Guzman 1

Group: Mighty Group G, LLC
Members: Michael Catanzaro, Miguel Guzman, Katie Isbell, Ryan Schmitt, and Ethan Wells
Due Date: Tuesday, October 29, 2013

Objective

The goal for this assignment was to create class diagrams to describe our wardriving application
and include descriptions along with each of these class diagrams. Two class diagrams were
used for our project since we have two separate implementations: the implementation of the
android application and the implementation of the server. Below this, we also include information
on how we obtained information from our users and how this has impacted our design.

GUI Class Diagram

UpdateMaps
MainActivity -serverConnectionInfo
-userCurrentLat: double P -mapDataFile
-userCurrentlon: double Uses +sendDataToServer()
+retrieveCurrentlocation(): void +requestDataFromServer()
+onCreatedptionsMenu(menu:Menu) : boolean +parseDataFromFile()
+onOptionsItemSelected(item:Menultem) : boolean +addNetworksToMaps ()
] Uses
S hActivi Y
earc CTivi .
ty ScanActivity WiFiNetworksHandler
-prefDistSeekBar: SeekBar - - - -
-prefsignalSeckBar: SeckBar -networksList: ArrayList[Network] -networksInRange: Arraylist[network]
-prefResul tsSeekBar: SeekBar -networkCheckboxes: ArrayList[CheckBoxPreferencel | [+connectToNetwork (network :Network, test:boolean): void
-prefDistval: TextView -scanButton: Button +updateNetworksInRange() : void
-prefsignalval: TextView -scanContinuous: ToggleButton +disconnectFromNetwork(): void
-prefResultsval: TextView -GetNetworksTInRange +getNetworks(): Arraylist[network]
-prefDistTitle: TextView +initiateScan(): void
-prefsignalTitle: TextView +onToggle() : void Uses
-prefResultsTitle: TextView |
-searchButton: Button Scans
+savePreferences(): void
+search(): void Y
+getDistval(): int N
: .3 - etwork
+getSignalval (): int AboutActivity -
+getResultsvall): int -name: String
- -2ppInfo: TextView -signalStrength: double
Initiates -securityType: String
-latPos: double
-lonPos: double

ViewNetworkActivity +setName (theName:String) : void
+setSignalStrength(signal:double) : void

+setSecurltyType(type:String): void

-networkList: Arraylist[Preference]

*

1

+ViewNetworkActivity(): void - W +setlatPos (latval:double) : void
+ViewNetworkActivity(searchedNetworks :ArrayList[Preference]): void Displays +setlonPos (lonval:double) : void
+displayNetworks() : void +getName() : String
+onNetworkSelect() : void +getSignalStrength() : double

+getSecurityType(]: String
+getLatPos(): double
+getLonPos (): double

GUI Class Diagram Description



Guzman 2

The MainActivity class is the placeholder for our map. Its methods are as follows:

e currentLat - Stores the latitude value of the user’s current location
e currentLon - Stores the longitude value of the user’s current location

Its methods are as follows:

e retrieveCurrentLocation() - This method calculates the user’s approximated current
location using the GPS radio on the phone. It stores the latitude and longitude values in
the userCurrentLat and userCurrentLon variables

e onCreateOptionsMenu(Menu menu) - This method creates our menubar which will
create a way for users to navigate to each of the pages in the application.

e onOptionsltemSelected(Menultem item) - This contains a switch case statement which
opens a new page in the application based on the menu item selected by the user.

The SearchActivity, ScanActivity, ViewNetworkActivity, and AboutActivity classes display our
main pages of the application. They will inherit the functionality of the MainActivity class using the
keyword “extends”, which will allow these pages to display the same menubar.

The Network class describes one of the networks within our database. The fields for this class
are as follows:

name- A String representing the name of the network

signalStrength- A double representing the signal strength of the network

securityType - A String value describing the security type of the signal

latPos - The latitude value of the network

lonPos- The longitude value of the network

The methods for this class simply include the accessor/mutator methods for obtaining/changing
our variables.

