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Step 1

Construction of a
Virtual Geotechnical
Database for the
Geology Underlying the
St. Louis Metropolitan

Area




The St Louis study area
consists of 29 USGS 7.5
minute Quadrangles in
Missouri and Illinois,
encompassing 4,482 sq
km land area

The area consists of:
floodplains along the
rivers; and loess-covered'
elevated on
either side.

Earthquake liquefaction [—jcums
features have been [ Fioodplain §
identified along the ptand
major river channels;

some are interpreted as

having formed in 1811-

1812.
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Seven GIS Geodata layers underlying
the St. Louis Metro Area

We collected and/or estimated the following
information:
- 1) Surficial geology
- 2) Loess thickness
- 3) Bedrock geology
- 4) Borehole information
- 5) Shear wave velocities of surficial materials
- 6) Depth to groundwater
- 7) Depth to Paleozoic age bedrock

Goal is to estimate the severity of shaking:

- Amplification of incoming seismic energy due to soil cap
overlying dense Paleozoic age bedrock

- Magnification of incoming seismic energy due to
impedance contrast with the soil cap
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Compiled Surficial Geologic Map

Surficial Geology
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Loess Thickness Map (in feet)
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Map Scale Matching Problems

Possible Solutions:

For mismatching boundary area, editing another 24K map
boundaries instead of 100K map

After edge-matching

Manchester 7.5’
Quadrangle

House Spring 7.5’
Quadrangle



Compiled Bedrock Geology Map
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Borehole
Locations

Data Sources:
MoDNR-DGLS
ISGS
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Borehole Information
Data Sources (Digital Format); MoDNR-DGLS and ISGS

State Borehole type RUCREE ol Item
records
Missouri Bedrock 2338  Depth to bedrock, Bedrock type
Corelog 729  Core recovery (%), Rock Quality Designation (RQD)
Gram Size 93  Grain size anaysis of soil
Material 2330 Description of soil material
Physical Property 1906 Standard Penetration Test (SPT) N-value, Cone
Penetration Test (CPT), ASTM class, Unit weight
(water content,% ), Liquid limits, and Plastic index
Water Observation 961 Depth to groundwater
Site 2394
Illinois  Highway Log 857 Description of soil material
ngl.lway. 496 Standard Penetration Test (SPT) N-value
Engmneering
Highway Head 2226  Description of geotechnical boring
Log 3636 Description of soil material
Water Well 4728 Description of water well

Site 4817




Locations of Shear Wave Velocity
(Vs) Measurements
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Vs Reference Profiles and Soil Columns derived
from adjacent boreholes
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Geospatial Prediction of the
Groundwater Table

Application: important consideration
in engineering and environmental
decision making; for

. waste disposal sites

. hatural hazards, such as shaking-
induced soil liquefaction, and lateral
spreads.
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General Specifications of the
Groundwater Table

The groundwater table elevation generally meets the
following specifications:

1) follows the shape of the land surface
2) is equal to the ground elevation at streams,
3) the depth to groundwater table is deepest in hilly area

Well
A
DTW 1
B i
oo AR
-~
Vo
| \\ o o -
L, I I
o S gl BB o=
R A y .
. = |
~ - ~ ~ - ~ & /\/ ~ o \\.’,/\ '\/ \7‘ ‘\.///\ /\// ""l
Measured Elevation of ~ > - | Bedrock Pl I Pl S
: GrounwaterT?ble\ o N L !u; . \\Water EIevatlon at Rlver .
= \\,\" N & o day T 2P \\,\’* N, R e s R ks
! ‘ sV ! |/\f/\',f'\/,i/\f/\"f'\/_\/\f/\’fl\vr/\f/\jf‘\

DTW: Depth to Groundwater; DTW 1> DTW 2



Profile of Groundwater Table (W) with and
without considering the ground surface (G)
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Input data for Modeling Groundwater Table

Major River Earthquakes
Mean Business
Data Point for Obtaining Water Elevation at Streams and Rivers Stream ebruary 6, 2009
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Kriging Map of Predicted Groundwater
Table Elevation

Standard Error Map Using
Kriging
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Cokriging Map of
Groundwater Table

Primary variables:
- 1,052 well logs

. 2,569 artificial data points along drainage.

