Quantum Two
Many Particle Systems:
An Introduction to Direct Product Spaces
The postulates of quantum mechanics outlined in the first semester of the course include no restrictions as to the kind of systems to which they are intended to apply.
The postulates of quantum mechanics outlined in the first semester of the course include no restrictions as to the kind of systems to which they are intended to apply.

Thus, although we have considered numerous examples drawn from the quantum mechanics of a single particle, the postulates themselves are intended to apply to all quantum systems, including those containing more than one and possibly very many particles.
The postulates of quantum mechanics outlined in the first semester of the course include no restrictions as to the kind of systems to which they are intended to apply.

Thus, although we have considered numerous examples drawn from the quantum mechanics of a single particle, the postulates themselves are intended to apply to all quantum systems, including those containing more than one and possibly very many particles.

Thus, the only real obstacle to our immediate application of the postulates to a system of many (possibly interacting) particles is that we have till now avoided the question of what the linear vector space, the state vector, and the operators of a many-particle quantum mechanical system look like.
The construction of such a space turns out to be fairly straightforward, but it involves forming a certain kind of mathematical **product of different linear vector spaces**, referred to as a **direct product or tensor product**.
The construction of such a space turns out to be fairly straightforward, but it involves forming a certain kind of mathematical **product of different linear vector spaces**, referred to as a **direct product or tensor product**.

Indeed, the basic principle underlying the construction of the state spaces of many-particle quantum mechanical systems can be succinctly stated as follows:
The construction of such a space turns out to be fairly straightforward, but it involves forming a certain kind of mathematical **product of different linear vector spaces**, referred to as a **direct product or tensor product**.

Indeed, the basic principle underlying the construction of the state spaces of many-particle quantum mechanical systems can be succinctly stated as follows:

The state vector \(|\psi\rangle \) of a system of \(N \) particles is an element of the direct product space

\[
S^{(N)} = S(1) \otimes S(2) \otimes \cdots \otimes S(N)
\]

formed from the \(N \) single-particle spaces associated with each particle.
The construction of such a space turns out to be fairly straightforward, but it involves forming a certain kind of mathematical **product of different linear vector spaces**, referred to as a **direct product or tensor product**.

Indeed, the basic principle underlying the construction of the state spaces of many-particle quantum mechanical systems can be succinctly stated as follows:

The state vector $|\psi\rangle$ of a system of N particles is an element of the direct product space

$$S^{(N)} = S(1) \otimes S(2) \otimes \cdots \otimes S(N)$$

formed from the N single-particle spaces associated with each particle.

Clearly, to understand this principle we need to explore the structure of such **direct product spaces**.
The Direct Product of Quantum Mechanical State Spaces

Let S_1 and S_2 be the state spaces of two independent quantum mechanical systems, and let their dimensions be denoted by N_1 and N_2, respectively (either or both of which may be infinite).
The Direct Product of Quantum Mechanical State Spaces

Let S_1 and S_2 be the state spaces of two independent quantum mechanical systems, and let their dimensions be denoted by N_1 and N_2, respectively (either or both of which may be infinite).

Each space might represent that of a single particle, or they may be more complicated spaces, but it is assumed that they each represent different independent quantum mechanical degrees of freedom.
The Direct Product of Quantum Mechanical State Spaces

Let S_1 and S_2 be the state spaces of two independent quantum mechanical systems, and let their dimensions be denoted by N_1 and N_2, respectively (either or both of which may be infinite).

Each space might represent that of a single particle, or they may be more complicated spaces, but it is assumed that they each represent different independent quantum mechanical degrees of freedom.

We distinguish states in each space by superscripts. Thus, e.g.,
The Direct Product of Quantum Mechanical State Spaces

Let S_1 and S_2 be the state spaces of two independent quantum mechanical systems, and let their dimensions be denoted by N_1 and N_2, respectively (either or both of which may be infinite).