setName(String theName) - Set the name of the network
setSignalStrength(double signal) - A precise value representing the signal strength
setSecurityType(String type) - Set the security type

setLatPos(double latVal) - Set the latitude value of the network

setLonPos(double lonVal) - Set the longitude value of the network

getName() - returns name

getSignalStrength() - returns signalStrength

getSecurityType() - returns securityType

getLatPos() - returns latPos

getLonPos() - returns lonPos



Guzman 3

The SearchActivity class allows users to search for networks based on preferences they will
set. The fields for this class are as follows:

prefDistSeekBar- A seekbar whose value represents the maximum distance between the
user’s current location and the networks that will be displayed

prefSignalSeekBar - The seekbar whose value represents the minimum signal strength
for the networks that are returned from a search

prefResultsSeekBar - The seekbar whose value represents the maximum number of
networks that will be returned from a search

prefDistVal - A textview located under the distance seekbar used to display the value of
the distance seekbar

preSignalVal- A textview located under the signal seekbar used to display the value of the
signal seekbar

preResultsVal- A textview located under the results seekbar used to display the value of
the results seekbar

prefDistTitle- A textview displaying the title of the distance seekbar

prefSignalTitle- A textview displaying the title title of the signal strength seekbar
prefResultsTitle- A textview displaying the title of the results seekbar

searchButton - The button that will conduct a search for networks

The methods for this class are as follows:

savePreferences() - This method saves the preferences set by the user. It is called when
the search button is pressed.

search()- This is also called when the search button is pressed. It conducts a search for
the networks based on the preferences set by the user and opens a new page listing the
networks.

getDistVal() - returns the value of the maximum distance set by the user

getSignalVal() - returns the value of the minimum signal strength set by the user
getResultsVal() - returns the value of the results preference set by the user

The ScanActivity class allows users to scan for specific networks within range or run a
continuous scan on all networks within range. The fields are as follows:

networksList - An ArrayList holding all the networks within range

networkCheckboxes - An ArrayList holding the checkboxes for the networks in the
networksList

scanButton - The button used to initiate the scan

scanContinuous- The ToggleButton for allowing/unallowing a continuous scan in the
background

GetNetworksIinRange - Class instance that handles getting the list of networks in range



Guzman 4

and storing these networks in the networksList vector
The methods for this class include the following:

e initiateScan() - Scan for the networks that have been selected by the user. This method
is called when the user presses the scan button. It will also be called every few seconds
if the “scanContinous” toggle is high.

e onToggle() - Event handler that triggers when the user switches the “scanContinous”
toggle high. Sets all of the checkboxes in networkCheckboxes enabled to false,
disallowing the user to check these boxes. It then runs the initiateScan() method every
few seconds until “scanContinous” is toggled low.

The WiFiNetworksHandler class is a helper class that takes care of all communication with the
WiFi radio in the phone and does such things as returning an ArrayList of networks in range,
connecting to a network, performing network connectivity to Internet tests, etc. Its fields are as
follows:

e networksinRange - An ArrayList containing all of the public WiFi networks in range of the
radio.

The methods are as follows:

e connectToNetwork(Network network, boolean test) - a method that will attempt to
connect to the network that is passed in, and a passed in boolean will determine whether
it will perform connection tests on it and disconnect.

e updateNetworksInRange() - a method that updates the ArrayList of networks with current
information.

e disconnectFromNetwork() - a method that simply disconnects the phone from any
network.

e getNetworks() - an accessor method for the private data ArrayList of networks.

The ViewNetworkActivity class opens a new page and displays networks in a list. Its fields are
as follows:

e networkList - An ArrayList of Preferences, each representing a network.
The methods for this class include the following:

e ViewNetworkActivity() - This method is called after the user selects “ViewAllINetworks”
menu item. It initializes networkList with all of the networks in our database. It then calls
the displayNetworks() method to display these networks in a list.

o ViewNetworkActivity(ArrayList[Preference] searchedNetworks) - This method is called
after the user presses the button to search for networks on the SearchActivity page. It



Guzman 5

initializes networkList with the preferences passed through the parameter, and then calls
the displayNetworks() method.

e displayNetworks() - This reads through the networkList and displays the networks on the
screen.

e onNetworkSelect() - When the user selects a particular network, a new activity will be
opened displaying that network on a map. The user can then use this map to get
directions to that network’s location.

The AboutActivity class serves as a page to display information about the application including
the application name, application license, authors, and a list of external libraries that were used.
Its fields are as follows:
e applnfo- a TextView listing authors, external libraries, and information about our
application.

There are no methods within the AboutActivity class.

The UpdateMaps class handles communication with the server on updating the copy of data on
the phone that is hosted on the server, as well as sending data to the server of the new networks
the phone finds. It also handles parsing the data that the phone receives from the network and
loads it into the Maps program on the phone. The fields are as follows:

e serverConnectioninfo - a data structure for holding the server connection information that
will be used to connect to the server.

e mapDataFile - a path to the data file that the server returns containing all of the network
information.

