
Chapter 9
SCATTERING THEORY

9.1 General Considerations

In this chapter we consider a situation of considerable experimental and theoretical inter-
est, namely, the scattering of particles o¤ of a medium containing some type of scattering
centers, such as atoms, molecules, or nuclei. The basic experimental situation of interest
is indicated in the …gure below.

An incident beam of particles impinges upon a target, which maybe a cell con-
taining atoms or molecules in a gas, a thin metallic foil, or a beam of particles moving at
right angles to the incident beam. As a result of interactions between the particles in the
initial beam and those in the target, some of the particles in the beam are de‡ected and
emerge from the target traveling along a direction (µ; Á) with respect to the original beam
direction, while some are left unscattered and emerge out the other side having undergone
no de‡ection (or undergo “forward scattering”). The number of particles de‡ected along
a given direction are then counted in a detector of some sort. The kinds of interactions
and the analyis of general scattering situations of this type can be quite complicated. We
will focus in the following discussion on the scattering of incident particles by scattering
centers in the target uner the following conditions:

1. The incident beam is composed of idealized spinless, structureless, point particles.

2. The interaction of the particles with the scattering centers is assumed to be elastic
so that the energy of the scattered particle is …xed, the internal structure of the
scatterer (if any) and, thus, the potential seen by the scattered particle does not
change during the scattering event.

3. There is no multiple scattering, so that each incident particle interacts with at most
one scattering center, a condition that can be obtained with su¢ciently thin or
dilute targets.
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4. The scattering potential V (~r1; ~r2) = V (j~r1 ¡ ~r2j) between the incident particle and
the scattering center is a central potential, so we can work in the relative coordinate
and reduced mass of the system.

Under these conditions, the picture of interest reduces to that depicted below,
in with an incident particle characterized by a plane wave of wavevector ~k = kẑ along a
direction that we take parallel to the z-axis, and scattered particles emerging through a
in…nitesimal solid angle d­ along some direction (µ; Á).

We may characterize the incident beam by its (assumed uniform) current density
~Ji along the z axis. Classically

~Ji = n~vi

where n = dN=dV is the particle number density characterizing the beam. The incident
particle current through a speci…ed surface S is then the surface integral

I =
dNS
dt

=

Z
S

~Ji ¢ d~S:

The scattered particle current dIS into a far away detector subtending solid angle d­
along (µ; Á) is found to be proportional to (i) the magnitude of the incident ‡ux density
Ji, and (ii) the magnitude of the solid angle d­ subtended by the detector. We write

dIS =
d¾(µ; Á)

d­
Jid­

where the constant of proportionality d¾(µ; Á)=d­ is referred to as the di¤erential cross
section for elastic scattering in the direction (µ; Á). This quantity contains all information
experimentally available regarding the interaction between scattered particles and the
scattering center. We also de…ne the total cross section ¾ = ¾tot in terms of the total
scattered current IS through a detecting sphere centered on the scattering center:

IS =

Z
dIS = Ji

Z
d¾(µ; Á)

d­
d­ = Ji¾tot

so that the total cross section is simply the integral over all solid angle

¾tot =

Z
sphere

d¾(µ; Á)

d­
±­:

Figure 1
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of the di¤erential cross section. We note that d¾=d­ and ¾tot both have units of area

¾tot =
Is
Ji

d¾

d­
=
1

Ji

dIS
d­

and physically represent the e¤ective cross sectional area of the target atom “seen” by the
incident particle. As such it contains, in principle, information about the relative sizes
of the particles involved in the collision as well as the e¤ective range of the interaction
potential V (r) without which there would be no scattering. Cross sections are often
measured in “barns”, where by de…nition 1 barn = 10¡24 cm2 , which corresponds to the
cross sectional area of an object with a linear extent on the order of 10¡12 cm.

Thus, given that the cross section is the primary observable of a scattering exper-
iment, the main theoretical task reduces to the following: given the scattering potential
V (r); calculate the di¤erential and total scattering cross sections d¾=d­ and ¾tot as a
function of the energy or wavevector of the incident particle. This problem can be ad-
dressed in a number of di¤erent ways. Perhaps the simplest conceptual approach would
be as follows:

1. Consider a particle in an initial state at t = ¡1 corresponding to a wave packet at
z = ¡1 centered in momentum about ~k = kẑ:

2. Evolve the wavepacket accordiing to the full Schrödinger equation

i~ d
dt
jÃ(t)i = HjÃ(t)i

to large positive times t! +1:
3. Evaluate the probability current through d­ along (µ; Á):