Secondary variables:

- Resolution/accuracy of actual ground
elevations (500m x 500m grids), extracted
from USGS Digital Elevation Models
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2) Cokriging Map of Predicted Groundwater
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Problems with interpolating the
bedrock Surface beneath the ground

In undulating terrain, the bedrock surface is often a
complex, undulating feature, shaped by previous
erosional and deformational events

Linear interpolations between
adjacent data points in rugged
terrain often lead to erroneous

results, because: eonsolaee
1) overestimation of bedrock surfaces in Estimated bedhock surt
paleovalley systems e

40@&/&
2) a local contouring model may result in

poor estimates when applied to a different
geomorphic province or terrain Paleozoic bedrock

o,
% Strg ”
@
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Procedure for Interpolating Depth-to-Bedrock

3) Of these two approximations, our model was programmed
to select the deeper bedrock surface, which we feel is
more accurate

Not piercing bedrock interface
Unconsolidated
sediments
Plercmg bed’ro-k |nteriace_____,____—;i;_i;_ _ :‘_~_ e o
= e RN p ;ﬁ’ o
:_.4- = %\Kﬁ.\ bl = # /

Paleozoic bedrock

----- Estimated bedrock surface using borings piercing the bedrock interface
----- Estimated bedrock surface using all borings

Final estimated bedrock surface, selecting the deeper bedrock surface
——— Actual bedrock surface



Kriging Map of Bedrock Elevation

subtracted DEM from kriged Depth-to-Bedrock
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Step 2

Preliminary
Assessment of Soill
Liquefaction
Potential




Liquefaction is a soil failure
mechanism that occurs
when saturated
cohesionless soil looses
shear strength. This
occurs when the soil pore
pressure exceeds the SO el
effective confining stress. & .. =

It often occurs in loose
unconsolidated sands
during earthquake-
induced ground shaking,
and behaves like a fluid.

.

LiquA sand _
When the water pressure | £, Wi
Increases and Sand IS - ”™ of America, v 85, p. 51-65.)

liquefied, a s/urry of
sand/water is forced to
the ground surface.



Locations of 564 Borings used to calculate the
Liquefaction Potential Index, or LPI

Surficial Geology
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Historical Liquefaction Severity
Assessed from LPI (Iwasaki, 1982)

LPI Severity of Liquefaction
O None
O0< LPIL<S Little to none
5<LPIL 15 Moderate
15 <LPI<100 Severe

" The LPI technique evaluates the entire soil
column overlying the stable bedrock

"The higher the LPI value, the more severe |
liquefaction damage. February 6, 2009




Advantage of LPI method over FS

Factor of Satefy

Om Where the mixture
=3 S = ey of a liquefiable and
3 £ non-liquefiable soil
2 1| | Non- :
- layer exists at a
2.3 single boring,
(1); . Will liquefaction
0'7 _ _ occur?
0:7 Hieuenatle If so, how severe is
09|* the liquefaction?
1.6
7 1 Non-
20m 8.1 Mean Business
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The LPI Method allows us to subjectively
grade the severity of liquefaction potential

LPI
MMES=E 421- LPI = 6.2 in this soil
§ 2 4 columny
2.1 therefore,liquefaction is
2.3 likely to occur
1.1 Liquefaction severity
0.7 LP| =6.2 will be “MODERATE”,
0.7 based on historical
0.7 liquefaction evidences
0.9 (Iwasaki et al., 1982)
1.6
7 - 1 Earthqua!kes
20m 8 . 1 B February 6, 2009




LPI estimates for various Earthquake
Scenarios

Liquefaction potential in the upper Mississippi
Embayment may not be a significant issue at
Magnitudes < 6.4 (Obermeier, 1989; Tuttle and
Schweig, 1995)

LPI values from 564 data points were calculated
for a M7.5 quake with PGA values of 0.10g to
0.30g (Toro and Silva, 2001), emanating from
the New Madrid Seismic Zone

Earthquakes
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Liquefaction Potential Map (inferred
from LPI) for M7.5 with 0.10 PGA
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Liquefaction Potential Map (inferred from
LPI) for M7.5 with 0.20 PGA

® Severe Liquefaction
Potential Area

B e
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Step 3

Physical Factors
Affecting Seismic
Site Response




What is Site Response? How the soil under the site
affects the intensity of ground shaking.

Site Response
Soil Type and Depth

St. Louis Non-linearity
— Wave velocity
oo
— rficial layers
=,
Fault — \\
; |
Earthquake Source 2 Wave Propagation
Fault Type = Crustal Velocity Structure
Fault Size 3-D Sedimentary Basin
Slip Depth Heterogeneity
Rupture Propagation Damping

The type, depth and size of fault, combined
with physical properties of crust and

geophysical properties of the surficial soils
affect site response.