The methods are as follows:

e sendDataToServer() - a method that sends the data to the server. The data includes a
command string like “ADD” or “VIEW”. The “ADD” command includes the raw network
data such as SSID, signal strength, and the latitude and longitude of the user.

e requestDataFromServer() - a method that is called once a day (default) or a user-defined
interval that requests the new data from the server.

e parseDataFromFile() - a method that reads in the file retrieved from the server and
parses it correctly to call the addNetworksToMaps() method when appropriate.

e addNetworksToMaps() - a method that is called when parsing the file and a network has
to be added to a map. It is passed in the network details, like the SSID, signal strength,
and the user’s location.

Server Class Diagram



Guzman 6

ConnectionManager

-connectlon_lo_service: 1o0_service

Connection

-socket: socket -acceptor_io service: io_service
-streambuf: streambuf -acceptor: acceptor

+async_run(): void Instantiates -signal_set: signal_set

+mutable_socket(): socket* - -rethrow_signal: int = @

+socket(): socketé& ) +instance(): static ConnectionManager&
-handle_read(ec:error_code&): void +run(): void
-add_network_to_database(query:string): void -accept_initial _connection(): void
-send_networks_to_client() -async_accept_additional_connections(): void

-handle_signal(ec:const error_code&,signal_number:int): void

Server Class Diagram Description

The server is new-style daemon written in C++ that is socket-activated by systemd. It is started
when a client attempts to connect, accepts new clients as necessary while running, exits when
the last client has disconnected, and will start again only when a new client connects.

The Connection class corresponds to a single client connection. It is responsible for all
interactions with its associated client after the connection has been accepted. Its member
variables are as follows:

e socket - a TCP socket connected to the client
e streambuf - a buffer for holding data received from the client

The member functions are:

e async_run() - asynchronously reads queries from the client socket, calls handle_read()
to handle the response
mutable_socket() - accessor for the socket member variable
socket() - const accessor for the socket member variable
handle_read() - interprets the client’'s query and calls either add_network_to_database()
or send_networks_to_client() as appropriate
add_network_to_database() - adds a network to the database
send_networks_to_client() - sends all networks in the database to the client

The ConnectionManager class is a singleton. It receives a listening socket from systemd when
a client attempts to connect. It creates a Connection object to manage the initial connection. It
continues accepting connections from the initial listening socket in case other clients attempt to
connect before the first disconnects. ConnectionManager ensures the server terminates
gracefully when all clients have disconnected. It has the following member variables:

e connection_io_service - Handles i/o operations for all Connection objects. The server
exits when this io_service runs out of work (after the last connection has been closed).

e acceptor_io_service - Handles accepting additional connections and, secondarily, the
signal_set used to catch POSIX signals. This io_service runs in a secondary thread.



Guzman 7

acceptor - socket listening for new connections

signal_set - used to catch SIGTERM (to perform graceful shutdown) and SIGHUP (to be
ignored as the server has no configuration files)

rethrow_signal - int set by handle_signal() to indicate that a fatal signal has been caught.
run() will raise this signal after the io_services stopped.

The member functions are:

instance() - accessor for the singleton instance

run() - called by main() to start the server. Calls accept_initial_connection. Creates a
thread to run the acceptor_io_service and runs the io_service in that thread. Runs the
connection_io_service in the main thread. Stops the acceptor_io_service when the
connection_io_service has finished.

accept_initial_connection() - create a new Connection object and synchronously accept
the initial client connection with the Connection’s socket
async_accept_additional_connections() - create a new Connection object and
asynchronously accept a new connection with the Connection’s socket. Calls itself when
complete.

handle_signal() - Catches POSIX signals. Stops both io_services on receiving SIGTERM.
Ignores SIGHUP.

User Requirements

Requirements were collected for our application mainly through team discussions and also by
communicating with friends and family members outside of the group. Within our discussions,
we brainstormed a list of requirements necessary to perform our end goals. For example, we
determined it was necessary to use the WiFi radio for getting a list of networks for our database.
Therefore, a requirement would be to access the raw WiFi network data on the phone. Our
discussions with others outside of the group have helped us by allowing us to consider other
possible functionality such as conducting a search based on the location (city) in addition to
searching by distance, signal strength, and number of results. These discussions have also
allowed us to realize other alternatives to our design such as using OpenlLayers as opposed to
Google Maps API.