Such an approach leads to a study of the so-called S-matrix

S = lim
t!1U(t;¡t) = U(¡1;1):

Rather than proceed along this route, we make a few simplifying observations. First,we
note that the essential scattering process is time-independent, and can yield steady-state
scattering currents, with Ji and JS independent of time. Secondly, for elastic scattering
the particle energy is …xed and well de…ned, and it seems a shame to throw this away by
forming a wavepacket of the type described. Finally, we note that the evolution of the
system is completely governed by the positive energy solutions to the energy eigenvalue
equation

(H ¡ ")jÃi = 0:
This last observation leads us to ask whether or not there generally exist stationary
solutions to the energy eigenvalue equation that have asymptotic properties corresponding
to the experimental situation of interest. The answer, in general, is yes and the solutions of
interest are referred to as stationary scattering states of the associated potential V (r): To
understand these states it is useful to consider the 1D analogy of a free particle incident
upon a potential barrier, as indicated in the diagram. For this situation, there exist
solutions in which the wave function to the left of the barrier is a linear combination of a
right-going (incident) and left-going (scattered) wave, while the wave function to the right
of the barrier contains a part that corresponds to the transmitted or “forward scattered”
part of the wave. We note that experimentally, the wave function in the barrier region
is inaccessible, and the only information that we can obtain is by measuring the relative
magnitudes of the forward and backward scattered waves.
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Figure 2

Similar arguments in 3-dimensions lead us to seek solutions to the eigenvalue
equation of the form

Á²(~r) = e
ikz + ÁS(~r)

in which the …rst part on the right clearly corresponds to the incident part of the beam
and the second term corresponds to the scattered part. The subscript " indicates the
energy of the incoming and outgoing particle, which is related to the wavevector of the
incoming particle through the standard relation " = ~2k2=2m: We expect that at large
distances from the scattering center, where the potential vanishes, the scattered part of
the wave takes the form of an outward propagating wave. Hence, as r!1; we anticipate
that ÁS has the asymptotic behavior

ÁS(~r) »
f(µ; Á)eikr

r
r!1:

Note that this form satis…es the eigenvalue equation for large r beyond the range of the
potential, where the Hamiltonian reduces simply to the kinetic energy H ! H0 = P 2=2m:

Thus we seek solutions to the eigenvalue equation

(H0 + V ) jÁ²i = "jÁ"i

which have the asymptotic form

Á"(~r) » eikz + f(µ; Á)
eikr

r

where the quantity f(µ; Á) which determines the angular distribution of the scattered part
of the wave is referred to, appropriately as the scattering amplitude in the (µ; Á) direction
or, alternatively, as the scattering length since it is readily determined by dimensional
analysis that f(µ; Á) has units of length. The obvious question that arises at this point is
the following: what is the relation between the scattering length f(µ; Á) and the scattering
cross section d¾(µ; Á)=d­? To anwer this question we note that, by de…nition, the current
into the detector can be written

dIS = ¾(µ; Á)Jid­:
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But we can also write this in terms of the scattered current density ~JS = ~JS(r; µ; Á); i.e.,

dIs = ~JS ¢ d~S = r2JSd­:
Thus, classically,

Ji
d¾(µ; Á)

d­
= r2Js(r; µ; Á):

Now for quantum systems these conditions will be obeyed by the corresponding mean
values taken with respect to the stationary state of interest, so that

d¾(µ; Á)

d­
= r2

hJs(r; µ; Á)i
hJii :

Thus, we need operators corresponding to the current density. Classically, for a single
particle at ~r,

~J(~r0) = n(~r0)~v = ±(~r ¡ ~r0)~v = ±(~r ¡ ~r0) ~p
m
:

In going to quantum mechanics we replace ~r and ~p by operators and symmeterize to ensure
Hermiticity. Thus,

J(~r0) =
1

2m
[±(~R¡ r0)~P + ~P±(~R¡ ~r0)]:

After a short calculation, the mean value of ~J(~r0) in the state jÁi is found to be

hÁj ~J(~r0)jÁi = 1

m
Re

·
Á¤(~r0)

~
i
~rÁ(~r0)

¸
:

Using this, the incident ‡ux, associated with the plane wave part of the eigenstate, can
be written

hJii =
¯̄̄̄
1

m
Re

·
e¡ikz

~
i
~reikz

¸¯̄̄̄
=
~k
m
:

By contrast, the scattered ‡ux is then given by the expression

h ~JSi = hj ~J(r; µ; Á)i = 1

m
Re

·
Á¤S(~r)