Earthquakes
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Ground Motion Parameters

Peak Ground Acceleration (PGA) is the
maximum acceleration experienced by

the particle during the course of the
earthquake motion.

Spectral Acceleration (SA) what is
experienced by a building, as modeled on
a massless vertical rod, having the same

natural period of vibration as the
building.

Earthquakes
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Estimating surface accelerations

Surface accelerations can be
estimated using 1-D seismic
site response software

Typical input data includes:
. Soil physical properties

. Soil dynamic properties

. Soil thickness

. Input rock motion at the
base of the soil column

These are combined to
estimate the site
amplification, or de-
amplification

ooo
000
Oooo

ROCK

erjy
am lified or

damped

_W




Effect of Soil
Thickness

on Peak Ground
Acceleration
(PGA)

Soil Thickness: 28 m
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Spectral Accelerations (SA)

The spectral acceleration value varies with the
natural period of the structure.
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0.4

—38.5 m sediment cover
1 5 1< U —35.0 m sediment cover .
—28.0 m sediment cover
--------------------------------------------------------------------- —24.5 m sediment cover |
—21.0 m sediment cover
— Bedrock
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Variation in expected spectral acceleration with alluvial
thickness in the St Louis, MO area
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Step 4

Distribution of
Site Amplification
and
Development of
Site Amplification Maps




The Missouri S&T pilot study sought to develop
the following maps, of a ~460 km?2land area:

1) Site amplification maps for different levels of ground
shaking (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0)
in terms of PGA, 0.2 sec and 1 sec spectral accelerations.

2) ngf\ probability of exceedance in 50 years in terms of
1 4

B)ng\ probability of exceedance in 50 years in terms of
14

4) 18;/0 probability of exceedance in 50 years in terms of
PGA;

5) 0.2 second spectral accelerations for 2%, 5% and 10%
probabilities of exceedance in 50 years;

6) 1 second spectral accelerations for 2%, 5% and 10%
probabilities of exceedance in 50 years;

7) 2 scenario earthquakes (Mo, 7.0 and 7.7) and their
associated PGA and 0.2 sec-SA and 1 sec-SA;



What information do we need to
estimate site amplification?

1) Characterize the shallow geology overlying the bedrock

Surficial geology maps
Depth to Bedrock

2) Characterize the bedrock acceleration

3) Characterize the thickness and shear wave velocity of
the bedrock underlying the surficial materials

4) Characterize the properties of the surficial materials
(~soil cap)

Physical soil properties
Dynamic soil properties (shear modulus and damping, shear wave

velocity)

Earthquakes
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Digital Elevation Model used in pilot study
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Depth to Bedrock (Surficial Geology Thickness Map)

Legend

Depth to top of Bedrock
in meters

Earthquakes
Mean Business
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Drawbacks

When the bedrock
surface is uniform there
is little uncertainty in
the calculations.
However, large
variations in the data
within small distances
make predictions less
certain.

The loess deposits
mantling the uplands
tend to thicken towards
hilltops and thin towards
valleys, because of
erosion.

When thickness data is
missing in these valleys, :....
kriging techniques can -
be unreliable, as shown
at lower right.




Surficial Geology of
ouis study area

Legend

Surficial Geology

|:| Mississippi River

UNIT

- Alluvium -Terrace deposits
- Alluvium -undifferentiated
\:| Cahokia - clayey

:| Cahokia - fan

Cl Cahokia - sandy

[ | cahokia Fm

\:] Disturbed ground

|:| Equality Fm

! Henry Fm

[ Peoria Silt and Roxana Silt
[ | vandalia Till of Glasford Fm and Mill Creek Till

0o 1 2 4 6 8
Kilometers
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Typical cross section thru Mississippi
River flood plain

Peoria and Roxana Silt and wind-blown loess

Cahokia Formation
(Cc, Cs)

correlate to 29786
(Monks Mound ——

\\
400

200 ~

Glasford formation -till Henry Formation (h)



Boreholes Used in the pilot study
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Estimation of Top-of-Bedrock Elevations

Kilometers

Legend

Top of Bedrock Elevation
Prediction Map

in meters
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Surficial Geology Main Groups
<all other values>

GEOLOGY
Floodplain deposits (clay+sand+fan+disturbed)
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Elevation (m}
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Elevation (m)

Elevation (m)
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Bedrock properties

We used 1750 m/sec +/- 250 m/sec for the weathered
bedrock shear-wave velocity, suggested by seismologist
Robert Herrmann at St. Louis University.

We selected Om / 2m / 20 m thicknesses for the
weathered bedrock.