Each space might represent that of a single particle, or they may be more complicated spaces, but it is assumed that they each represent different independent quantum mechanical degrees of freedom.

We distinguish states in each space by superscripts. Thus, e.g.,

$|\psi\rangle^{(1)}$ represents a state of S_1 and
The Direct Product of Quantum Mechanical State Spaces

Let S_1 and S_2 be the state spaces of two independent quantum mechanical systems, and let their dimensions be denoted by N_1 and N_2, respectively (either or both of which may be infinite).

Each space might represent that of a single particle, or they may be more complicated spaces, but it is assumed that they each represent different independent quantum mechanical degrees of freedom.

We distinguish states in each space by superscripts. Thus, e.g.,

$|\psi\rangle^{(1)}$ represents a state of S_1 and

$|\phi\rangle^{(2)}$ represents a state of S_2.
The Direct Product of Quantum Mechanical State Spaces

To describe the **combined system** we now define a new state space

\[S_{12} = S_1 \otimes S_2 \]

of dimension \(N_{12} = N_1 \times N_2 \) which we refer to as the **direct product** of \(S_1 \) and \(S_2 \).
The Direct Product of Quantum Mechanical State Spaces

To describe the combined system we now define a new vector space

\[S_{12} = S_1 \otimes S_2 \]

of dimension \(N_{12} = N_1 \times N_2 \) which we refer to as the **direct product** of \(S_1 \) and \(S_2 \).

Some of the elements of \(S_{12} \) are referred to as **direct or tensor product states**, and are formed as a **direct** product of states from each space.
The Direct Product of Quantum Mechanical State Spaces

To describe the combined system we now define a new vector space

\[S_{12} = S_1 \otimes S_2 \]

of dimension \(N_{12} = N_1 \times N_2 \) which we refer to as the **direct product** of \(S_1 \) and \(S_2 \).

Some of the elements of \(S_{12} \) are referred to as **direct or tensor product states**, and are formed as a **direct** product of states from each space.

That is, from each pair of states \(|\psi\rangle^{(1)} \) in \(S_1 \)
The Direct Product of Quantum Mechanical State Spaces

To describe the combined system we now define a new vector space

\[S_{12} = S_1 \otimes S_2 \]

of dimension \(N_{12} = N_1 \times N_2 \) which we refer to as the direct product of \(S_1 \) and \(S_2 \).

Some of the elements of \(S_{12} \) are referred to as direct or tensor product states, and are formed as a direct product of states from each space.

That is, from each pair of states

- \(|\psi^{(1)}\rangle \) in \(S_1 \)
- \(|\phi^{(2)}\rangle \) in \(S_2 \)
The Direct Product of Quantum Mechanical State Spaces

To describe the combined system we now define a new vector space

$$S_{12} = S_1 \otimes S_2$$

of dimension $N_{12} = N_1 \times N_2$ which we refer to as the direct product of S_1 and S_2.

Some of the elements of S_{12} are referred to as direct or tensor product states, and are formed as a direct product of states from each space.

That is, from each pair of states $|\psi\rangle^{(1)}$ in S_1 and $|\phi\rangle^{(2)}$ in S_2

we construct a direct product state of the direct product space S_{12}

$$|\psi, \phi\rangle \equiv |\psi\rangle^{(1)} \otimes |\phi\rangle^{(2)} = |\psi\rangle^{(1)} |\phi\rangle^{(2)}$$
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi\rangle^{(1)}|\phi\rangle^{(2)}$ represent physically?
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi^{(1)}\rangle |\phi^{(2)}\rangle$ represent physically?

By definition,

$$|\psi, \phi\rangle = \text{that state of the combined system in which}$$
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi\rangle^{(1)}|\phi\rangle^{(2)}$ represent physically?

By definition,

$|\psi, \phi\rangle = \text{that state of the combined system in which subsystem 1 is definitely in state } |\psi\rangle^{(1)}$, and
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi\rangle^{(1)}|\phi\rangle^{(2)}$ represent physically?