~
i
~rÁS(~r)

¸
which is most conveniently expressed in spherical coordinates, for which

rr = @

@r
rµ = 1

r

@

@µ
rÁ = 1

r sin µ

@

@Á

Using these along with the assumed asymptotic form for ÁS we …nd that

hJSir = ~k
m

1

r2
jf(µ; Á)j2

hJSiµ = ~
m

1

r3
Re

·
1

i
f¤
@f

@µ

¸
hJSiÁ = ~

m

1

r3 sin µ
Re

·
1

i
f¤
@f

@Á

¸
which shows that asymptotically the angular components of current density become negli-
gible compared to the radial component. Thus, from the radial component of the current
density we deduce that

d¾(µ; Á)

d­
= r2

hJs(r; µ; Á)ir
hJii = jf(µ; Á)j2 :
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Thus, there is a very simple relation

d¾(µ; Á)

d­
= jf(µ; Á)j2

between the scattering length and the cross sections that are experimentally accessible.
We now turn to the problem of actually solving the energy eigenvalue equation to …nd the
stationary scattering solutions, and thereby to determine the scattering length f(µ; Á) for
a given potential V (r):

9.2 An Integral Equation for the Scattering Eigenfunctions

We seek solutions to the eigenvalue equation

(H ¡ ") jÁ"i = 0
H = H0 + V

in which H0 = ~2K2=2m and we assume that

V (r)! 0 as r!1 (at least as fast as r¡1)

Since we are describing a situation where we are sending in incident particles with well
de…ned kinetic energy, we expect solutions for all positive energys " ¸ 0; so we need just
…nd the corresponding eigenvectors jÁ"i, which have the form

jÁ"i = jÁ0i+ jÁSi

in which jÁ0i = j~k0i is the incident part, which is an eigenstate of H0 with energy " =
~2k2=2m

Á0(~r) = h~rjÁ0i = ei~k0¢~r = eikz
and jÁSi is the scattered part, which should dissapear as the potential V (r) goes to zero.
To proceed, we rewrite the eigenvalue equation

(H0 + V ¡ ") jÁ"i = 0
in the form

("¡H0) jÁ"i = V jÁ"i
and substitute in the assumed form of the solution to obtain

("¡H0) [jÁ0i+ jÁSi] = V jÁ"i
or

("¡H0)jÁSi = V jÁ"i:
In this last form, only the scattered part of the state appears on the left hand side. We
note at this point that if the operator (" ¡H0) possessed an inverse, we could apply it
to the left hand side to obtain a formal expression for jÁSi: The problem with this idea
is that for " > 0 the operator (" ¡H0) has a large degenerate subspace with eigenvalue
0; since H0 generally has a degenerate subspace for any positive energy ". Thus, strictly
speaking, det("¡H0) = 0 and the inverse is not de…ned.

To overcome this di¢culty we employ a little analytic continuation, and de…ne
the resolvent operator G(z); de…ned for all non-real z; as the operator inverse of z ¡H0;
i.e.,

G(z) = (z ¡H0)¡1
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since H0 has no non-real eigenvalues, this operator exists for all non-real values of the
complex parameter z. We then de…ne the (causal) Green’s function operator G+(") as
the limit, if it exists, of G(z) as z ! "+ i´; where ´ = 0+ is a positive in…nitesimal:

G+(") = lim
´!0+

("+ i´ ¡H0)¡1 ´ ("+ ¡H0)¡1 :

where
"+ = "+ i´:

Thus, if the limit exists, then

lim
´!0+

G("+ i´)("¡H0) = G+(")("¡H0) = 1

and we can write
G+(")("¡H0)jÁSi = G+(")jÁ"i

or, more simply,
jÁSi = G+(")jÁ"i

Adding the incident part of the state jÁ0i to both sides, we then obtain the so-called
Lipmann-Schwinger equation

jÁ"i = jÁ0i+G+V jÁ"i
which is itself a representation independent form of what is often referred to as the in-
tegral scattering equation. The latter follows from the Lipmann-Schwinger equation by
expressing it in the position representation. Multiplying on the left by the bra h~rj we
obtain

h~rjÁ"i = h~rjÁ0i+ h~rjG+V jÁ"i
or, inserting a complete set of position states,

Á"(~r) = e
ikz +

Z
d3~r0 G+(~r; ~r0)V (~r0)Á"(~r

0):

Thus, we obtain an integral equation for the scattering eigenfunction Á"(~r) which has, we
hope, the correct asymptotic behavior. To make this useful,we need to (i) evaluate the
matrix elements G+(~r;~r0) = h~rjG+(")j~r0i; and (ii) actually solve the integral equation, at
least in the asymptotic regime.

