÂ¹jÁºihÁº jÂ¹0i = hÂ¹jÂ¹0i = ±¹;¹0 (4.179)

where we have used the completeness of the states jÁºi and the orthonormality of the
states jÂ¹i: Thus, the b’s and b+’s obey the same kind of commutation/anticommutation
relations as the a’s and a+’s.
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We are now in a position to see what di¤erent one-body and two-body operators
look like in various representations. Suppose, e.g., that H1 is a one-body operator that is
represented in the occupation number states generated by the single-particle states jÂ¹i
in the form

H1 =
X
¹

"¹N¹ =
X
¹

"¹b
+
¹ b¹: (4.180)

This implies, e.g., that in the space of single-particle, the states jÂ¹i are the associated
eigenstates of H1; i.e., H1jÂ¹i = "¹jÂ¹i: To …nd the form that this takes in any other
occupation number representation we simply have to express the annihilation and creation
operators in (4.180) as the appropriate linear combinations of the new annihilation and
creation operators, i.e.,

H1 =
X
º;º0¹

"¹U
¤
¹ºU¹0º0a

+
º aº0

=
X
º;º0

a+º Hºº0aº0 (4.181)

where

Hºº0 =
X
¹

U¤¹º"¹U¹0º0 =
X
¹

hÁº jÂ¹i"¹hÂ¹jÁº0i

= hÁº jH(1)
1 jÁº0i (4.182)

in which we have identi…ed the expansion

H
(1)
1 =

X
¹

jÂ¹i"¹hÂ¹j (4.183)

of the operator H1; as it is de…ned in the one-particle subspace. Although we have
expressed this in a notation suggestive of Hamiltonians and energy eigenstates, the same
considerations apply to any one-body operator. Thus, a general one body operator can be
represented in Fock space in an arbitrary occupation number representation in the form

B1 =
X
º;º0

a+º Bºº0aº0 Bºº0 = hÁº jB(1)1 jÁº0i: (4.184)

In the special case when B is diagonal in the speci…ed single particle representation, the
double sum collapses into a single sum, and the resulting operator is reduced to a simple
function of the number operators of that representation. Thus, a one-body operator B
induces single particle transitions, taking a particle out of state Áº0 and putting it into
state Áº with amplitude Bºº0 :

As we noted earlier, two body operators are often associated with interactions
between particles. Often, a representation can be found in which such an operator can be
expressed in the following form

H2 =
1

2

X
¹;¹0

¹6=¹0

N¹N¹0V¹¹0 +
1

2

X
¹

N¹(N¹ ¡ 1)V¹¹ (4.185)

where in the …rst term V¹¹0 is the interaction energy between a particle in the state jÂ¹i
and another particle in a di¤erent state jÂ¹0i: The second term includes the interactions
between particles in the same states, and takes this form because a particle in a given
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state does not interact with itself (Note that 12N¹(N¹¡ 1) is the number of distinct pairs
of N¹ particles). Both terms can be combined by inserting an appropriate Kronecker
delta, i.e.,

H2 =
1

2

X
¹;¹0

N¹(N¹0 ¡ ±¹¹0)V¹¹0 : (4.186)

This can be simpli…ed further. Using the commutation laws [N¹0 ; b¹] = ¡b¹±¹¹0 obeyed
by both fermion and boson operators (see the discussion in the last section) it follows that

N¹0b¹ = b¹(N¹0 ¡ ±¹¹0): (4.187)

Multiplying this on the left by b+¹ ; we deduce that

b+¹N¹0b¹ = b
+
¹ b

+
¹0b¹0b¹ = N¹(N¹0 ¡ ±¹¹0); (4.188)

which allows us to write

H2 =
1

2

X
¹;¹0

b+¹ b
+
¹0V¹¹0b¹0b¹: (4.189)

Thus, in this form the two-body interaction is a sum of products involving two annihila-
tion and two creation operators, but it only involves two summation indices, since each
annihilation operator is paired o¤ with a creation operator of each type.