By definition,

$$|\psi, \phi\rangle = \text{that state of the combined system in which}$$

subsystem 1 is definitely in state $|\psi\rangle^{(1)}$, and

subsystem 2 is definitely in state $|\phi\rangle^{(2)}$.
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi\rangle^{(1)}|\phi\rangle^{(2)}$ represent physically?

By definition,

$|\psi, \phi\rangle = \text{that state of the combined system in which}$

subsystem 1 is definitely in state $|\psi\rangle^{(1)}$, and

subsystem 2 is definitely in state $|\phi\rangle^{(2)}$.

The direct product space S_{12} for the combined system, then contains:

1. all such direct product states.
The Direct Product of Quantum Mechanical State Spaces

So what does the state $|\psi, \phi\rangle = |\psi^{(1)}\rangle |\phi^{(2)}\rangle$ represent physically?

By definition,

$$|\psi, \phi\rangle = \text{ that state of the combined system in which}$$
$$\text{subsystem 1 is definitely in state } |\psi^{(1)}\rangle, \text{ and}$$
$$\text{subsystem 2 is definitely in state } |\phi^{(2)}\rangle.$$

The direct product space S_{12} for the combined system, then contains:

1. all such direct product states as well as (it follows automatically)
2. all possible linear combinations of those states (it has to be closed)
The Direct Product of Quantum Mechanical State Spaces

This **direct product of states** is assumed to be **commutative** in a trivial sense that

\[|\psi, \phi\rangle \equiv |\psi^{(1)}\rangle |\phi^{(2)}\rangle = |\phi^{(2)}\rangle |\psi^{(1)}\rangle \]
The Direct Product of Quantum Mechanical State Spaces

This **direct product of states** is assumed to be **commutative** in a trivial sense that

\[|\psi, \phi\rangle \equiv |\psi \rangle^{(1)} |\phi \rangle^{(2)} = |\phi \rangle^{(2)} |\psi \rangle^{(1)} \]

but to use the compact notation on the left we need to **chose a distinct ordering** of the spaces once and for all.
The Direct Product of Quantum Mechanical State Spaces

This **direct product of states** is assumed to be **commutative** in a trivial sense that

\[|ψ, φ⟩ ≡ |ψ⟩^{(1)}|φ⟩^{(2)} = |φ⟩^{(2)}|ψ⟩^{(1)} \]

but to use the compact notation on the left we need to chose a distinct ordering of the spaces once and for all.

Thus, in the decoupled forms on the right we are free to move the two kets from each space past each other whenever it’s needed (and it often is).
The Direct Product of Quantum Mechanical State Spaces

The direct product of states is also assumed to be **linearly distributive**

i.e., if

\[|\psi\rangle^{(n)} = \alpha |\xi\rangle^{(n)} + \beta |\eta\rangle^{(n)}, \]

then

\[|\psi, \phi\rangle = |\psi\rangle^{(n)} |\phi\rangle^{(n)} = [\alpha |\xi\rangle^{(n)} + \beta |\eta\rangle^{(n)}] |\phi\rangle^{(n)}, \]

and similarly for kets \(|\phi\rangle^{(n)} \) which are linear combinations in \(S_2 \).
The Direct Product of Quantum Mechanical State Spaces

The direct product of states is also assumed to be **linearly distributive**

i.e., if

\[|ψ⟩^{(1)} = α |ξ⟩^{(1)} + β |η⟩^{(1)}, \]

then

\[|ψ, φ⟩ = |ψ⟩^{(1)} |φ⟩^{(2)} = [α |ξ⟩^{(1)} + β |η⟩^{(1)}] |φ⟩^{(2)} \]
The Direct Product of Quantum Mechanical State Spaces