9.2.1 Evaluation Of The Green’s Function

To evaluate the matrix elements of the Green’s function it is most convenient to begin the
calculation in the wavevector representation in which the operator (" ¡H0) is diagonal.
Note that in k-space

h~kj("+ ¡H0)j~k0i = ("+ ¡ "k) ±(~k ¡ ~k0)
where

"k = ~2k2=2m

so that

("+ ¡H0) =
Z
d3q j~qi ("+ ¡ "q) h~qj

and hence, as is easily veri…ed by direct multiplication,

("+ ¡H0)¡1 =
Z
d3q

j~qih~qj
("+ ¡ "q)
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If we set

k+ =

r
2m"+
~2

= k + i´ (´ = 0+)

where the positivity of ´ in this last equation follows from the positive imaginary part of
"+; then we can write

G+(") =
2m

~2

Z
d3q

j~qih~qj
k2+ ¡ q2

so that

G+(~r;~r
0) =

2m

~2

Z
d3q

h~rj~qih~qj~r0i
k2+ ¡ q2

=
2m

~2

Z
d3q

(2¼)3
ei~q¢(~r¡~r

0)

k2+ ¡ q2

=
2m

~2

Z 2¼

0

dÁ

Z ¼

0

dµ sin µ

Z 1

0

dq q2

(2¼)3
ei~qR cos µ

k2+ ¡ q2

where ~R = ~r ¡ ~r0 and R =
¯̄̄
~R
¯̄̄
: The angular integrations are readily evaluated and give

G+(~r;~r
0) =

m

~2¼2R

Z 1

0

dq
q sin(qR)

k2+ ¡ q2
=

m

2~2¼2R

Z 1

¡1
dq
q sin(qR)

k2+ ¡ q2

where we have used the fact that the integrand is an even function of q. Splitting sin(qR)
into exponentials and setting q0 = ¡q in the second we …nd that

G+(~r;~r
0) =

m

¼~2R
1

2¼i

Z 1

¡1
dq

qeiqR

k+2 ¡ q2

This integral can be evaluated by contour integration in the complex q-plane using Cauchy’s
theorem,which states that for a function f(z) that is analytic in and on a closed contour
¡ in the complex z-plane enclosing the point z = a,

1

2¼i

I
¡

f(z)dz

z ¡ a = f(a):

In our case we choose a closed path in which q runs from ¡Qto +Q and then circles
back around on a semicircle in the upper half plane, which is ultimately taken to occur
at jQj =1: Since the contribution from the integrand vanishes along this latter part, the
integral over the closed contour coincides with the one of interest.

To proceed, we note that

k2+ ¡ q2 = (k+ ¡ q) (k+ + q)

which generates simple poles at
q = k+ = k + i´

and
q = ¡k+ = ¡k ¡ i´

only the …rst of which is enclosed by our contour. Setting

f(q) =
qeiqR

k+ + q
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Figure 3

we …nd that
1

2¼i

I
¡

f(q)dq

k+ ¡ q = ¡
1

2¼i

I
¡

f(q)dq

q ¡ k+ = ¡f(k+) = ¡
eik+R

2

Combing this with our previous formula, and taking the limit k+ ! k we obtain the
Green’s function of interest, i.e.,

G+(~r;~r
0) = ¡ meikj~r¡~r0j

2¼~2 j~r ¡ ~r0j = G+(~r ¡ ~r
0):

Putting this into our integral scattering equation gives the result

Á"(~r) = e
ikz ¡ m

2¼~2

Z
d3r0

eikj~r¡~r0j
j~r ¡ ~r0j V (~r

0)Á"(~r
0):

Before proceeding to solve this integral equation we should, perhaps, check to see that
it gives solutions with the correct asymptotic behavior. To this end, we note that the
integrand has contributions primarily from those regions where r0 is small, i.e., where the
potential is signi…cant. At the detector, however, the magnitude of r is very large, and
V (r) is negligible. Where the integrand is signi…cant, therefore, we have j~rj >> j~r0j : In
this limit we can write

j~r ¡ ~r0j =
p
(~r ¡ ~r0) ¢ (~r ¡ ~r0) =

p
r2 ¡ 2~r ¢ ~r0 + r02

' r
p
1¡ 2~r ¢ ~r0=r2 = r ¡1¡ ~r ¢ ~r0=r2¢

' r ¡ r̂ ¢ ~r0

where r̂ = ~r=r is a unit vector along the direction (µ; Á) associated with the detector.
Hence in this limit we can write

eikj~r¡~r0j
j~r ¡ ~r0j '

eikr

r
e¡ikr̂¢~r

0
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and so our integral equation provides a solution of the form