To see what this looks like in any other occupation number representation we just
have to transform each of the annihilation and creation operators in the sum. Thus we
…nd that in a representation associated with a set of states jÁºi = U jÂºi;

H2 =
1

2

X
¹;¹0

b+¹ b
+
¹0V¹¹0b¹0b¹

=
1

2

X
q;r;s;t

X
¹;¹0

U¤¹qU
¤
¹0rU¹0sU¹tV¹¹0a

+
q a

+
r0asat: (4.190)

where we have used the roman indices q; r; s; and t to avoid the proliferation of multiply-
primed º’s. To simplify this we now re-express the matrix elements of the unitary trans-
formation in terms of the inner products between basis vectorsX

¹;¹0
U¤¹qU

¤
¹0rU¹0sU¹tV¹¹0 =

X
¹;¹0
hÁqjÂ¹ihÁrjÂ¹0iV¹¹0hÂ¹0 jÁsihÂ¹jÁti (4.191)

and notice that each pair of inner products on the right and left of V¹¹0 can be expressed as
a single inner product between direct product states in the space S(2) of just two particles,
i.e.,X

¹;¹0
hÁqjÂ¹ihÁrjÂ¹0iV¹¹0hÂ¹0 jÁsihÂ¹jÁti =

X
¹;¹0
hÁq; ÁrjÂ¹; Â¹0iV¹¹0hÂ¹; Â¹0 jÁt; Ási

= hÁq; ÁrjH(2)
2 jÁt; Ási (4.192)

where the order of the terms has been chosen to reproduce the original set of four inner
products, and where we have identi…ed

H
(2)
2 =

X
¹;¹0

jÂ¹; Â¹0iV¹¹0hÂ¹; Â¹0 j (4.193)
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as the form that this operator takes in the space S(2) of just two particles. Working our
way back up, we …nd that in an arbitrary occupation number representation, a general
two-body interaction can be written in the form

H2 =
1

2

X
q;r;s;t

a+q a
+
r Vqrtsasat (4.194)

where
Vqrts = hÁq; ÁrjH(2)

2 jÁt; Ási (4.195)

is the matrix element of the operator taken between states of just two (distinguishable)
particles. Thus, to construct such an operator for an arbitrary occupation number rep-
resentation we simply need to be able to takes its matrix elements with respect to the
corresponding set of two-particle direct-product states.

As an example, we note that the Coulomb interaction

V (~r1; ~r2) =
e

j~r1 ¡ ~r2j (4.196)

between particles can be written in the form

V =
1

2

X
q;r;s;t

a+q a
+
r0Vqrtsasat (4.197)

where the matrix elements are evaluated, e.g., in the two-particle position representation
as

Vqrts = hÁq; ÁrjV jÁt; Ási
=

Z
d3r

Z
d3r0 Á¤q(~r)Á

¤
r(~r

0)
e

j~r ¡ ~r 0jÁt(~r)Ás(~r
0) (4.198)

in terms of the wave functions associated with this set of single particle states.

4.4.8 Field Operators and Second Quantization

The use of creation and annihilation operators of the type we have just considered is often
referred to as the method of second quantization . The “…rst quantization” implied
by this phrase is that developed, e.g., by Schrödinger, in which the dynamical variables
xi and pi of classical mechanics are now viewed as operators, and the state of the system
is characterized by wave functions Ã(xi; t) or Ã(pi; t) of one or another of this set of
variables. On the other hand, there are other systems studied by classical mechanics that
cannot be described as particles, e.g., waves traveling on a string or through an elastic
medium, or Maxwell’s electric and magnetic …eld equations, where the classical dynamical
variables are just the …eld amplitudes Ã(x; t) at each point, which like the position and
momentum of classical particles always have a well-de…ned value, and where x is now
simply viewed as a continuous index labeling the di¤erent dynamical variables Ã(x) that
are collectively needed to fully describe the con…guration of the system. In a certain
sense, Schrödinger’s wave function Ã(x; t) for a single particle can also be viewed “as a
sort of classical …eld” and Schrödinger’s equation of motion can be viewed as simply the
“classical” wave equation obeyed by this …eld. One can then ask what happens when this
classical system is quantized, with the corresponding …eld amplitudes being associated
with operators. It is actually possible to follow this path from classical …elds to quantum
ones through a detailed study of the objects of classical …eld theory, including Lagrangian
densities, conjugate …elds, and so on.
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As it turns out, however, the end result of such a process is actually implicitly
contained in the mathematical developments that we have already encountered. The
key to seeing this comes from the realization that the procedure for transforming be-
tween di¤erent occupation number representations applies, in principle, to any two sets
of single-particle states. Until now we have focused on transformations between discrete
ONB’s, e.g., fjÁºig and

©jÂ¹iª ; but it is possible to consider transformations that include
continuously indexed basis sets as well.