We also used 2800 m/sec for the half-space below the
weathered bedrock.
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< =~ Shear wave velocity measurements
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Characteristic Vs profiles were developed for nine

eologic/geomorphic terrains, such as alluvial or
oess/colluvial covered uplands, etc.



Characteristic Vs Profiles
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Characteristic Vs Profiles
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Shear wave velocity (m/sec)
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Amplification Calculation Procedure
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Step 6

Distribution of Site
Amplification




Amplification

Amplification

10

10

1
— Alluvium 10 m
—Alluvium20m @
— Alluvium 30 m
0.1
0.001 0.01 0.1 10
Ground motion level (g)
10
1
— Alluvium 10 m
— Alluvium 20 m
—Alluvium30m
0.1
0.001 0.01 0.1

Ground motion level (g)

Amplification

Distribution of
Site
Amplification
In
Alluvium

10
1
— Alluvium 10 m
— Alluvium 20 m
—Alluvium 30m o epdin kg
0.1
0.001 0.01 0.1 1 10

Ground motion level (g)



Amplification

Amplification

10

—Loess 10 m
—Loess 20 m

—Loess 30m

0.1
0.001

0.1 1 10

Ground motion level (g)

0.01

10

—Loess 20m

—Loess 30m

—Loess 10 m

0.1
0.001

0.1 1 10

Ground motion level (g)

0.01

Amplification

Distribution of
Site
Amplification
in
Loess

10
1 =il
—Loess10m
—Loess 20 m
0.1
0.001 0.01 0.1 1

10

Ground motion level (g)



Amplification factor at 0.01g
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Step 7

Site Amplification Maps

Site amplification maps were generated for
discrete increments of ground
motion(0.01 to 1.0 g) and for the
following ground motion parameters:

. Peak Ground Acceleration (PGA)
. 0.2 second Spectral Acceleration
. 1.0 second Spectral Acceleration
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Site Amplification Factors
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Summary of Results

Site amplification depends on the severity of the
assumed input ground motion.

Site amplification also depends on the geologic
conditions underlying any given location.

Site Amplification is severe on upland sites
underlain by thick deposits of loess.

Site Amplification is also severe for long period
structures on deep (>~20 m) alluvial sites, in
the major river flood plains.
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Left — Deeper alluvial cover (~31 m) tends to magnify long
period (SA 1.0 sec) motions

Middle — Medium alluvial cover (~18 m) tends to magnify
motions for 0.2 sec SA

Right — Upland sites mantled by loess tend to magnify bedrock
mc_:ltion because of impeedance contrast between bedrock and
soil cap.



Step 8
Seismic Hazard Maps

Previous Examples:

. National Seismic Hazard Maps
(2002)

. Memphis Shelby County Seismic
Hazard Maps (2004)




The National Seismic Hazard Maps were constructed
using the best earth science information available.
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soils, or so-called “site effects”



Urban Seismic Hazard Maps
(Memphis and St Louis)

These include the effects of
variations in local geology

Are completely consistent with the
national maps

The scale is useful locally, but not
intended to be site-specific
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Summary: Shaking intensity iIs
controlled by the underlying geology

2% probability of exceedance in 50 years
acceleration values for loess at 0.2 sec Sa and
for alluvium at 1 sec Sa values appear to be
large enough to cause structural damage in the
St. Louis Metro Area.

Earthquake forces may be most severe for short
period structures, on upland sites underlain by
loess.

Earthquake forces may also be severe for long
period structures on deep (>14 m) alluvial
sites, in the natural flood plains.
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Late Pleistocene and Holocene Alluvial thickness
appears to be the key factor in controlling local
intensity of seismic site response




Future Work - 1

The results indicate that the site amplification on
alluvial sites is most influenced by the unit
thickness. Therefore, more data is needed to
better define the variations of thickness in
alluvium.

The depth to top-of-bedrock (soil cap thickness)
map was prepared using kriging methods. There
are inherent advantages and disadvantages
associated with this methodology. Every effort
should be made to amend this map with
additional data and hand-estimate the bedrock
topography, in lieu of kriging, to elicit a more
accurate prediction (ignoring 3D effects).
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Future Work - 2

Site amplification and seismic hazard depend
largely on the estimated input parameters.

Some of these parameters must be estimated
more accurately, i.e., maps showing thickness
of the soil cap.

The hazard results are based on the 2002 USGS
model. The USGS has since updated their
models with a new National Map in 2008. New
calculations need to be performed to evaluate
how these changes compare with the estimates
in the Missouri S&T study.
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