Á"(~r) ' eikz ¡ m

2¼~2
eikr

r

Z
d3r0 e¡ikr̂¢~r

0
V (~r0)Á"(~r

0)

' eikz + f(µ; Á)
eikr

r

where

f(µ; Á) = ¡ m

2¼~2

Z
d3r0 e¡ikr̂¢~r

0
V (~r0)Á"(~r

0)

is independent of r; but depends only upon r̂ = r̂(µ; Á); as it should. Thus, a solution to
this equation should indeed have the correct asymptotic properties associated with the
stationary scattering states of interest.

9.3 The Born Expansion

Now that we have an explicit representation for the Green’s functionG+(") we can attempt
a solution to the Lipmann-Schwinger equation

jÁ"i = jÁ0i+G+V jÁ"i:
The traditional method of solving this kind of equation, or its integral equation equivalent
is by iteration. Any approximation to jÁ"i can be substituted into the right-hand side of
the equation to generate a new approximation . Moreover, we can formally write

jÁ"i = jÁ0i+G+V [jÁ0i+G+V jÁ"i]
= jÁ0i+G+V jÁ0i+G+V G+V jÁ"i

Proceeding in this way generates the so-called Born expansion

jÁ"i = jÁ0i+G+V jÁ0i+G+V G+V jÁ0i+ ¢ ¢ ¢

=
1X
k=0

(G+V )
n jÁ0i:

The Born expansion gives a an expansion in powers of the potential V; and obviously
requires for its convergence that the e¤ect of the perturbation V on the incident wave
be small, hence jjÁS jj << jjÁ0jj; jjÁ"jj: The solution obtained by truncating the series at
order n is referred to as the nth order Born approximation to the scattered state. We
defer till later an exploration of the approximate solutions obtained in this fashion, and
instead introduce additional ways of looking at the problem.

9.4 Scattering Amplitudes and T-Matrices

The form that we have developed for the scattering amplitude

f(µ; Á) = f(r̂) = ¡ m

2¼~2

Z
d3r0 e¡ikr̂¢~r

0
V (~r0)Á"(~r

0)

describes the amplitude for measuring a de‡ected particle along the direction r̂(µ; Á)
with wavevector k: Thus, it measures a state of wavevector ~kf = kr̂; so we can write
f(µ; Á) = f(r̂) = f(~kf ;~k0) in the form

f(~k;~k0) = ¡ m

2¼~2

Z
d3r0 e¡ikf ¢~r

0
V (~r0)Á"(~r

0)
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which has the form of a projection of V jÁ"i onto the plane wave state j~kf i associated with
the wave function h~rj~kf i = ei~kf ¢~r (Note that the normalization of this plane wave state is
a little di¤erent than usual, but is consistent with our choice of jÁ0i:) Thus, e.g.,

h~kf jV jÁ"i =
Z
d3r0 e¡ikf ¢~r

0
V (~r0)Á"(~r

0)

f(~kf ;~k0) = ¡ m

2¼~2
h~kf jV jÁ"i

which appears to be a matrix element of V; except that it is taken between states of
di¤erent type. The state on the left is part of an ONB of free particle states, that on
the right is an eigenstate of the same energy in the presence of the potential, which is
“smoothly connected” to the plane wave state jÁ0i = jk0i as V ! 0: It is useful to
introduce an operator T; referred to as the T matrix, or transition operator which is
de…ned so that

V jÁ"i = T jÁ0i = T j~k0i:
This allows us to express the scattering amplitude

f(µ; Á) = f(~k;~k0) = ¡ m

2¼~2
h~kf jT j~k0i

as the matrix element of the transition operator between initial and …nal free particle
states (which are the ones that we deal with in the laboratory, outside of the target
region). Hence the T -matrix contains all information regarding the scattering transitions
induced by the potential. How do we evaluate T? We generate an integral equation for it
from the Lipmann-Schwinger equation, which gives

jÁ"i = jÁ0i+G+V jÁ"i:
= jÁ0i+G+T jÁ0i = (1+G+T )jÁ0i

We can compare this with the Born series to obtain

jÁ"i = jÁ0i+G+V jÁ0i+G+V G+V jÁ0i+ ¢ ¢ ¢
to obtain the operator relation

G+T = jÁ"i = G+V +G+V G+V + ¢ ¢ ¢
from which we deduce that

T = V + V G+V + V G+V G+V + ¢ ¢ ¢
which gives a Born expansion for T in powers of the potential V . Formally we can write