A case of obvious interest would be the basis states fj~rig of the position repre-
sentation. The transformation law between these states and those of some other single-
particle representation, e.g., fjÁºig takes the form

jÁºi =
Z
d3r j~rih~rjÁºi =

Z
d3r Áº(~r) j~ri =

Z
d3r Uº(~r) j~ri (4.199)

and
j~ri =

X
º

jÁºihÁº j~ri =
X
º

Á¤º(~r)jÁºi =
X
º

U¤º (~r)jÁºi (4.200)

where Uº(~r) = h~rjÁºi and U¤º (~r) = hÁº j~ri are simply the wave functions (and conjugates)
for the single particle states jÁºi in the position representation. Expressing, the single-
particle state jÁºi in terms of the vacuum state, and substituting into the expansion for
the state j~ri; we …nd that

j~ri =
X
º

Á¤º(~r)a
+
º j0i: (4.201)

This allows us to identify the operator that creates out of the vaccum a particle at the
point ~r; (i.e., in the single-particle state j~ri) as a linear combination of creation operators
associated with the states jÁºi. We will denote this new creation operator with the symbol
Ã̂
+
(~r); i.e.,

Ã̂
+
(~r) =

X
º

Á¤º(~r)a
+
º : (4.202)

The adjoint of the operator Ã̂
+
(~r) gives the corresponding annihilation operator

Ã̂(~r) =
X
º

Áº(~r)aº (4.203)

These two families of operators are referred to as …eld operators, since they de…ne an
operator-valued …eld of the real space position parameter ~r. Thus Ã̂

+
(~r) creates a par-

ticle at ~r; and Ã̂(~r) destroys or removes a particle from that point. The fact that the
basis states j~ri of this single-particle representation are not square-normalizable leads to
some slight but fairly predictable di¤erences between the …eld operators and the anni-
hilation and creation operators associated with discrete representations. For example,
the commutation/anticommutation relations obeyed by the …eld operators now take a
form more appropriate to the continuous index associated with this set of operators. The
transformation law is derived as in the discrete case, and we …nd thath

Ã̂(~r); Ã̂(~r 0)
i
§
=
X
º;º0

Áº(~r)Áº0(~r
0) [aº ; aº0 ]§ = 0 (4.204)

h
Ã̂
+
(~r); Ã̂

+
(~r 0)

i
§
=
X
º;º0

Á¤º(~r)Á
¤
º0(~r

0)
£
a+º ; a

+
º0
¤
§ = 0 (4.205)
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and h
Ã̂(~r); Ã̂

+
(~r 0)

i
§

=
X
º;º0

Áº(~r)Á
¤
º0(~r

0)
£
a+º ; a

+
º0
¤
§

=
X
º;º0

Áº(~r)Á
¤
º0(~r

0)±ºº0 =
X
º;º

Áº(~r)Á
¤
º(~r

0)

=
X
º;º

h~rjÁºihÁº j~r 0i = h~rj~r 0i

= ±(~r ¡ ~r 0) (4.206)

Also, as a consequence of the normalization, the product of Ã̂
+
(~r) and Ã̂(~r) does not give

a number operator, but a number density operator, i.e.,

n̂(~r) = Ã̂
+
(~r)Ã̂(~r) (4.207)

counts the number of particles per unit volume at the point ~r. That the product has the
correct units to describe a number density follows directly from the commutation relations
just derived. From this we can de…ne number operators N­ that count the number of
particles in any region of space ­; as the integral

N­ =

Z
~r2­

d3r Ã̂
+
(~r)Ã̂(~r) (4.208)

with the total number operator N obtained by extending the integral to all space.
Finally, we can express various one-body and two body operators using this rep-

resentation, by sightly extending our results obtained with discrete representations. Thus,
e.g., a general one-body operator can be expressed in terms of the …eld operators through
the expression

H1 =

Z
d3r

Z
d3r0 Ã̂

+
(~r)H1(~r; ~r

0)Ã̂(~r) H1(~r;~r
0) = h~rjH(1)

1 j~r 0i: (4.209)

For a collection of noninteracting identical particles moving in a common potential, e.g.,

H(~r;~r 0) = h~rjP
2

2m
j~r 0i+ h~rjV j~r 0i = ¡ ~

2

2m
r2±(~r ¡ ~r 0) + V (~r)±(~r ¡ ~r 0) (4.210)

which reduces the previous expression to the familiar looking form

H =

Z
d3r

·
Ã+(~r)

µ
¡ ~

2

2m

¶
r2Ã(~r) + Ã+(~r)V (~r)Ã(~r)

¸
(4.211)

which, it is to be emphasized is an operator in Fock space, although it looks just like a
simple expectation value. Similarly, a general two-body operator can be expressed in the
somewhat more cumbersome form

H2 =

Z
d3r1

Z
d3r2

Z
d3r3

Z
d3r4 Ã̂

+
(~r1)Ã̂

+
(~r2)h~r1; ~r2jH2j~r3; ~r4iÃ̂(~r4)Ã̂(~r3): (4.212)

The form that this takes for the Coulomb interaction is left as an exercise for the reader.