The direct product of states is also assumed to be \textbf{linearly distributive} i.e., if

\[|\psi\rangle^{(1)} = \alpha |\xi\rangle^{(1)} + \beta |\eta\rangle^{(1)}, \]

then

\[|\psi, \phi\rangle = |\psi\rangle^{(1)} |\phi\rangle^{(2)} = \left[\alpha |\xi\rangle^{(1)} + \beta |\eta\rangle^{(1)} \right] |\phi\rangle^{(2)} \]

\[= \alpha |\xi, \phi\rangle + \beta |\eta, \phi\rangle, \]
The Direct Product of Quantum Mechanical State Spaces

The direct product of states is also assumed to be **linearly distributive**
i.e., if \(|\psi\rangle^{(1)} = \alpha|\xi\rangle^{(1)} + \beta|\eta\rangle^{(1)},\)

then

\[
|\psi, \phi\rangle = |\psi\rangle^{(1)}|\phi\rangle^{(2)} = [\alpha|\xi\rangle^{(1)} + \beta|\eta\rangle^{(1)}]|\phi\rangle^{(2)}
\]

\[
= \alpha|\xi, \phi\rangle + \beta|\eta, \phi\rangle,
\]

and similarly for kets \(|\phi\rangle^{(2)}\) which are linear combinations in \(S_2\).
The Direct Product of Quantum Mechanical State Spaces

But it is important to emphasize that there are many states in the space S_{12} that are not direct product states.
The Direct Product of Quantum Mechanical State Spaces

But it is important to emphasize that there are many states in the space S_{12} that are not direct product states.
The Direct Product of Quantum Mechanical State Spaces

But it is important to emphasize that there are many states in the space S_{12} that are not direct product states.

A state which cannot be factored into a direct product state, e.g.,

$$|\psi\rangle = \alpha|\xi, \phi\rangle + \beta|\eta, \chi\rangle$$
The Direct Product of Quantum Mechanical State Spaces

But it is important to emphasize that there are many states in the space S_{12} that are not direct product states.

A state which cannot be factored into a direct product state, e.g.,

$$|\psi\rangle = \alpha|\xi, \phi\rangle + \beta|\eta, \chi\rangle$$

is said to be an **entangled state** of the combined system.
The Direct Product of Quantum Mechanical State Spaces

But it is important to emphasize that there are many states in the space S_{12} that are not direct product states.

A state which cannot be factored into a direct product state, e.g.,

$$|\psi\rangle = \alpha|\xi, \phi\rangle + \beta|\eta, \chi\rangle$$

is said to be an entangled state of the combined system.

In an entangled state neither subsystem can be described independently by its own state vector, without consideration of the state of the other.
The Direct Product of Quantum Mechanical State Spaces

Generally, entangled states of a combined quantum system arise as a result of interactions between the independent degrees of freedom of each subsystem.

You may have heard that the existence and properties of entangled quantum mechanical states are essential elements in attempts to implement quantum computing and quantum cryptography.
So in this module, we have essentially *postulated* that the state vector of a many-particle system is an element of the *direct product space* formed from each of the individual single particle spaces.
So in this module, we have essentially postulated that the state vector of a many-particle system is an element of the direct product space formed from each of the individual single particle spaces.

We have also introduced a mathematical definition of the direct product of quantum mechanical state spaces, which contain all direct products states, as well as all entangled states, formed from non-factorizeable linear combinations of direct product states.
So in this module, we have essentially postulated that the state vector of a many-particle system is an element of the direct product space formed from each of the individual single particle spaces.

We have also introduced a mathematical definition of the direct product of quantum mechanical state spaces, which contain all direct products states, as well as all entangled states, formed from non-factorizeable linear combinations of direct product states.

In the next module we explore further some of the mathematical structure of direct products spaces, and learn a little bit more about how to actually compute useful things, e.g., inner products, how to construct appropriate operators, and how to generate sets of orthonormal basis vectors for direct product spaces.