T = V [1+G+V +G+V G+V + ¢ ¢ ¢ ]
= V + V G+T

which is the integral equation obeyed by the T -matrix that generates the Born series.
The nth order Born approximation to the T -matrix is then obtained by truncating the
series ath the nth order term. The …rst Born approximation to the T -matrix is just the
scattering potential

T = T (1) = V

and so we obtain to this order

fB(~kf ;~ki) = ¡ m

2¼~2
h~kf jV j~kii:
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To evaluate this, we work in the position representation

fB(~kf ;~ki) = ¡ m

2¼~2

Z
d3r h~kf j~riV (~r)h~rj~kii

= ¡ m

2¼~2

Z
d3r e¡i(~kf¡~ki)¢~rV (~r):

Clearly the vector
~q = ~kf ¡ ~ki

is the momentum transferred in the collision, since ~kf = ~ki + ~q. Moreover, since j~kf j =
j~kij = k are the same, we can write

j~qj = 2k sin µ=2

where µ is the direction between the incoming beam and the de‡ected particle. Thus, we
can write in the …rst Born approximation

fB(~kf ;~ki) = ¡ m

2¼~2
~V (~q)

where
~V (~q) =

Z
d3r e¡i~q¢~rV (~r)

is, up factors of 2¼; simply the Fourier transform of the scattering potential. Thus, in the
Born approximation the di¤erential scattering cross section

d¾(µ; Á)

d­
= jf(µ; Á)j2 = m2

4¼2~4
¯̄̄
~V (~q)

¯̄̄2
is, up to constant factors, simply the squared modulus of the Fourier transform of the
scattering potential evaluated at the wavevector ~q corresponding to the momentum trans-
ferred in the scattering event.

As a special case of this formula, we can consider the case where the potential is
spherically symmetric, so that V (~r) = V (r); in which case

~V (~q) = V (q) =

Z 2¼

0

dÁ

Z ¼

¡¼
dµ

Z 1

0

dr r2 sin µ e¡iqr cos µV (r):

The angular integrals are readily evaluated to giveZ 2¼

0

dÁ

Z ¼

¡¼
dµ sin µ e¡iqr cos µ =

4¼

qr
sin(qr)

so the only remaining integral to perform is the radial one

~V (q) =
4¼

q

Z 1

0

dr r sin(qr) V (r)

which will depend upon the precise form of the scattering potential.
For example, if we take the so-called Yukawa (or screened-Coulomb) potential

V (r) =
e2

r
e¡®r
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then

~V (q) =
4¼e2

q

Z 1

0

dr sin(qr) e¡®r

=
4¼e2

®2 + q2

Thus, in this case, f(µ; Á) = f(µ) = f(q); where q = 2k sin µ=2; and

f(µ) = ¡2me
2

~2
1

®2 + q2
= ¡2me

2

~2
1

®2 + 4k2 sin2 µ=2

and the cross section becomes

d¾

d­
=

4m2e4

~4
¡
®2 + 4k2 sin2 µ=2

¢2 :
By taking the limit that ® ! 0 we obtain the corresponding cross section, in the Born
approximation, for the Coulomb potential

d¾

d­
=

m2e4

4~4k4 sin4 µ=2
=

e4

16"2 sin4 µ=2
:

As a second example, considering the elastic scattering of electrons by a neutral
atom in its ground state with initial electron energies that are too small to excite the
atom to any of its excited states. For an atom of atomic number Z; the charge density
½(~r) can be written

½(~r) = e [Z±(~r)¡ n(~r)]
where n(~r) is the number density of electrons in the atom at ~r and can be written

n(~r) = hÃj
X
i

±(~r ¡ ~ri)jÃi '
X
i

Ã¤ni(~r)Ãni(~r)

where the second form holds in an independent electron approximation. The electric
potential '(~r) at a point ~r due to the charge density of the bound electrons and the
nucleus satis…es Poisson’s equation

r2' = ¡4¼½(~r) = ¡4¼e [Z±(~r)¡ n(~r)]
where charge neutrality implies that

R
d3r n(~r) = Z. The corresponding potential energy

seen by an incoming electron is given by

V (~r) = ¡e'(~r)
so that

r2V (~r) = 4¼e2 [Z ¡ n(~r)] :
We now note that if

V (~r) =

Z
d3q

(2¼)3
ei~q¢~r ~V (~q) ~V (~q) =

Z
d3q e¡i~q¢~r ~V (~r)

then

r2V (~r) =
Z

d3q

(2¼)3
q2e¡i~q¢~r ~V (~q)
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has as its Fourier transform the function ¡q2 ~V (q): We write, therefore, as the Fourier
transform of Laplaces equation

¡q2 ~V (q) = 4¼e2 [Z ¡ F (q)]
where the atomic form factor

F (~q) =

Z
d3r e¡i~q¢~rn(~r)

is the Fourier transform of the electronic charge density. Thus, we can solve for ~V (~q) to
obtain

~V (~q) =
4¼e2 [F (q)¡ Z]

q2
;

which allows us to evaluate the scattering amplitude in the Born approximation

f(q) = ¡2e
2m

~2
[F (q)¡ Z]

q2

and the corresponding cross section

d¾

d­
=
4e4m2

~4
jF (q)¡ Zj2

q4
:

Thus, measurement of the cross section for all momentum transfer allows information to
be inferred about the distribution of charge in the atom [as contained in the form factor
F (q)]. For a spherically symmetric charge density it is possible, in principle, to invert this
relation to determine the charge density ½(~r) directly.

9.5 Partial Wave Expansions

In the last section we have not really used the fact that V (r) is a spherically symmetric
potential. In this section we explore some of the simpli…cations that occur as a result of
this fact. Speci…cally, if V = V (r); then H commutes with L2 and Lz and we know that
there exists a basis of eigenstates common to

©
H;L2; Lz

ª
: Let j"; `;mi = jk; `;mi denote

such a basis for the positive energy subspace of the system of interest, where, as usual,
k =

p
2m"=~2:
We note, in particular, that the potential V (r) = 0 is spherically symmetric, so

there must exist a basis of this sort for free particles. Let us denote by j"; `;mi(0) =
jk; `;mi(0) the corresponding free particle eigenstates common to ©H0; L2; Lzª : Both sets
of states satisfy orthonormality relations

hk; `;mjk0; `0;m0i = ±(k ¡ k0)±`;`0±m;m0 = (0)hk; `;mjk0; `0;m0i(0)

and have functions of the following form

Ãk;`;m(r; µ; Á) = Fk;`(r)Y
m
` (µ; Á) =

Ák;`(r)

r
Y m` (µ; Á)

Ã
(0)
k;`;m(r; µ; Á) = F

(0)
k;` (r)Y

m
` (µ; Á) =

Á
(0)
k;`(r)

r
Ym` (µ; Á)

where the functions Ák;`(r) = rFk;`(r) obey the radial equation

Á00k;` ¡
µ
`(`+ 1)

r2
+ v(r)¡ k2

¶
Ák;` = 0
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in which v(r) = 2mV (r)=~2 and k2 = 2m"=~2 ¸ 0: Note that when V = 0 this reduces to

Á
(0)00
k;` ¡

µ
`(`+ 1)

r2
¡ k2

¶
Á
(0)
k;` = 0:

The solutions to this latter equation that are regular at the origin are well-known and
related to the spherical Bessel functions j`(z) of order ` Speci…cally, it is found that

Á
(0)
k;`(r) =

r
2

¼
kr j`(kr);

so the free particle eigenstates of fH0; L2; Lzg are

Ã
(0)
k;`(~r) =

r
2

¼
k j`(kr) Y

m
` (µ; Á):

On the other hand, provided that V (r)! 0 as r!1 faster than 1=r; then asymptotically
both equations (V 6= 0 and V = 0)obey the equation

Á00 + k2Á = 0 r!1;
which has the general solution Á(r) » Aeikr + Be¡ikr; so that the radial dependence of
the F (r) = Á(r)=r has the form

F (r) » Ae
ikr

r
+B

e¡ikr

r

of a superposition of incoming and outgoing spherical waves. To conserve probability, the
‡ux into the origin has to balance the ‡ux out of the origin, which imposes the requirement
that jAj = jBj ; in which case we can asymptotically write

Ák;`(r) » a` sin (kr ¡ '`) :
Indeed, it can be shown from the properties of the spherical Bessel functions that the free
particle solutions have the asymptotic behavior

Á
(0)
k;`(r) =

r
2

¼
kr j`(kr) » a` sin (kr ¡ `¼=2)

so that

'
(0)
` =

`¼

2

for a free particle (V = 0). When V 6= 0 it is convenient to write the phase of interest in
the form

'` = '
(0)
` ¡ ±` = `¼

2
¡ ±`

Ák;`(r) = a` sin kr ¡ `¼=2 + ±`)
where ±`is the phase shift that arises due to the potential (±` ! 0 as V ! 0). and is
uniquely determined by it (whereas a` scales with the normalization of the state).

Our goal is to obtain an expansion for the stationary scattering state jÁ"i in
the complete set of states jk; `;mi and use it to obtain an expression for the scattering
amplitude f(µ; Á) expanded in spherical harmonics. In other words, we seek an expansion
of the form

f(µ; Á) =
X
`;m

f`;mY
m
` (µ; Á):
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As a preliminary simpli…cation, we note that, because of the spherical symmetry of the
potenital, there is azimuthal symmetry along the z-axis associated with the incident beam,
thus, only m = 0 components exist in the expansion:

f(µ; Á) = f(µ) =
X
`

f`Y
0
` (µ) (9.1)

To proceed we express the stationary scattering states of interest as an expansion

Á"(~r) » eikz + f(µ)
eikr

r
=
X
`

A` Ãk;`;0(~r)

in states of well-de…ned angular momentum. The `th term in this expansion is referred
to as the `th partial wave. In terms of the spherical harmonics, this expansion takes the
form

eikz + f(µ)
eikr

r
=
X
`

A`
Ák;`
r
Y 0` (µ):

To make this useful, we now use the known expansion of the function eikz in free particle
spherical waves:

eikz =
X
`

c` Ã
(0)
k;`;0(~r) =

X
`

B` j`(kr) Y
0
` (µ):

The B` can be calculated exactly. The result is B` = i`
p
4¼(2`+ 1) so that

eikz =
X
`

i`
p
4¼(2`+ 1) j`(kr) Y

0
` (µ):

Thus we can writeX
`

·
B`jl(kr) +

f`e
ikr

r

¸
Y 0` (µ) =

X
A`
Ák;`(r)

r
Y 0` (µ):

Linear independence of the Y m` ’s implies that

B`r j`(kr) + f`e
ikr = A`Ák;`(r):

Now asymptotically,

B`r j`(kr) » B`
k
sin(kr ¡ `¼=2) = B`

2ik

h
eikre¡i`¼=2 ¡ e¡ikrei`¼=2

i
and

A`Ák;`(r) » a` sin(kr ¡ `¼=2 + ±`)
=

a`
2i

h
eikre¡i`¼=2ei±` ¡ e¡ikrei`¼=2e¡i±`

i
:

Substituting these last two equations into our previous expansion and equating coe¢cients
of eikr and e¡ikr we …nd that

a`
2i
e¡i`¼=2ei±` =

B`
2ik
e¡i`¼=2 + f`

and
a`
2i
ei`¼=2e¡i±` =

B`
2ik
ei`¼=2
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which gives two equations in the two unknown quantities a` and f`: Solving for f` we …nd
that

f` =
1

k

p
4¼(2`+ 1)ei±` sin ±`

so that
f(µ) =

X
`

f`Y
0
` (µ) =

1

k

X
`

p
4¼(2`+ 1)ei±` sin ±`Y

0
` (µ)

from which follows the expansion for the di¤erential scattering cross section

d¾

d­
(µ) =

1

k2

¯̄̄̄
¯
1X
`=0

p
4¼(2`+ 1)ei±` sin ±`Y

0
` (µ)

¯̄̄̄
¯
2

The total cross section can then be written

¾tot =
1

k2

Z
d­

¯̄̄̄
¯
1X
`=0

p
4¼(2`+ 1)ei±` sin ±`Y

0
` (µ)

¯̄̄̄
¯
2

=
1

k2

1X
`=0

1X
`0=0

p
4¼(2`+ 1)

p
4¼(2`0 + 1)ei(±`¡±`0 ) sin ±` sin ±`0

Z
d­Y 0` (µ)Y

0
`0(µ)

which reduces to

¾tot =
4¼

k2

1X
`=0

(2`+ 1) sin2 ±`

=
1X
`=0

¾`

where
¾` =

4¼

k2
(2`+ 1) sin2 ±` · 4¼

k2
(2`+ 1)

is the scattering cross section to states with angular momentum `. Note that for free
particles ±` ! 0 and ¾tot ! 0; as we would expect.


